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Supplementary Note 1: Estimation of diversity representation

Based on theoretical estimates from SNPs in the 1000G project, and using Kruglyak et al 2000 formula', to
detect 100% of minor alleles greater than 2% in the human world population or ~97% of those above 1%,
one would need to generate complete sequence for ~350 diploid genomes (700 haplotypes) from diverse
populations, the number thus far funded. To obtain 99% of those above 1%, one would need ~450 genomes
(900 haplotypes). Minor allele frequency is the frequency at which the second most common allele occurs
in a population. This calculation will differ for structural variants, estimated at 50 genomes for alleles above
5%. These values will need to be revised in an iterative fashion, as more relatively complete and error-free
genomes are generated. For example, as validated in this study, haplotype diversity is uneven across the
genome, e.g. where centromeres have much greater diversity than most other genic parts of the genome.
Also the technology used will make a difference. These values were determined based mostly on short-read
only assemblies, which do not assemble centromeres well, and also not GC-rich or repeat regions well.

Supplementary Note 2: Additional reads with adaptors that needed to be removed.

After the standard method of removing adaptors in the sequence reads, we screened the presence of any
remaining adaptors in the HG002 Pacbio libraries. We found that 0.3-0.4% of reads (~2,000) still contained
at least 1 adapter per SMRT cell movie, and that adds up to a 1.7% frequency overall (all contaminated
reads/all reads). Such adaptor contaminated reads were greatly reduced with chemistry 3.0 relative to 2.0
and pre2.0. The PacBio 45 bp blunt adapter was the sequence that was not properly clip in the sequence
processing:

> gnlluv[NGB00972.1:1-45 Pacific Biosciences Blunt Adapter
ATCTCTCTCTTTTCCTCCTCCTCCGTTGTTGTTGTTGAGAGAGAT

These were due to reads with adapter 2-dimers (more prevalent in chem pre2.0 than in chem?2.0). The
location of the adapters were mostly (90%) at the beginning of the reads (first 1/3rd of the read length), and
87% within the first 100bp; 0.1% in the middle of the read (2/3 of the read); and the remaining 9.5% at the
end of the read (last third of the read), and 9.3 % within the last 100bp. To identify reads with reads of all
these categories, we used HiFiAdapterFilt (https://github.com/sheinasim/HiFiAdapterFilt). Some reads
were entirely made of adaptors, which presumably occurs by self ligation in the library preparation. We
removed all such reads with adaptors for the final HG002 assembly, even if they had human sequence
attached, because using cut versions of these reads led to lower assembly metrics relative to without them.
Later we switched to CutAdapt (https://github.com/marcelm/ cutadapt)’, as the results had about 90%
overlap with HiFiAdapterFilt, but Cutadapt was about 2 times faster and slightly more sensitive (5-10%).

Supplementary Note 3. Gene set used for determining gene presence or absence in the reference
assemblies. The assessment of gene content was done by aligning known RefSeq transcripts (with
accession prefixes NM_ or NR ) for human genes to all assemblies. This set of transcripts is actively
maintained by the NCBI RefSeq group based on experimental data (genome sequence, and transcript and
protein products). Over 97% of RefSeq known transcripts have been curated and are in status
“REVIEWED” or “VALIDATED” (2 of the 7 most evidence based categories;
https://www.ncbi.nlm.nih.gov/books/NBK21091/table/ch18.T.refseq status_codes/?report=objectonly).
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The absent genes from one of the four reference haplotypes (GRCh38, CHM13, HG002 maternal and
HGO002 paternal) are enriched (38%) for status “PROVISIONAL” due to microRNAs, which were
originally predicted by miRbase but have yet to be validated. Excluding miRNAs, nearly 90% of the
transcripts not found in one of the four reference assemblies have been curated and are therefore unlikely
to be artefacts.

Supplementary Note 4. In a separate sample HG06807 (an African American female), we compared
genome contigs generated using hifiasm (v0.15.5) on HiFi reads (~30x coverage) from LCL versus blood
of the same individual. We called variants between the two assemblies with Dipcall, using minimap2
alignments to GRCh38. The intersection of Dipcall confident BED files were used to include only the
variants from the well-assembled and well-aligned blocks. VCF comparisons were done w/ hap.py

hap.py ${BLOOD VCF} ${CELL VCF} -f §{CONFIDENT BED} -r ${REF} -0 ${OUTPUT PREFIX}
--pass-only --no-roc --no-json --engine=vcfeval --engine-vcfeval-template=${REF SDF}. The variants
that couldn’t be compared by vcfeval (because of complexity) are excluded. The intersected DipCall
confident blocks cover ~2.79 Gb (90%) of GRCh38 (3.09 Gb); the projection of the confident blocks also
covers ~90% of each of the HG002 maternal and paternal assemblies.

We found that the LCL-based and blood-based SNVs are highly similar (99.8%; Supplementary
Table 14). That is, 99.8% of the LCL SNVs were also present in blood and 99.8% of the blood SNVs were
also present in the LCL. The ~10,000-12,000 SNVs present only in the LCL or blood could be due to real
mosaicism substitutions, or a combination of mosaicism and consensus sequence read errors in hifiasm
contigs of HiFi reads (QV59 would be mean 3000-4000 errors in a 3Gb genome). We also searched for
common and different variants that intersected with the ClinVar database and we could not find any
pathogenic variants.

To search for potential SV differences in the blood versus the LCL, we aligned the LCL contig
assembly to the blood contig assembly (as reference) per haplotype separately with minimap2-v2.24. For
each haplotype we then ran SVIM-asm, called all potential SVs per haplotype, and filtered out putative SVs
that included gaps in the assembly of any of the haplotypes, indicating possible assembly errors. From this
analysis, we found three small inversions (two on the same chromosome) ranging from ~1.6, 4.0, to 10 Kb
in the maternal haplotype of the LCL relative to the original blood source (Supplementary Fig. 9), and not
in the paternal haplotype; thus, these inversions without gaps appear not to be due to assembly errors. The
combined SNV and SV findings suggest that low passage LCLs may not be identical to the original blood
source. However, they have not introduced major changes in the genome relative to their starting blood
source.

SNVs 4,724,714 | 4,723,159 12,307 10,752 4,712,407 99.8%, 99.8%

Supplementary Table 14. SNVs relative to GRCh38 in blood versus LCL genome of the same individual. The
two % common values are the percentage of shared variants in the blood and LCL, respectively, relative to GRCh38.
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Supplementary Fig. 1 | Ploidy analysis of HG002 LCL GM2438S. a, Representative chromosome spread of passage
13 LCLs demonstrating 46, XY karyotype. Chromosomes were labeled by FISH with X centromeric probe for DXZ1
satellite (green) and a custom Y chromosome probe from in-house single-sorted chromosomes (pink)?; the DNA was
counter-stained with DAPI. Scale bar, 10um b, Ploidy distribution of 58 randomly selected chromosome spreads from
HGO002 LCLs showed an expected modal number of 46 chromosomes. Spreads missing multiple chromosomes may
be specimen preparation artifacts. Overall, most cells maintain a stable diploid karyotype.
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Supplementary Fig. 2 | Curation structural analyses. a, Missed contig joins that should have been brought together
in the same scaffold. b, Misjoins of contigs that should not have been brought together. ¢, other scaffold errors,

including false inversions and false duplications. d, Contig errors, including chimeric contigs. ND = not done, as it

Not applicable, as these references were curated by a

would be redundant with another assembly approach. NA
different process, with nevertheless many errors corrected.
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Supplementary Fig. 3 | a and b, PCA on the multidimensional Euclidean distances amongst assemblies, for
autosomes 1-22 and sex chromosomes X and Y, respectively from Figure 2¢,d, but with simpler assembly labels. The
labels are simplified in order to better see the location of the values in the graphs. The haplotypes of trio-based
assemblies (green for maternal; turquoise for paternal) are the most distinguished from all other assemblies and from

each other.
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Supplementary Fig. 4. | Titration of read coverage and hifiasm version on three assembly metrics. a, Number of
contigs for each haplotype. b, Contig N50 for each haplotype. ¢, Haplotype switch errors for each haplotype. Two
HiFi coverage levels were tested: 35x and the near full 130x data set with different library insert sizes. Three parental
Illumina coverage levels were tested: 30x; 50x; and 300x. Two trio hifiasm versions were tested: v0.11 and 0.14. The
increase in the number of contigs with increasing child and parental coverage could be due to more complete contigs
with diverse centromere sequences, human EBV virus, and mitochondrial genomes. Hifiasm v0.14 increased contig
N50. Increased child or parental sequence coverage decreased haplotype switch errors. The 130x-300x v0.14 assembly
was the contig input for the final HPRC-HGO002 assembly of this study.



b, Sequences of maternal gaps filled, 10 of them
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Supplementary Fig. 5 | Gap filled sequences. a, Sequences filled in the maternal scaffolds. b, Sequences filled in
the paternal scaffolds. Only the sequences used in the gap space are shown. These gaps between Pacbio HiFi-based
contigs in scaffolds were filled with ONT-based contigs. Orange = G; Red = A; Green = C; Blue = T. Notice the GA
or TC repeats in most of the filled gap sequence.
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Supplementary Fig. 6. Assessing centromere collapses. Shown are HiFi coverage plots across the alpha satellite
array regions of the centromeres in the HRPC-HGO002 v1.0 maternal (left) and paternal (right) assemblies. A collapsed
repetitive region will have coverage pile up that is two or more times higher than the mean coverage of the surrounding
genomic region. These regions can also include alleles from the other haplotype (red), which could result in switch
errors. Regions of decreased coverage or dropout in coverage could also have switch errors associated with them or
are more difficult to sequence through.
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Supplementary Fig. 7 | Assessing centromere switch errors. a-b, Examples of assembled HPRC-HG002 v1.0
centromere regions with no gaps or haplotype switch errors. ¢-d, Examples with gaps and haplotype switch errors.
Top row, HiFi coverage across the chromosome segment; below, maternal (red) and paternal (blue) k-mer profiles,
where haplotype switches show up as swapping in k-mer coverage. Issues, indicate low quality sequence or other
potential problems. Grey bar, centromere. Gaps, are black tick marks.
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Supplementary Fig. 8. Mosaicism in HG002 haplotypes. a, Graphed are the rate of minor alleles in the raw reads
found for each haplotype. Each dot represents the value for each autosome. Chromosomes with mosaicism higher than
the 95% confidence interval are numbered. b, Mosaicism relative to chromosome size, with chromosomes ordered
from largest to smallest. Note that a higher prevalence of mosaicism among the smaller chromosomes.
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Supplementary Fig. 9. Several structural variant inversion differences in blood versus LCL of a human sample.
a, IVG plot of ~10 kb inversion in a contig of the maternal haplotype of the LCL sample aligned to blood sample
contigs. b, Plot of ~1.6 kb inversion in another region of the same contig as in (a). ¢, Plot of ~4 kb inversion in a
different contig of the maternal LCL haplotype.
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Supplementary Fig. 10. Mitochondrial genome heteroplasmy in HG002 cell line. Shown are raw HiFi reads
mapped back to the reference HG002 mitochondrial genome assembly. Red vertical lines indicate SNPs at a frequency
of >1% The one red line prominent in the raw reads indicates that the minor allele was in the reference. This
heteroplasmy could have been presented in the original blood cell plasma isolated from HGO002 and/or in the
subsequent cell line.
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