S1 Methods. Unbiasedness of growth rate.

Denote our estimator for growth rate of the type-i clone \hat{r}_i , with true parameter value r_i . The type-i population has size $X_i(t)$ at time t. Then,

$$bias(\widehat{r}_i) = \mathbb{E}(\widehat{r}_i) - r_i \tag{1}$$

$$= \frac{1}{\Delta} \mathbb{E} \log \left(\frac{X_i (t_{dx} + \Delta)}{X_i (t_{dx})} \right) - r_i \tag{2}$$

$$\approx \frac{1}{\Delta} \Big(r_i \Delta + \mathbb{E} \log U - \mathbb{E} \log V \Big) - r_i \tag{3}$$

$$= \frac{1}{\Delta} (r_i \Delta + (\gamma + \log r_i) - (\gamma + \log r_i)) - r_i \tag{4}$$

$$=0 (5)$$

where U and V are i.i.d. $\text{Exp}(r_i/b_i)$, and t_{dx} is the time of diagnosis.