## **Supplementary information**

# The neurons that restore walking after paralysis

In the format provided by the authors and unedited

## **Supplementary information**

# The neurons that restore walking after paralysis

In the format provided by the authors and unedited

## Supplementary Information guide

| Description of the clinical trial STIMO | . 2 |
|-----------------------------------------|-----|
|                                         |     |
| Supplementary Tables and Legends        | . 5 |

#### Description of the clinical trial STIMO

Clinicaltrials.gov: NCT02936453

**Study context**. All experiments were carried out as part of the ongoing clinical feasibility study STIMO ("Stimulation Movement Overground"), which investigates the effects of spatiotemporal EES combined with weight-supported overground locomotor training on the recovery of motor function after SCI. This study was approved by the Swiss ethical authorities (Swissethics protocol number 04/2014 ProjectID: PB\_2016-00886, Swissmedic protocol 2016-MD-0002) and was conducted in accordance with the Declaration of Helsinki. All participants signed a written informed consent prior to their participation. More information is provided at clinicaltrials.gov (NCT02936453). All surgical and experimental procedures were performed at the Lausanne University Hospital (CHUV) and have been previously described in detail<sup>19</sup>.

#### Study Objectives. Primary objective

Address the feasibility in terms of efficacy and safety of overground, robot-assisted neurorehabilitation in combination with spinal EES to reduce the need of assistance required to walk and to increase the speed of walking, i.e., facilitate motor control, in chronic, SCI patients.

#### Secondary objective

Address the efficacy of overground, robot-assisted neurorehabilitation in combination with spinal EES to improve independence in activities of daily living and to improve endurance during walking, i.e., facilitate motor control, in chronic, SCI patients.

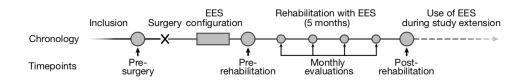
#### Study Endpoints. Primary endpoints

The overground, robot-assisted neurorehabilitation in combination with spinal EES will result in less assistance required to walk and faster speed of walking. This will be calculated within each individual and across the group (12 patients). *Chosen measures: WISCI II Score, 10-Meter Walk Test, Weight Bearing Capacity (WBC).* 

#### Secondary endpoints

The overground, robot-assisted neurorehabilitation in combination with spinal EES will result in more independence in activities of daily living and an improved endurance during standing and walking. This will be calculated within each individual and across the group (12 patients). *Chosen measures: SCIM III Score, 6-Minute Walk Test.* 

- *Inclusion Criteria*. Patients fulfilling all of the following inclusion criteria may be enrolled in the study:
  - Age 18-65 (women or men)
  - Sensorimotor or motor complete and incomplete SCI graded as AIS A, B, C & D
  - Level of lesion: T10 and above, based on AIS level determination by the PI, with preservation of conus function


- The intact distance between the cone and the lesion must be at least 60 mm.
- Focal spinal cord disorder caused by either trauma or epidural, subdural or intramedullary bleeding
- Minimum 12 months post-injury
- Completed in-patient rehabilitation program
- For ASIA C and D, able to stand with walker or 2 crutches
- Stable medical, physical and psychological condition as considered by Investigators
- Able to understand and interact with the study team in French or English
- Adequate care-giver support and access to appropriate medical care in patient's home community
- Agree to comply in good faith with all conditions of the study and to attend all required study training and visit
- Must participate in two training sessions before eligibility is confirmed
- Must provide and sign Informed Consent prior to any study related procedures

ExclusionThe presence of any one of the following exclusion criteria will lead to<br/>exclusion of the subject:

- Limitation of walking function based on accompanying (CNS) disorders (systemic malignant disorders, cardiovascular disorders restricting physical training, peripheral nerve disorders)
- History of significant autonomic dysreflexia
- Cognitive/brain damage
- Epilepsy
- Patient who has spinal canal stenosis
- Patient who uses an intrathecal Baclofen pump.
- Patient who has any active implanted cardiac device such as pacemaker or defibrillator.
- Patient who has any indication that would require diathermy.
- Patient who has any indication that would require MRI.
- Patients that have an increased risk for defibrillation
- Severe joint contractures disabling or restricting lower limb movements.
- Haematological disorders with increased risk for surgical interventions (increased risk of haemorrhagic events).
- Participation in another locomotor training study.
- Congenital or acquired lower limb abnormalities (affection of joints and bone).
- Women who are pregnant (pregnancy test obligatory for woman of childbearing potential) or breast feeding or not willing to take contraception.
- Known or suspected non-compliance, drug or alcohol abuse.
- Spinal cord lesion due to either a neurodegenerative disease or a tumour.
- Patient has other anatomic or co-morbid conditions that, in the investigator's opinion, could limit the patient's ability to participate in

the study or to comply with follow-up requirements, or impact the scientific soundness of the study results.

- Patient is unlikely to survive the protocol follow-up period of 12 months.



Study timeline.

The study involves assessments before surgery, the surgical implantation of the neurostimulation system, a one-month period during which EES protocols are configured, and a five-month rehabilitation period with physiotherapists taking place four to five times per week for one to three hours. The rehabilitation program is personalized based on the current capacities and improvements displayed by each participant. At the end of the rehabilitation period, the participants are given the opportunity to be enrolled in a study extension phase during which they can continue using the neurostimulation system at home. Participants enrolled in this extension phase are followed-up on a regular basis by the study team for up to six years.

## Supplementary Tables and Legends

| Participants                                                            | BT         | 001        | DM          | 002       | GO         | 004        | ST          | 006        | MB         | 007        | HT          | 008         | GF          | 009         | GJ         | 010        | MR          | 2012        |
|-------------------------------------------------------------------------|------------|------------|-------------|-----------|------------|------------|-------------|------------|------------|------------|-------------|-------------|-------------|-------------|------------|------------|-------------|-------------|
| Gender                                                                  | r          | n          | n           | n         | n          | n          | n           | n          | r          | n          | r           | n           | 1           | m           |            | n          |             | m           |
| Age at study enrolment (y)                                              | 5          | 3          | 2           | 8         | 3          | 4          | 4           | 7          | 2          | 3          | 3           | 2           | 3           | 32          | 4          | 1          | 2           | 29          |
| Years after SCI at study                                                | 3 years an | d 2 months | 5 years and | 11 months | 5 years an | d 5 months | 4 years and | d 3 months | 3 years an | d 8 months | 14 years ar | nd 3 months | 8 years and | d 11 months | 1 year and | d 3 months | 2 years and | d 10 months |
| enrolment<br>Assessment at study                                        |            |            |             |           |            |            |             |            |            |            |             |             |             | <b></b>     |            |            |             |             |
| enrolment (Pre)<br>and after rehabilitation<br>period (Post)            | Pre        | Post       | Pre         | Post      | Pre        | Post       | Pre         | Post       | Pre        | Post       | Pre         | Post        | Pre         | Post        | Pre        | Post       | Pre         | Post        |
| American Spinal Injury<br>Association Impairment<br>Scale (AIS)         | D          | D          | С           | D         | С          | D          | С           | с          | С          | С          | С           | D           | А           | A           | А          | A          | В           | с           |
| Neurological level of injury                                            |            |            |             |           |            |            |             |            |            |            |             |             | T4          | Т3          | Т3         | T3         | T7          | T7          |
| Lower Extremity Motor<br>Score<br>L2, hip flexors                       | 2 3        | 4   4      | 2 0         | 4   2     | 2 2        | 3 2        | 0   0       | 0 1        | 0   0      | 1 1        | 0 2         | 2   4       | 0   0       | 010         | 0   0      | 0   0      | 0   0       | 1 2         |
| (right   left)<br>L3, knee extensors<br>(right   left)                  | 4   4      | 4   4      | 2 0         | 4 3       | 4   4      | 4   4      | 0 0         | 1 0        | 0 0        | 010        | 1 2         | 4   4       | 0 0         | 010         | 0 0        | 0 0        | 0 0         | 1 1         |
| L4, ankle dorsiflexors<br>(right   left)                                | 2   2      | 3 2        | 4   0       | 4 1       | 3 3        | 4   4      | 0   0       | 0 1        | 0   0      | 0   0      | 0 1         | 2   4       | 0   0       | 0   0       | 0   0      | 0   0      | 0   0       | 0 1         |
| L5, long toe extensors<br>(right   left)                                | 4   4      | 0 0        | 4   0       | 4   2     | 1 1        | 2   4      | 0   0       | 0 1        | 0   0      | 3 3        | 1 4         | 0   4       | 0   0       | 0   0       | 0   0      | 0   0      | 0   0       | 0 0         |
| S1, ankle plantar flexors<br>(right   left)<br>(max. 5 per side)        | 2 2        | 4   4      | 2 0         | 4 2       | 4   4      | 5 4        | 0   0       | 0 0        | 0 0        | 0 0        | 0 1         | 0 2         | 0   0       | 0 0         | 0   0      | 0   0      | 0 0         | 0 0         |
| Total (max. 25   25)                                                    | 14   15    | 4 5        | 14   0      | 20   0    | 14   14    | 18   18    | 010         | 1 3        | 010        | 4   4      | 2   10      | 8   18      | 010         | 010         | 010        | 010        | 010         | 214         |
| Deep anal pressure (DAP)                                                |            |            |             |           |            |            |             |            |            |            |             |             |             | No          | No         | No         | Yes         | Yes         |
| Voluntary anal<br>contraction (VAC)                                     |            |            |             |           |            |            |             |            |            |            |             |             | No          | No          | No         | No         | No          | No          |
| Light-Touch Sensory score                                               |            |            |             |           |            |            |             |            |            |            |             |             |             |             |            |            |             |             |
| L1-S2 dermatomes<br>subscore (right   left)                             | 9 9        | 9 9        | 9 9         | 9 9       | 2   10     | 2   14     | 2 5         | 4   7      | 9 9        | 0 0        | 9 9         | 9 8         | 0   0       | 0   0       | 0   0      | 0   0      | 0   0       | 0 0         |
| Total (max. 112)<br>Bia Briak Sanaam, Sanaa                             | 42   41    | 42   42    | 38   37     | 38   37   | 21   32    | 27   44    | 26   29     | 28   29    | 41   42    | 35   31    | 43   43     | 45   43     | 23   23     | 22   22     | 23   23    | 21   22    | 30   31     | 30   31     |
| Pin Prick Sensory Scores<br>L1-S2 dermatomes<br>subscore (right   left) | 0 1        | 1 4        | 0   0       | 0 0       | 0   13     | 3   17     | 0   0       | 0   0      | 0   0      | 0   0      | 9 0         | 9 0         | 0   0       | 0   0       | 0 0        | 0   0      | 0   0       | 0 0         |
| Total (max. 56   56)                                                    | 32   33    | 31 35      | 17   16     | 15   15   | 27   41    | 36   50    | 13   15     | 15   13    | 32   28    | 30   31    | 43   34     | 44   34     | 22   22     | 21   22     | 24   24    | 21   21    | 29   30     | 30   30     |

Supplementary Table 1. Neurological status of participants before and after EES<sup>REHAB</sup>

|    |                                                  |              | exemplary fa | ctor loadings |
|----|--------------------------------------------------|--------------|--------------|---------------|
|    | TEMPORAL GAIT FEATURES                           |              | PC1          | PC2           |
| 1  | . Cycle duration (s)                             | -0.1576717   | -0.0191449   |               |
| 2  | Cycle velocity (cm/s)                            | 0.71765717   | 0.29440406   |               |
| 3  | Stance duration (s)                              |              | 0.33582429   | -0.3705423    |
| 4  | Swing duration (s)                               |              | -0.4934916   | 0.32363859    |
| 5  | Relative stance duration (% of gait cycl         | e)           | 0.71023334   | -0.359373     |
| 6  | Double stance duration (%)                       |              | 0.60312357   | -0.2502677    |
|    | LIMB TRAJECTORIES                                |              |              |               |
| 7  | Stride Length (cm)                               |              | 0.6316849    | 0.23280816    |
|    | Step Length (cm)                                 |              |              | 0.34622112    |
|    | 3D toe path length (cm)                          |              | 0.5916267    | 0.43111612    |
|    | Maximal backward position of foot (cm            | 1)           | -0.5463889   | 0.59951176    |
|    | Maximal forward position of foot (cm)            | ,            | -0.6926062   | 0.53389382    |
| 12 | Step Height (normalised)                         |              | 0.72236662   | 0.10545746    |
|    | Step Height (cm)                                 |              |              | 0.20966774    |
|    | Max speed during swing (cm/s)                    |              | 0.21245806   |               |
| 15 | Time of max velocity during swing (% c           | luration)    | -0.1168049   | 0.07212136    |
| 16 | Acceleration at swing onset (cm/s <sup>2</sup> ) |              | 0.78410584   | 0.26677412    |
| 17 | Endpoint velocity (cm/s)                         | 0.62851802   | 0.15385477   |               |
| 18 | Velocity vector at swing onset (deg)             | -0.0894592   | 0.08398648   |               |
|    | DRAG                                             |              |              |               |
| 19 | Drag duration (s)                                |              | -0.5417939   | 0.3603316     |
|    | Drag duration (%)                                |              |              | 0.17578048    |
|    |                                                  |              |              |               |
|    | STABILITY                                        |              |              |               |
|    | Lateral displacement during swing (cm            |              |              | 0.00178616    |
|    | Stance width (cm)                                | Base of      |              | -0.2945496    |
| -  | Pelvis max vertical movement                     | Support      |              | 0.34089065    |
|    | Pelvis min vertical movement                     |              |              | 0.25713701    |
|    | Amplitude of pelvis vertical movement            |              |              | 0.16661574    |
|    | Variability of saggital trunk oscillation        | Trunk        |              | 0.01633459    |
|    | Velocity of saggital trunk oscillation           | Stability    |              | 0.27624926    |
|    | Variability of vertical hip oscillation          | and          |              | 0.06598395    |
|    | Variability of medio-lat hip oscillation         | Oscillations |              | 0.11184576    |
| 30 | Variability of hip rotations                     |              | 0.6548397    | 0.17146907    |

|      |                                        |             | exemplary fa | ctor loadings |
|------|----------------------------------------|-------------|--------------|---------------|
| JOIN | IT ANGLES AND SEGMENTAL OSCILLATI      | ONS         | PC1          | PC2           |
| 31   | Crest oscillations (deg)               |             | 0.00455681   | -0.1268226    |
| 32   | Thigh oscillations (deg)               |             | 0.17662466   | -0.5597325    |
| 33   | Shank oscillations (deg)               | Backward    | -0.3169744   | -0.0503729    |
| 34   | Foot oscillations (deg)                |             | 0.23729717   | -0.6326635    |
| 35   | Whole limb oscillations (deg)          |             | -0.1183546   | -0.4490518    |
| 36   | Crest oscillations (deg)               |             | 0.39236189   | -0.0480982    |
| 37   | Thigh oscillations (deg)               |             | 0.65639533   | -0.46911      |
| 38   | Shank oscillations (deg)               | Forward     | 0.46698448   | -0.2054473    |
| 39   | Foot oscillations (deg)                |             | 0.68490153   | -0.5701471    |
| 40   | Whole limb oscillations (deg)          |             | 0.71750685   | -0.5190953    |
| 41   | Hip Joint (deg)                        |             | -0.1734601   | 0.59996864    |
| 42   | Knee Joint (deg)                       | Extension   | -0.0337904   | 0.34799307    |
| 43   | Ankle joint (deg)                      |             | -0.2004252   | 0.63830011    |
| 44   | Whole IImb abduction (deg)             | Abduction   | 0.03433273   | 0.28954361    |
| 45   | Foot abduction (deg)                   | Abduction   | 0.08665734   | 0.39377111    |
| 46   | Hip Joint (deg)                        |             | -0.5538434   | 0.39348434    |
| 47   | Knee Joint (deg)                       | Flexion     | -0.5989274   | 0.34107686    |
| 48   | Ankle joint (deg                       |             | -0.6415763   | 0.473096      |
| 49   | Whole IImb adduction (deg)             | Adduction   | -0.2250942   | 0.13517821    |
| 50   | Foot adduction (deg)                   | Adduction   | -0.1538514   | 0.0444364     |
| 51   | Crest oscillations (deg)               |             | 0.59139626   | 0.0952798     |
| 52   | Thigh oscillations (deg)               |             | 0.73214101   | 0.02554458    |
| 53   | Shank oscillations (deg)               |             | 0.7759825    | -0.1850331    |
| 54   | Foot oscillations (deg)                |             | 0.68378825   | -0.1976867    |
| 55   | Whole limb oscillations (deg)          | Oscillation | 0.79581363   | -0.2813106    |
| 56   | Hip Joint (deg)                        | Amplitudes  | 0.54185671   | 0.40830478    |
| 57   | Knee Joint (deg)                       |             | 0.64190896   | 0.03090613    |
|      | Ankle joint (deg)                      |             | 0.64712855   | 0.08329771    |
| 59   | Whole IImb medio-lat oscillation (deg) |             | 0.5193659    | 0.28178655    |
| 60   | Foot medio-lat oscillation (deg)       |             | 0.1960371    | 0.26750767    |

|    |                                         |            | exemplary fa | ctor loadings |
|----|-----------------------------------------|------------|--------------|---------------|
|    | VELOCITIES                              | PC1        | PC2          |               |
| 61 | Whole limb oscillation velocity (deg/s) | Minimum    | -0.8464141   | -0.18285      |
| 62 | Hip oscillation velocity (deg/s)        | angle      | -0.759858    | -0.3463828    |
|    | Knee oscillation velocity (deg/s)       | velocities | -0.8054906   | -0.3284002    |
|    | Ankle oscillation velocity (deg/s)      | Verodities | -0.6920943   | -0.1568301    |
| 65 | Whole limb oscillation velocity (deg/s) | Maximum    | 0.90190547   | 0.04548126    |
| 66 | Hip oscillation velocity (deg/s)        | Angle      | 0.76680173   | 0.39026841    |
| 67 | Knee oscillation velocity (deg/s)       | velocities | 0.8515911    | 0.14651785    |
| 68 | Ankle oscillation velocity (deg/s)      | velocities | 0.81309484   | 0.25109988    |
| 69 | Whole limb oscillation velocity (deg/s) | Amplitude  | 0.91926192   | 0.09321898    |
| 70 | Hip oscillation velocity (deg/s)        | of angle   | 0.79560219   | 0.37980295    |
| 71 | Knee oscillation velocity (deg/s)       | velocities | 0.8825796    | 0.25975487    |
| 72 | Ankle oscillation velocity (deg/s)      | velocities | 0.76572477   | 0.19610856    |
|    |                                         |            |              |               |
|    | INTRALIMB TEMPORAL COUPLING             |            |              |               |
| 73 | Correlation between pelvis and thigh    | proximal   | 0.24428247   | -0.3228218    |
| 74 | Correlation between thigh and shank     | distal     | 0.1160031    | -0.4449952    |
| 75 | Correlation between shank and foot      | distai     | 0.00752821   | -0.5059836    |
| 76 | Correlation between hip and knee        | proximal   | -0.0175302   | -0.1634833    |
| 77 | Correlation between knee and ankle      | distal     | -0.0274252   | -0.1351518    |
| 78 | Correlation between ankle and foot      | uistai     | 0.06456071   | -0.14037      |
|    |                                         |            |              |               |
|    | ROBOTIC SUPPORT FEATURES                | ]          | i            |               |
|    | Body Weight Support (%)                 | -0.8008253 | -0.112497    |               |
| 80 | Horizontal Support Force (%)            | -0.7955145 | -0.0546379   |               |

### Supplementary Table 2.

Gait parameters calculated from kinematic recordings during walking in mice

| Group | n | Condition                                  | Had<br>SCI? | Had<br>EES <sup>REHAB</sup> ? | Terminal condition                                                                                          | Therapeutic feature modelled                                                                          |
|-------|---|--------------------------------------------|-------------|-------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 1     | 3 | Uninjured                                  | No          | No                            | None                                                                                                        | Uninjured                                                                                             |
| 2     | 3 | SCI                                        | Yes         | No                            | None                                                                                                        | SCI                                                                                                   |
| 3     | 3 | EES <sup>REHAB</sup>                       | Yes         | Yes                           | None                                                                                                        | EES <sup>REHAB</sup>                                                                                  |
| 4     | 3 | SCI→EES::walking                           | Yes         | No                            | EES <sup>on</sup> for 30 minutes while<br>walking                                                           | Walking with EES after SCI                                                                            |
| 5     | 3 | EES <sup>REHAB</sup> →EES::walking         | Yes         | Yes                           | EES <sup>on</sup> for 30 minutes while<br>walking                                                           | Walking with EES after EES <sup>REHAB</sup>                                                           |
| 6     | 3 | EES <sup>REHAB→EES</sup>                   | Yes         | Yes                           | EES <sup>oN</sup> for 30 minutes (no<br>walking)                                                            | Immediate effect of EES in the absence of walking after EES <sup>REHAB</sup>                          |
| 7     | 3 | EES <sup>REHAB→</sup> cortex               | Yes         | Yes                           | Optogenetic stimulation of the<br>motor cortex for 30 minutes to<br>model voluntary control (no<br>walking) | Immediate effect of residual descending input in the absence of EES after EES <sup><i>REHAB</i></sup> |
| 8     | 3 | EES <sup>REHAB</sup> →EES::cortex::walking | Yes         | Yes                           | Optogenetic stimulation of the motor cortex and EES <sup>ON</sup> for 30 minutes while walking              | Walking with residual descending input and EES after EES <sup>REHAB</sup>                             |

Supplementary Table 3. Description of experimental conditions