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Uromodulin Biology 
 

Structure of Uromodulin  
The UMOD gene is transcribed and translated into a precursor protein composed of 640 amino acids 
(AA) (Figure 1A). Motifs identified in the Uromodulin primary sequence include a signal peptide (AA 
1–24), one epidermal growth factor-like (EGF-like) domain (AA 31–64), two calcium-binding EGF-like 
domains (AA 65–107 and 108–149), a D8C domain containing eight conserved cysteines (AA 199–
287), a fourth EGF-like domain (AA 295–319), one bipartite zona pellucida (ZP)-like domain (AA 334–
585), a stretch of mostly hydrophobic amino acids (586-640) that include a consensus cleavage site 
(AA 587, cleavage at this site by hepsin is essential for polymerization), an external hydrophobic 
patch (EHP, AA 598–607), and a signal for a glycosylphosphatidylinositol (GPI) anchor (AA 614). The 
ZP-like domain is essential for assembly into extracellular urinary polymers of supramolecular 
structure and is composed of the ZP-N (AA 334-426) and ZP-C (AA 505-585) subdomains, separated 
by 2 small internal hydrophobic patch (IHP) domains at AA 430–436 and 456–462. The 3D structure 
of a single uromodulin molecule is predicted using AlphaFold1 and shown in Figure 1B. AlphaFold 
predictions for uromodulin appear to be highly correlative for specific domains, as discussed recently 
by Jovine2,3. The structure of polymerized uromodulin will be discussed more below. There are 48 
cysteine residues involved in the formation of 24 intramolecular disulfide bonds4.   
 
Biosynthesis 
Uromodulin maturation along the secretory pathway of polarized tubular cells involves extensive 
glycosylation that accounts for about 30% of the molecular weight of the protein. N-linked glycans are 
identified on 8 asparagine AA residues at the following locations: 38, 76, 80, 232, 275, 322, 396 and 
5135.  During post-translational processing in the Golgi apparatus, all high mannose glycans are 
matured to complex carbohydrates and modified by sialyation, fucosylation or sulfation, except at 
position N2756.  Due to the preponderance of acidic amino acid residues and high content of sialic 
acid, uromodulin is a very acidic protein with an isoelectric point of about 3.57. In addition to N-linked 
glycans, uromodulin also contains O-linked glycans8. The significance of these post-translational 
modifications for protein function is only partially known and is under investigation.  
 
Cellular trafficking, polarized secretion, and uromodulin forms 
The kidney produces and secretes two distinct forms of uromodulin (Figure 2): polymerizing 
uromodulin, lacking the polymerization inhibitory EHP sequence, released by hepsin proteolysis into 
the urine and non-polymerizing uromodulin with retained EHP sequence, released in the urine and as 
the major form in the circulation (serum). This is discussed in detail in the main text. 
 
Polymerization of uromodulin is a highly regulated process  
The three-dimensional structure of native uromodulin polymers has been recently described by cryo-
electron tomography4,9. The human uromodulin filament core has a zig-zag shaped backbone formed 
by polymerized ZP domains and protruding arms (branches) composed of the EGF and D8C 
domains. The dissociation of EHP upon hepsin cleavage induces a conformational change in the ZP-
N/ZP-C linker region that wraps two monomers interacting head-to-tail (ZP-N-to ZP-C), thereby 
linking three consecutive monomers. EHP dissociation and head-to tail incorporation of uromodulin 
monomers into a growing filament are coupled processes that occur in synchrony at the plasma 
membrane9. It is believed that N-glycans likely play a role in polarized sorting to the apical 
membrane10. These novel developments indicate the production of polymerizing uromodulin is a 
highly regulated process, which is important to consider when studying its physiology and role in 
disease. 
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Uromodulin expression and production 
 

How to report uromodulin expression and production by the kidney 
As the studies on uromodulin have significantly increased in the last few decades, the nomenclature 
of how to report uromodulin has become blurred. Uromodulin expression is reported from kidney 
tissue specimens (human, rodents) and can be at the RNA or protein levels (Table S1). The 
heterogeneous distribution of TALs across various areas within the kidney could become a problem 
when reporting uromodulin expression because it introduces bias. For example, cortical tissue will 
have less TAL cells than medullary tissue. Accounting for such variability in the analysis is difficult. To 
address this problem, one could normalize the expression of uromodulin to NKCC2, the latter 
reflecting the abundance of TAL cells11. However, such an approach may introduce additional 
confounders, as NKCC2 expression is more abundant in the medullary TALs (mTAL) than cortical 
TALs (cTAL)12. Therefore, when using human kidney tissue specimens, it is important to use 
anatomically and histologically comparable areas to quantify expression at a bulk level, particularly in 
the cortex where the presence of TAL-rich medullary rays may shift the abundance of uromodulin 
expression (Figure 3). In rodent kidneys, this could be more controllable, by using equivalent areas in 
the cortex or medulla or include whole kidneys for analysis and adjust for weight. Newer imaging or 
spatial based RNA/protein approaches or single cell RNA analysis may circumvent these 
shortcomings since the expression can be normalized at the cell or regional level13,14. 
 

Because of complex regulatory mechanisms governing the expression of uromodulin, it is important 
to standardize the clinical and physiological variables when measurements of this protein are 
performed. We emphasize that the unadjusted urine concentration of uromodulin has a distinct 
relevance compared to the uromodulin adjusted to urine Cr. The latter is shown to correlate with 
timed secretion uromodulin and likely will reflect the rate of secretion15,16, hence indicating the 
appropriateness of the tubular response and reserve. Unadjusted urine uromodulin, which is 
determined by the rate of secretion, is expected to be very relevant to the functions of uromodulin 
along the urinary tract, such as TAL impermeability and urinary defense, which may be dependent on 
specific concentrations of uromodulin in the urine. Of note that some have advocated the reporting of 
uromodulin adjusted to kidney function16,17, and this is discussed further in the main text in the section 
on uromodulin and nephron mass.  
 
Experimental interventions that regulate uromodulin expression 
Several experimental interventions in humans and rodents that can alter the rate of uromodulin 
expression or production (reported as Cr adjusted concentration or amount released per time, such 
as 24 hours) have been reported (Table S1). Some of these interventions are not physiologic, such 
as inducing kidney injury or administration of pharmacological agents. Other interventions such as 
water or salt loading and administering of hormones such as DDAVP (known to act on TAL cells and 
regulate osmolarity) offer insights into uromodulin biology. For example, around 40 years ago, Lynn et 
al. studied 5 patients and showed that rate of urinary uromodulin secretion in 2-hour timed collections 
measured by radioimmunoassay correlated with increased urine volumes induced by water intake 18. 
Although the effect of increased water intake and urine volume had variable results in rodents, the 
link between urine volume and uromodulin production was supported by a large observational study 
showing that 24-hour Uromodulin levels positively correlated with urine volumes 19. Administration of 
AVP, which is known to activate and alter the expression NKCC2 and increase urinary concentration, 
decreases the expression and rate of secretion of uromodulin20,21, but can also cause an initial acute 
release of uromodulin in the urine22. These observations support that the rate of uromodulin 
production is variable and likely highly regulated by multiple factors such as water intake, urine flow, 
salt intake and AVP.  
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Genetic factors determining uromodulin expression and secretion 
The UMOD promoter is likely regulated by a large network of interacting transcription factors23. One 
of those transcription factors, hepatocyte nuclear factor 1 β has been shown to activate uromodulin 
expression24. Common SNPs around and within the UMOD gene area have been linked with 
uromodulin levels in the urine and in the serum, and these are summarized in Table S4. There is also 
a link between variants and uromodulin expression in the kidney, but this link may be context 
dependent as it is not consistently significant in healthy tissue but becomes significant in the setting of 
disease25. In addition, the regulation of uromodulin expression and/or secretion appears complex, as 
variants that are far from the UMOD gene even on separate chromosomes have been linked to levels 
in the urine or circulation (Table S4). It is also possible that the variants in the UMOD region regulate 
other genes. The reader is referred to other resources that discuss these in more details26,27.  
 
 
Overview of functions and sites of action of uromodulin  
 

The functions of Uromodulin are summarized in Figure 4. In the main text, we discuss the role of 
uromodulin in hypertension and vascular biology. In the sections below, we discuss evolving concepts 
in other areas such as acute kidney injury (AKI), renal and systemic stress signaling, chronic kidney 
disease (CKD), AKI to CKD transition, systemic and kidney injury, urinary defense and 
immunomodulation. 
  
Role of uromodulin in AKI: a vicious cycle where AKI causes uromodulin deficiency and uromodulin 
deficiency increases the risk and severity of AKI 
 
AKI causes acute uromodulin deficiency in the kidney and systemically:  
 
A significant decrease in uromodulin mRNA and protein early after ischemia-reperfusion injury (IRI) 
has been consistently demonstrated by our group28,29 and others30-32. We have shown that IRI 
suppresses the transcription and release of uromodulin towards the interstitium and circulation28. The 
magnitude and duration of uromodulin deficiency is proportional to the severity of injury 29 and occurs 
early. Of note, impaired uromodulin expression also occurs in forms of AKI other than IRI, such as 
cisplatin toxicity33. Therefore, the decrease in uromodulin is a cardinal feature of AKI. The mechanism 
of the decrease in uromodulin is likely complex and occurs despite relative preservation of TAL cell 
integrity during injury34, which suggests a dynamic response, rather than loss of TAL cells, as a cause 
for uromodulin deficiency in AKI. This preservation was initially described by Sarfristein et al. in 
ischemic and nephrotoxic injury models30. We recently extended these findings to the bedside with 
specific relevance to non-polymerizing uromodulin, by showing that serum uromodulin levels drop 
significantly within 18 hours from post-surgical AKI35. Furthermore, in a cohort of kidney transplant 
donors with varying AKI etiologies,  Mansour et al. that urinary uromodulin is significantly decreased 
in AKI and the drop is proportional to the severity by KDIGO scoring36. 
 

 
Uromodulin deficiency increases the severity of AKI:  
 
We have demonstrated in multiple studies using UMOD-/- and UMOD+/+ mice that uromodulin 
deficiency itself increases the severity of AKI through upregulation of chemokine signaling in proximal 
tubules that stimulates neutrophil infiltration and injury28,34,37. Specifically, uromodulin deficiency 
enhances RAC1/JNK/c-Jun signaling and proinflammatory cytokine (CXCL2, IL-23) expression in 
proximal epithelial cells34,35,38. Since basolaterally released uromodulin encounters the renal 
interstitium before reaching the circulation, the interaction between uromodulin and proximal tubule 
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stress signaling is likely to be a result of direct paracrine action. Uromodulin is also an important 
determinant of renal mononuclear phagocyte (MPC) abundance and polarization to M2 phenotype 
during AKI, with UMOD-/- mice showing increased M1 inflammatory signaling and decreased 
macrophage chemokine/growth factor signaling as well as a failure to upregulate M2 signaling during 
the repair phase of recovery. Furthermore, administration of a non-polymerizing form of uromodulin in 
mice improved recovery from AKI, and caused an increase in CD206+ MPCs, suggesting an 
important role of uromodulin in polarization of MPCs towards a healing phenotype39. These results 
also suggest that uromodulin could be developed as a biological therapeutic for use in clinical AKI. 
These findings are translating into clinical applications, since we recently showed that low admission 
plasma uromodulin was correlated with increased risk of in-hospital AKI, independently of kidney 
function and other co-morbidities40. This is in addition to the growing body of literature showing that 
low serum and urine uromodulin is associated with increased risk of incident kidney disease and 
progression41-47 (Table S5). 
 

AKI recovery is associated with overexpression of uromodulin and increase basolateral shift towards 
interstitium and serum:  
 
During recovery from AKI, there is a significant increase in uromodulin expression in TAL cells and a 
shift towards the interstitium and circulation28, where uromodulin particularly localizes at the 
basolateral domain of S3 segments. We showed previously that this increase is essential in 
terminating inflammatory signaling28,34, and that uromodulin is playing an important role in shaping the 
response of renal MPCs and their potential role in kidney recovery39. Since interstitial/serum 
uromodulin is predominantly hepsin independent48, this data suggests that recovery is marked by at 
least activation of the path to produce non-polymerizing uromodulin. Further studies are needed to 
define the role of injury on specific forms of uromodulin and better understand the cellular processes 
that are regulated, so that therapies to modulate production of uromodulin could be developed. 
 
Novel molecular insights into the impact of uromodulin to limit stress signaling systemically and in 
proximal tubules 
Using unbiased transcriptomics and proteomics, we recently showed that uromodulin deficiency 
induces oxidative stress in renal proximal tubules (measured by orthogonal methods: peroxide 
measurements, intravital reporters, redox molecules)35 . We confirmed that the elevated reactive 
oxygen species burden caused cellular damage, because of increased lipid oxidation (targeted 
lipidomics) and by alterations in mitochondrial morphology35. These findings further explain the 
increased susceptibility of UMOD-/- mice to AKI, particularly by showing that proinflammatory 
cytokines such as IL-23 are downstream from oxidative injury. Since AKI itself induces uromodulin 
deficiency, it is possible that the oxidant injury typically seen with AKI is caused by acute uromodulin 
deficiency. Furthermore, CKD is a state of uromodulin deficiency and could in itself predispose 
individuals to oxidant injury independently of the level of kidney function. 
 

As discussed, we established that uromodulin inhibited the activation of Rac1/JNK/c-Jun in proximal 
epithelial cells in the kidney35. The transient receptor potential cation channel, subfamily M, member 2 
(TRPM2) channel has been linked to activation of Rac1 and its role in oxidant injury within the 
kidney49. TRPM2 is activated by ROS and itself causes more downstream oxidative stress50. 
Therefore, during AKI, there will be a positive feedback loop between TRPM2 and ROS that needs to 
be interrupted. The plasma membrane presence of TRPM2 makes it an ideal target for 
interstitial/circulating uromodulin49. Indeed, we demonstrated that uromodulin inhibited TRPM2 activity 
using a HEK-293 recombinant cell line expressing an inducible copy of TRPM2, in which channel-
specific activation can be monitored by measuring the kinetics of calcium influx35. We also treated 
UMOD−/− mice with the TRPM2 inhibitor 2-aminoethoxydiphenyl borate (2-APB) and found that 2-APB 
significantly lowered systemic oxidative DNA damage in these mice. To extend these findings to AKI, 
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we showed that pretreatment of both the UMOD+/+ and UMOD−/− mice with 2-APB significantly 
reduced systemic oxidative damage after IRI. The difference in oxidative damage seen between 
these mice was lost upon treatment with 2-APB, implying that TRPM2 is a main target for the 
inhibitory effect of uromodulin on systemic oxidative stress. These developments provide evidence 
that uromodulin is an important inhibitor of systemic and renal oxidant injury, and its effect occurs 
through inhibiting the activation of TRPM2.  
 

The implications of these findings have ramifications for CKD, which is a chronic state of uromodulin 
deficiency43,51. Findings from this research may imply that the observed uromodulin deficiency is a 
major contributor to the pro-inflammatory phenotype and maladaptive responses seen in advanced 
CKD by inducing systemic oxidative stress52,53. The effect of uromodulin deficiency on increased 
systemic oxidative stress may be a factor in the increased mortality and cardiovascular complications 
associated with low serum uromodulin levels54-57 (Table S5).  
 
The role of uromodulin in adaptive vs. maladaptive repair and AKI to CKD transition 
AKI is a major cause of CKD58-62, and mounting evidence suggests that the transition from AKI to 
CKD occurs through maladaptive repair63-65. After decreased expression of uromodulin during AKI, 
early recovery is characterized by a significant increase in uromodulin expression in TAL cells and a 
shift in trafficking towards the interstitium and circulation28.  We showed previously that this increase 
is essential in terminating inflammatory signaling, and that recovery in the setting of uromodulin 
deficiency is significantly delayed28. Therefore, it is likely that uromodulin has a role in preventing 
progression of kidney injury towards fibrosis, and if uromodulin deficiency persists post AKI 
(examples include very severe AKI or AKI in existing CKD), the outcome will be deleterious. Maydan 
et al. demonstrated that uromodulin reduced KIM-1 levels in human renal adenocarcinoma cells and 
UMOD-/- mice had higher levels of KIM-166. Since persistent KIM-1 expression is associated with 
maladaptive repair and progression to CKD67, it is possible that failure of uromodulin upregulation 
post AKI could lead towards maladaptive repair. We propose that persistent uromodulin deficiency 
post AKI promotes fibrosis, possibly through activation of TRPM2 and persistent oxidant injury and 
activation of a maladaptive repair program. This paradigm is supported by a recent study by 
Puthumana et al, showing that higher uromodulin levels in the urine 3 months post-hospitalization are 
associated with decreased risk of incident CKD and CKD progression68. This was corroborated by 
experimental studies showing higher levels of uromodulin in models of repair after AKI68. 
 
Role of uromodulin in CKD 
We have discussed previously our interpretation of the data both from experimental models and 
human clinical studies27. Multiple experimental studies, including studies in in UMOD-/- mice and the 
recent work by Puthumana et al68, have demonstrated a protective role for uromodulin in progressive 
kidney injury. This was corroborated by observational and prospective clinical studies, supporting that 
a higher level of uromodulin in the urine or circulation, independently of kidney function (Table S5). 
Based on these data, having higher uromodulin levels at any stage is associated with benefits, and 
this was also supported by histological data in kidney biopsies where uromodulin production rate was 
higher in patient with preserved tubules16, and that was recently also shown in an experimental 
model68. Interestingly, studies investigating variants in the UMOD locus have suggested an opposite 
effect, where protective variants have been associated with low levels of urinary and serum 
uromodulin11,69,70. It is possible that the relation between UMOD locus and outcomes is mediated by 
uromodulin expression and hypertension11,71, especially since the link between UMOD variants and 
expression may depend on disease context and is not very clear in healthy kidney tissue25. However, 
other factors should be considered, particularly with the strong preclinical models of uromodulin 
deletion28,72 and the mounting clinical data (Table S5), including prospective studies showing that 
higher uromodulin levels in the urine and serum (independent of kidney function) are associated with 



6 
 

incident kidney disease42,68, which argue against a reverse causation mechanism70. In fact, the 
UMOD locus may be independently associated with systemic and kidney outcomes41,42. The area 
around the UMOD loci and surrounding genes is likely a unique site affecting many genes within the 
kidney that are associated also with kidney function73. The independent association between UMOD 
loci and outcomes need to be further evaluated, and this will help better understand and interpret 
recent Mendelian randomization studies69,70 
 

In summary, despite remaining areas of unclarity but of great importance pertaining to the role of the 
UMOD loci variants, there is a lot more evidence than not, that uromodulin has a protective role in 
kidney disease and progression (Table S5). Uromodulin is reactively increased in states of injury, and 
the inability to mount such a functional tubular response confers a bad prognosis. Uromodulin 
deficiency is more likely a state of high risk for renal and cardiovascular complications, and strategies 
to mitigate or enhance the abundance of uromodulin in specific settings, particularly as we know more 
about the differential functions of the polymerizing vs non-polymerizing forms. A better understanding 
of the role of uromodulin in CKD would then inform the development of therapeutics that could be 
guided by the level of this protein. 
 
Uromodulin in infections and immunity 
Since its discovery in the early 1950’s by Tamm and Horsfall, uromodulin’s identity as a modulator of 
the immune response to infectious disease has been well established. It was originally described as 
an inhibitor of viral hemagglutination74,75. Before it was known that the Tamm-Horsfall Protein was 
identical to uromodulin, it was discovered again in 1985 by Muchmore and Decker, who characterized 
its urinary form as an inhibitor of T-cell and monocyte activity in vitro76.  
 

Given its high abundance in the urine, early studies of uromodulin in infection and immunity focused 
on its potential role in urinary tract infections (UTIs). While early studies in patient populations found 
that patients with urinary tract infections and pyelonephritis developed autoantibodies to 
uromodulin77,78, by the early 1990’s there was growing evidence that levels of aggregated uromodulin 
were correlated with risk for UTIs79,80. This led to studies with purified urinary uromodulin, which was 
found to bind to type 1-fimbriated E. coli81,82, likely through its highly conserved high mannose 
residues83 which are capable of interacting with the FimH adhesions84,85. The development of a 
uromodulin knockout mouse in the early 2000’s further supported a protective role for uromodulin in 
UTI, as UMOD-/- mice showed increased susceptibility to colonization of the bladder by type 1-
fimbriated E. coli86. By 2005, uromodulin was well accepted as protective in the setting of urinary tract 
infection87. Recent studies have reinforced this role, with a prospective longitudinal cohort study 
demonstrating that higher urinary uromodulin was protective against UTI88 and an observational 
cohort study finding that UTI patients with bacteremia were more likely to be unable to produce 
uromodulin89. This has led some to propose that the beneficial effect of higher urinary uromodulin 
granted a selective advantage to humans living in areas with high pathogen diversity or prevalence of 
antibiotic-resistant UTIs, which could explain the high allelic frequency of a UMOD promoter SNP 
variant that is positively correlated with urinary uromodulin levels, despite the identification of this 
SNP as a risk factor for CKD90. Recent cryo-electron tomography studies have conclusively 
demonstrated how polymerized uromodulin binds to urinary pathogens to prevent their adhesion to 
the urinary tract and promote their clearance by presenting specific epitopes able to bind bacterial 
type 1 pilus adhesins on regularly spaced protruding arms that extend from the uromodulin filament5. 
These findings suggest that devising strategies to enhance the release of polymeric uromodulin in 
patients with chronic or recurrent UTI could improve outcomes in these patients and further 
underscores the need to understand the physiological determinants of polymeric uromodulin 
expression. 
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Uromodulin’s role in immunity and infection extends beyond the urinary tract. Many of the early in 
vitro studies characterizing uromodulin’s immune regulatory properties were done with the 
polymerized urinary form, which appears to be differentially glycosylated in pregnant women91. This 
form acts as a pro-inflammatory molecule, activating the expression of pro-inflammatory cytokines92 
including that of Il-1β through the NLRP3 inflammasome42 leading to its characterization as a 
Damage Associated Molecular Pattern (DAMP). Aggregated uromodulin can also bind to components 
of the complement cascade93 as well as cytokines94,95 and tumor necrosis factor96, leading some to 
propose it may act as a cytokine sink. Treatment of neutrophils with urinary uromodulin shows that it 
can bind to and functionally inhibit neutrophils via Siglec-9, reducing their ability to generate reactive 
oxygen species, undergo chemotaxis and kill pathogens97. However, it is important to note that 
uromodulin in the serum is primarily not aggregated39 and thus the extension of these findings beyond 
the urinary tract should be limited. Indeed, uromodulin knockout mice have multiple immune system 
defects. These mice have decreased mononuclear phagocyte levels (MPC) within the kidney, and the 
MPCs that are found in UMOD-/- mice have decreased plasticity and phagocytic activity39, which 
inhibits their function in recovery from kidney injury. These mice also exhibit systemic neutrophilia97 
downstream of activation of the IL-23/IL-17 axis38. Consistent with these immune defects in mice, 
lower serum uromodulin is associated with an increased risk of fatal infections from any source in a 
cohort of coronary angiography patients54. Taken together, these results suggest that uromodulin 
confers protection against infection that extends beyond the urinary tract. Furthermore, systemic 
levels of uromodulin increase in humans and animal models of sepsis, and we recently showed that 
circulating uromodulin is protective in this setting98. 
 
 
Future challenges: a call to action 
 

There are important roadblocks in the field that hinder more efficient translation and the application of 
uromodulin as an important theragnostic marker. In particular, it is imperative to develop standardized 
methods to measure and report uromodulin in the urine and circulation, which will also help define 
“normal” ranges and perform multicenter studies that allow application of uromodulin measurements 
to clinical use. Another area of need is to devise a common nomenclature that defines the 
significance of uromodulin measurements, particularly as indicator of the functional tubular response. 
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Supplementary tables 

Interventions Kidney Urine Serum    

 Protein RNA Concent
ration 

Western Concent
ration 

/Cr 

Secretion 
rate 

(mg/time) 

Concent
ration 

Species Authors Reference 
number 

(SR) 

Water Handling and Diuresis 

Water 
Intake/loading 

     ↑  H Lynn 99 

     ↑  M Catalano 100 

     ↔  R Bachmann 20 
↔       R Ecelbarger 21 
     ↑  R Thulesen 101 

Vasopressin ↓       R Ecelbarger 21 
Desmopressin ↓   ↑    M Nanamatsu 22 

     ↓  R Bachmann 20 
Furosemide      ↑  H Dulawa 102 

     ↔  R Bachmann 20 
Vasopressin + 
Furosemide 

↑       R 
Ecelbarger 21 

Salt Handling and Cationic Ions 

Salt intake ↑ ↑      R Ying 103 

     ↑  H Torffvit 104 

     ↓ ↓ H Du 105 
Salt loading ↔   ↑    M Olinger 106 

↔ ↓    ↓  R Mary 107 
CasR Activation     ↓   H Tokonami 108 

Injury 

High protein diet      ↑  R Bachmann 20 
Streptozotocin ↓ ↓ ↑   ↑  R Rasch 109 

     ↑  R Thulesen 101 
IRI ↓ ↓      M Heitmeier 29 

 ↓      R Safristein 32 
 ↓      R Yoshida 31 
      ↓ M LaFavers 35 

IRI Recovery ↑      ↑ M El-Achkar 28 
Ethylene Glycol    ↔     R Li 110 
Sodium Oxalate ↓       R de Araujo 111 
hydroxyl-L-proline ↓       R Huang 112 
BP Lowering     ↔   H Malhotra 113 

 

Table S1: Effect on experimental interventions on uromodulin expression and secretion rate and 
concentration in kidney urine and circulation. Colors reflect direction of uromodulin with intervention. Blue: 
Decease; Red: Increase; Grey: no change- Species: Human (H); Rat (R), Mouse (M). CasR - Calcium sensing 
receptor, IRI - ischemia reperfusion injury, BP - blood pressure, SR- supplemental references 
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Variables  Urine Serum   
Concentration Concentration/Cr secretion rate 

(mg/time) 
Uromodulin 
per unit 
GFR 

Concentration Authors Reference 
number 

(SR) 

Demographics 

Sex Males higher    Females higher Steubl 114 
    Females higher Delgado 54 
    Females higher Then 56 
 Females higher No difference   Glauser 15 

No difference Females higher No difference   Pruijm 19 
No difference     Bakhoum 115 

    Females higher Scherberich 43 
  No difference   Thornley 16 

Age     None, older 
adults van Donge 116 

    - 
older adults Leiherer 42 

    - 
adults Delgado 54 

Body size  +    Glauser 15 
  None   Thornley 16 

Disease 

CKD   -   Lynn 18 
 - - + - Thornely 16 
    - Leiherer 42 
    - Sjaarda 70 

+     Kottgen 117 
-  -   Nqebelele 118 
    - Fedak 119 

ESKD    - - Lv 120 
Early 
Diabetes 

  +   Zimmerhackl 121 
  +   Torffvit 122 
  +   Pfleiderer 123 

Diabetes     - Then 124 
-    None Steubl 114 
  None   Torffvit 125 
    - Delgado 54 

Diabetic 
kidney 
disease 

    - Bjornstad 126 
  -   Torvffit 127 
    - Bjornstad 128 

HTN -    None Steubl 114 
    - Delgado 54 
    - Leiherer 42 

AKI     - LaFavers 35 
-     Mansour 36 

    - Kusnierz-
Cabala 

129 

-     Bennet 130 
-     Askenazi 131 
-     Askenazi 132 
-     Zhang 133 
-     Sweetman 134 
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GN     - Scherberich 43 
SLE-nephritis -     Bedair 135 

    - Scherberich 43 
Stone 
unspecified 

  +   Jaggi 136 
 None    Thornley 16 

Stone-initial -     Wai-Hoe 137 
Stone – 
recurrent 

 -    Romero 138 
None     Wai-Hoe 137 

 -    Glauser 15 
  +   Singh 139 

CAD     - Delgado 54 
Heart failure     - Delgado 54 
Metabolic 
syndrome     - Then 140 
Interstitial 
Cystitis -     Canter 141 

 

Table S2: Demographic and disease variable association with uromodulin expression and production.  
Colored boxes reflect reported associations between demographic or disease parameters and uromodulin 
levels. Blue color reflects negative correlation. Red represents positive correlation. Gray denotes no significant 
association. Older adults defined as all groups having a mean age greater than 60 years. Adults defined as all 
groups having a mean age greater than 40 years. CKD - chronic kidney disease, ESKD – end stage kidney 
disease, HTN – hypertension, AKI – acute kidney injury, GN – glomerulonephritis, SLE – systemic lupus 
erythematosus, CAD – coronary artery disease 
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Variables Urine  Serum   
Concentration Concentration/

Cr 
secretion 
rate 
(mg/time) 

Uromodulin 
per unit 
GFR 

Concentrat
ion 

Authors Reference 
number  

(SR) 

Laboratory Parameters 

SBP None     Bakhoum 115 
    - Delgado 54 

Hypertension     - Then 57 
LDL     + Delgado 54 
HDL     + Delgado 54 
Triglycerides     - Delgado 54 
Fasting glucose     - Delgado 54 
HbA1c     - Delgado 54 
WBC Count     - Then 142 
CRP     - Then 142 

    - Leiherer 42 
    - Steubl 114 
    - Delgado 54 

Adipokines     - Then 143 
eGFR     + Risch 144 

    + Then 145 
    + Leiherer 42 

+    + Steubl 114 
    + Steubl 44 
  +  + Thornley 16 
 +    Troyanov 146 
    + Delgado 54 
    + Usui 147 
    + Fedak 119 
    None Enko 148 

+ +    Ponte 69 
+    None Prajczer 149 
    + Scherberich 43 
    + Kusnierz-

Cabala 
129 

Cystatin C     - Delgado 54 
Renin     - Delgado 54 
Uric acid     - Delgado 54 
PTH     - Delgado 54 
Vitamin D     + Delgado 54 
Gestational Age +     Saeidi 150 

+     DeFreitas 151 
Birth weight   +   Pivin 152 
Citrate excretion  +    Glauser 15 
Coronary 
Calcification 

    - Bjornstad 126 

NT-proBNP     - Delgado 54 

Kidney Histology 

Tubular atrophy -    - Prajczer 149 
   -  Thornley 16 

 
Table S3: Association of laboratory parameters with uromodulin levels. Colored boxes reflect reported 
associations between laboratory parameters and uromodulin levels. Blue color reflects negative correlation. 
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Red represents positive correlation. Gray denotes no significant association. SBP – systolic blood pressure, 
LDL – low density lipoprotein, HDL – high density lipoprotein, HbA1c – Hemoglobin A1C, WBC – white blood 
cell, CRP – c-reactive protein, eGFR – estimated glomerular filtration rate, PTH – parathyroid hormone, NT-
proBNP – N-terminal pro-brain natriuretic peptide 
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Chrom
osome 

SNP Gene Urine Kidney Serum   
Concent

ration 
Concent

ration 
/Cr 

secretion 
rate 

(mg/time) 

RNA Concent
ration 

Authors Reference 
number 

(SR) 
2 rs2438298 CAB39      Olden 153 
7 rs55791829 (C) PRAKG2     - Li 154 

rs55791829 (G)     + Li 154 
11 rs1532763 SORL1       Olden 153 
 rs2855800 KCNJ1        Olden 153 
15 rs9672398 (G) WDR72  -    Joseph 155 

rs9672398 (T)   +    Joseph 155 
16 rs12446492 (A) PDILT  -    Troyanov 146 

rs12446492 (T)  +    Troyanov 146 
rs12917707 (T) UMOD  -    Olden 153 

 -    Shlipak 156 
    - Delgado 54 
- -    Ponte 69 
  -   Ponte 157 

rs12917707 (G)  +    Olden 153 
 +    Shlipak 156 
    + Delgado 54 

+ +    Ponte 69 
  +   Ponte 157 

rs12934455 (T) UMOD -     Joseph 155 
rs12934455 (C) +     Joseph 155 
rs13333226 (G) UMOD  -    Padmanabhan 158 

None None    Nqebelele 118 
rs13333226 (A)  -    Padmanabhan 158 

None None    Nqebelele 118 
rs13335818 (T) UMOD     - Leiherer 42 

 -    Joseph 155 
rs13335818 (C)     + Leiherer 42 

 +    Joseph 155 
rs34882080 (G) UMOD    -  Stanzick 159 
rs34882080 (A)    +  Stanzick 159 
rs4293393 (C) UMOD  -    Troyanov 146 

-     Kottgen 117 
rs4293393 (T)  +    Troyanov 146 

+     Kottgen 117 
rs77924615 (A) PDILT - -    Joseph 155 

   -  Stanzick 159 
    - Li 154 

rs77924615 (G) + +    Joseph 155 
   +  Stanzick 159 
    + Li 154 

17 rs8067385 (C) KRT40 -     Joseph 155 
rs8067385 (G) +     Joseph 155 
rs7224888 (T) B4GALNT2 

 
    - Li 154 

rs7224888 (C)     + Li 154 
 
Table S4: Association of single nucleotide polymorphism (SNP) variants with uromodulin expression 
and levels. Blue and red boxes represent negative and positive correlations, respectively. Grey boxes show 
no association. Black box color indicates specific nucleotide variant not specified. 
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Outcomes Urine Serum   
Concentration Concentration/Cr Concentration Authors Reference 

number  
(SR) 

Incident CKD ↔   Shlipak 156 
  ↓ Leiherer 42 
↓   Garimella 160 
↓   Puthumana 68 

CKD progression ↓   Garimella 161 
↓   Jotwani 162 
↓   Steubl 163 
↓   Garimella 160 
↓   Puthumana 68 
  ↓ Steubl 47 
  ↓ Then 145 
 MR study, ↑  Ponte 69 
  MR study, ↑ Sjaarda 70 

Incident AKI   ↓ Patidar 40 
↓   Bullen 164 
 ↓  Garimella 165 

Death ↓   Garimella 161 
↓   Garimella 160 
  ↓ Steubl 47 
  ↓ Steubl 55 
  ↓ Delgado 54 
  ↓ Then 56 

CVD ↓   Garimella 166 
  ↓ Steubl 47 
  ↓ Steubl 55 
  ↓ Then 56 
  ↓ Leiherer 167 

Allograft failure   ↓ Bostom 168 
DGF   ↓ Scherberich 43 
UTI ↓   Garimella 88 

 

Table S5: Association of uromodulin levels with outcomes. Blue and red boxes represent decreased and 
increase risk (adjusted for confounders). Grey box indicates no association. CKD – chronic kidney disease, 
AKI – acute kidney injury, CVD – cardiovascular disease, DGF – delayed graft function, UTI – urinary tract 
infection, MR – Mendelian randomization 


