# **Supplementary information**

# Mapping and targeted viral activation of pancreatic nerves in mice reveal their roles in the regulation of glucose metabolism

In the format provided by the authors and unedited

### CONTENTS

#### **Supplementary Methods**

Supplementary Fig. 1 | AAVs do not elicit apoptosis in transduced neurons.

Supplementary Fig. 2 I Assessment of colocalization of pancreas and liver-projecting neurons in the CG.

**Supplementary Fig. 3 I** Assessment of AAV8-hSyn-DIO-hM3D(Gq)-mCherry expression in ChAT-IRES-CRE mice in ganglia, gut, liver, spleen and CNS.

**Supplementary Fig. 4** I Assessment of AAV8-hSyn-DIO-hM3D(Gq)-mCherry expression in ChAT-IRES-CRE mice in pancreatic islets and with neural markers in intrapancreatic ganglia.

**Supplementary Fig. 5 I** Activation of pancreas-projecting neurons expressing chemogenetic constructs by CNO.

Supplementary Tables 1–3

Captions for Supplementary Videos 1–3

#### **Supplementary Methods**

#### Surgical Procedures: Dual Pancreas and Liver injection

Intrapancreatic injections were performed as described previously,  $1*10^{11}$ (Dose 1) viral genomes of AAV8hSyn-mCherry were injected in WT mice. Three weeks later,  $10 \ \mu$ l of Cholera Toxin B (CT $\beta$ ) at concentration  $8 \ \mu$ g/ $\mu$ L were injected in  $1\mu$ L increments into all lobes of the liver. After 1 week, animals were sacrificed as described previously. CG were fixed, prepared for cryosection and stained for CT $\beta$  and mCherry as described above. The quantification of mCherry+ and CT $\beta$ + neurons overlap was done using the JaCOP plugin by FIJI.

#### **Tissue Processing: Cryosections**

Heart, kidneys, brain and muscles were immersed in 30% sucrose (Sigma-Aldrich, 50389) in PBS overnight, then embedding in O.C.T Compound (Thermofisher Scientific; 23-730-572), frozen at -80C, and sectioned at 10 µm thickness. Tissues were stained overnight for mCherry (Abcam; ab205402) + synapsin1 (Cell Signaling; 5297S) at 1:1000 dilution. GFP (AVES, Tigard, OR; GFP-1020), at 1:1000 dilution) Subsequent secondary antibodies used were Alexa Fluor 546 anti-rabbit (Thermofisher Scientific; A10040), Alexa Fluor 647 anti-chicken (Jackson ImmunoResearch; 703-605-155) and Alexa Fluor 647 anti-chicken (Jackson ImmunoResearch; 703-605-155) and Alexa Fluor 647 anti-chicken (Jackson ImmunoResearch; 703-605-155), Lot#138591). Tissues were stained for DAPI and coverslipped as stated previously. Samples were visualized using a fluorescent Zeiss Axio Observer Z.1 microscope.

#### Ex vivo Calcium Imaging

AAV-hSyn-hM3D(Gq)-mCherry was administered to Snap25-2A-GCaMP6s-D via intraductal infusion (5\*1011 (Dose 2)). Four weeks post-injection animals were anesthetized, as described above and CG dissected and placed in glass bottom 35  $\mu$ m dish (Ibidi, # 81158) and incubated in HEPES-buffered solution (125 mM NaCl, 5.9 mMl KCl, 2.56 mM CaCl2, 1 mM MgCl2, 25 mM HEPES, 0.1% BSA [wt/vol.], 3mM D-glucose pH 7.4) at 37oC and 5% CO2, for 30 min. Imaging was performed using a Zeiss LSM 880 confocal microscope with a 10X (NA: 0.3). Briefly, Z-stacks of the whole CG was acquired at a temporal resolution of 10 s. CNO (20  $\mu$ M) was administered after 20 s and KCl stimulation (50mM) at 10 min was performed to confirm neuronal responsiveness. Image analysis was performed using FIJI. Briefly regions of interests (ROI) were selected for background, mCherry+ neurons and mCherry– neurons, and mean intensity was calculated for every ROI in each image. Calcium responses were quantified as fluorescence intensity normalized to baseline fluorescence.

#### **Supplementary Figures**



### Supplementary Fig. 1 | AAVs do not elicit apoptosis in transduced neurons.

Representative immunofluorescence images of cleaved caspase-3 (white), GFP (red) and DAPI (blue) in NG sections, from mice 3 days after intrapancreatic injection of PRV-GFP ( $2*10^6$  vg) and 4 weeks after intrapancreatic injection of rAAV2retro-hSyn-GFP ( $1*10^{11}$  vg). One study, 2 samples per group. Scale bars: 50  $\mu$ m.



Supplementary Fig. 2 I Assessment of colocalization of pancreas and liver-projecting neurons in the CG. Representative immunofluorescence images of CG from mice that received AAV8-hSyn-mCherry via intrapancreatic injection (mCherry+ pancreas-projecting neurons in red) and CT $\beta$  via liver injection (CT $\beta$ + liver-projecting neurons in white) N= 5 mice/group. Scale bars: 50  $\mu$ m. Right upper panel, quantification of percentage of pancreas-projecting neurons that colocalize with liver-projecting neurons and percentage of liver-projecting neurons that colocalize with pancreas-projecting neurons. Bottom right panel, number of pancreas-projecting neurons that colocalize with colocalize with liver-projecting neurons, liver-projecting neurons and liver-projecting neurons that colocalize with pancreas-projecting neurons. Data are shown as mean ± SEM.



Supplementary Fig. 3 | Assessment of AAV8-hSyn-DIO-hM3D(Gq)-mCherry expression in ChAT-IRES-CRE mice in ganglia, gut, liver, spleen and CNS. a) Representative immunofluorescence images of CG, NG and DRG after intraductal infusion of AAV8-hSyn-DIO-hM3D(Gg)-mCherry (5\*1011 vg) in ChAT-IRES-cre mice showing mCherry (red) and DAPI (blue). Scale bars: 50 µm. Lower panels: guantification of total mCherry+ cells (left) and as a percentage of DAPI+ cells (right). N= 3 mice/group. b) Maximum projection confocal images of iDISCO+ cleared pancreas demonstrating expression of mCherry+ pancreasinnervating neurons (red) within IP ganglia stained for NF200 (blue) Scale bars: 50 µm. Right panel: Quantification of mCherry+ expression as percentage of NF200+ intrapancreatic ganglia volume. N= 4 mice. c) mCherry+ expression (red) in duodenal and mesenteric innervation stained for Synapsin (blue) Scale bars: 50  $\mu$ m. Right panel: guantification of mCherry+ expression as percentage of total Synapsin+ volume. N = 3 mice. d) Representative images of mCherry (red) and DAPI (blue) in hindbrain, showing minimal viral expression of AAV8-hSyn-DIO-hM3D(Gq)-mCherry in ChAT-IRES-cre mice. Scale bars: 100 µm. Right panel: guantification of mCherry+ cells as a percentage of DAPI+ cells (left) and as total number (right). N = 5 mice. e) Representative images of mCherry (red) and DAPI (blue) in spleen, showing minimal viral expression of AAV8-hSyn-DIO-hM3D(Gq)-mCherry in ChAT-IRES-cre mice. Scale bars: 100  $\mu$ m. Right panel: guantification of expression of the mCherry+ cells as a percentage of DAPI+ cells (left) and as total number (right). N = 5 mice. f) Representative images of mCherry (red), synapsin (white) and DAPI (blue) in liver, showing minimal viral expression in liver cells (N= 4 mice) and minimal overlap with synapsin+ fibers of AAV8-hSyn-DIO-hM3D(Gq)-mCherry in ChAT-IRES-cre mice (N= 5 mice). Scale bars: 100 µm. Right upper panel: guantification of expression of mCherry+ cells as a percentage of DAPI+ cells (left) and as total number (right). Lower right panel: quantification of overlap of mCherry+ and synapsin+ fibers. Data are shown as mean ± SEM.



Supplementary Fig. 4 I Assessment of AAV8-hSyn-DIO-hM3D(Gq)-mCherry expression in ChAT-IRES-CRE mice in pancreatic islets and with neural markers in intrapancreatic ganglia. a) Representative confocal images of iDISCO+ cleared pancreas from ChAT-IRES-cre/AAV8-hSyn-DIO-hM3D(Gq)-mCherry mice stained for insulin (INS, green), somatostatin (SST, blue), glucagon (white) showing no overlap with viral expression (mCherry, red). One study, 2 samples per group. Scale bars: 50  $\mu$ m. b) Representative confocal images of iDISCO+ cleared pancreas, stained for parasympathetic markers VAChT (magenta), Gastrin Release Peptide (GRP, blue) and Vasoactive Intestinal Peptide (VIP, white), showing co-expression with mCherry+ (red) neurons. Co-localization of neural markers with mCherry is indicated by asterisks. One study, 2 samples per group. Scale bars: 50  $\mu$ m.



Frame # (10s/frame)

Supplementary Fig. 5 I Activation of pancreas-projecting neurons expressing chemogenetic constructs by CNO. a) Representative confocal images of mCherry+ (red) intrapancreatic ganglia and cFOS (blue) in pancreas of CNO-treated ChAT-IRES-cre/AAV8-hSyn-DIO-mCherry mice (upper panel) and CNO-treated ChAT-IRES-cre/AAV8-hSyn-DIO-hM3D(Gq)-mCherry mice (lower panel). Scale bar: 50  $\mu$ m. b) Quantification of cFOS+ expression in mCherry+ intrapancreatic ganglia of CNO-treated ChAT-IRES-cre/AAV8-hSyn-DIO-hM3D(Gq)-mCherry (11 ganglia from 3 mice) and CNO-treated ChAT-IRES-cre/AAV8-hSyn-DIO-hM3D(Gq)-mCherry (11 ganglia from 3 mice). cFOS volume expressed as percentage of mCherry+ volume of the ganglia. Two-tailed Mann-Whitney test, \*\*p=0.005. c) Representative images of mCherry+ pancreas-projecting neurons in the CG from Snap25-2A-GCaMP6S mice, 4 weeks after intrapancreatic injection of AAV8-hSyn-hM3D(Gq)-mCherry, showing mCherry expression, basal fluorescence, response to CNO (20  $\mu$ M) and KCI (50 mM). 3 independent replicates Scale bar Scale bar: 50  $\mu$ m. d) Normalized Fluorescence Intensity (F/F<sub>0</sub>) of mCherry+ neurons and mCherry- neurons in CG after CNO treatment (N=3 mice)

# Supplementary Tables

**Supplementary Table 1 I** Quantification of total number of neurons per ganglia. Data are shown as mean ± SEM.

| Ganglia  | # Neurons               |
|----------|-------------------------|
| CG       | 1470.857 ± 556.654 (7)  |
| L-NG     | 13332 ± 394.475 (9)     |
| R-NG     | 994.8 ± 208.252 (8)     |
| L-DRG10  | 1171.5 ± 187.044 (10)   |
| L-DRG13  | 1269.286 ± 235.551 (10) |
| R-DRG10  | 1133.714 ± 231.999 (10) |
| R-DRG13  | 1365.143 ± 224.428 (9)  |
| All NGs  | 1000.529 ± 319.882(17)  |
| All DRGs | 1042.769 ± 217.256 (39) |

Supplementary Table 2 I Statistical details for Figs. 1–7.

| Figure number and title                                                                                          | Statistical Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fig. 1 I Pancreas is<br>innervated by neurons in<br>coeliac, nodose, dorsal root<br>and intrapancreatic ganglia. | One-way ANOVA was used for statistical analyses with multiple comparisons corrected by Tukey post-hoc test. <b>e</b> : left panel, $p = 0.6335$ , $F = 0.725$ ; right panel, $p = 0.841$ , $F = 0.4445$ ). p represents statistical significance and F represents the F-statistic. Data are shown as mean $\pm$ SEM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Fig. 2 I AAV serotypes<br>selectively target pancreatic<br>autonomic efferent and<br>afferent nerves.            | Panel <b>c</b> left: Kruskal-Wallis test between serotypes in CG, NG and DRG, $p = 0.001$ , 0.002 and 0.003; $\chi^{2}_{(3)} = 15.57$ , 14.96 and 14.17 respectively. Multiple comparisons corrected by Dunn's multiple comparison test: CG: AAV9 vs AAV6 p=0.0033, AAV9 vs AAV6 p=0.024, AAV8 vs AAVrg p=0.031. NG: AAV9 vs AAV8 p=0.005, AAV8 vs AAVrg p=0.008. DRG: AAV9 vs AAV8 p=0.013, AAV8 vs AAVrg p=0.002.<br>Panel <b>c</b> , right: Kruskal-Wallis test between serotypes in CG, NG and DRG, p = 0.001, 0.004 and 0.001, $\chi^{2}_{(3)} = 17.04$ , 13.29 and 15.66 respectively. Multiple comparisons corrected by Dunn's multiple comparison test: CG:AAV8 vs AAV6 **p=0.006 AAV8 vs AAVrg *p=0.012. NG: AAV9 vs AAV8 *p=0.01, AAV8 vs AAVrg *p=0.013. DRG: AAV9 vs AAV8 *p=0.01, AAV8 vs AAVrg *p=0.013. DRG: AAV9 vs AAVrg *p=0.021, AAV8 vs AAVrg *p=0.049, AAV6 vs AAVrg **p=0.009. Panel <b>d</b> : One-way ANOVA p = 0.468, F = 0.903 corrected using Tukey posthoc test. Data are shown as mean ± SEM. |
| Fig. 3 I Optimization of gene<br>delivery                                                                        | Statistical analyses between IP and ID delivery used two-tailed Mann-Whitney U test in:<br>Panel <b>b</b> . For CG, L-NG, R-NG, L-DRG10, L-DRG13, R-DRG10, R-DRG13; P=0.057, 0.486, 0.487, 0.309, 0.885, 0.904, 0.334<br>respectively.<br>Kruskal-Wallis test with Dunn's multiple comparison test was used for dose response analyses.<br>Panel <b>d</b> : p = 0.057 $\chi^{2}_{(3)}$ = 10.86,<br>Panel <b>f</b> : p = 0.137, $\chi^{2}_{(3)}$ = 6.98, upper left, p = 0.117, $\chi^{2}_{(3)}$ = 7.39 upper right; p = 0.616, $\chi^{2}_{(3)}$ = 2.66 lower left, p = 0.628, $\chi^{2}_{(3)}$ = 2.60 lower right).<br>Data are shown as mean ± SEM.                                                                                                                                                                                                                                                                                                                                                                       |

| Fig.4 I Combined strategy for<br>restricted gene expression in<br>pancreatic innervation. | Kruskal-Wallis test was used for statistical analyses:<br><b>c</b> : left, n = 3 replicates/group, ***p<0.0001, $\chi^{2}_{(3)}$ = 248.5 using Dunn's<br>multiple comparison test; right panel, n = 3 replicates/group<br>***p<0.0001, $\chi^{2}_{(3)}$ = 50.62 using Dunn's multiple comparison test).<br>Two-tailed Mann-Whitney test was used for statistical analysis of<br>mCherry+ cells in liver<br><b>g</b> : *p=0.029 (left), <b>h</b> : p=0.690 and <b>i</b> : p=0.184.<br>Two-tailed unpaired t-test was used for mCherry+ cells in CG,<br>p=0.5739 ( <b>g</b> , right).<br>Data are shown as mean ± SEM. Each <i>in vitro</i> study was performed 3<br>times with 3 technical replicates on each occasion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fig. 5 I Pancreas<br>parasympathetic activation<br>improves glucose control.              | Two-way ANOVA with Sidak's multiple comparisons test for panel <b>b</b> :<br>p=0.007, F=2.825. **p=0.003(15'), **p=0.003(30'), **p=0.003(45'),<br>*p=0.013(60'), **p=0.008(90'), **p=0.004(120'), panel c: p=0.134,<br>F=1.631<br>panel <b>d</b> : p<0.0001, F=15.09. *p=0.018(0'), ***p=0.0004(15'),<br>**** <p=0.0001(30'), (45'),="" ****<p="0.0001" ***p="0.0005(60'),&lt;br">****p=0.0004(90'), *p=0.0432(120')<br/>panel <b>e</b>, left: p&lt;0.0001, F=5.701. mCherry vs Gq: *p=0.0163(15'),<br/>**p=0.0072(30'), *p=0.0157(45'), *p=0.0168(90'), mCherry-Atropine vs<br/>Gq: *p=0.0175(15'), **p=0.0010(30'), **p=0.0027(45'), **p=0.0052(60'),<br/>*p=0.0208(90')<br/>panel <b>f</b>: p=0.216, F=1.417 and panel <b>g</b>: p=0.006, F=5.60. *p=0.045(0'),<br/>*p=0.013(15').<br/>Mixed-Effect analysis with Sidak's multiple comparisons for:<br/>panel <b>h</b>: p=0.671, F=0.639. *p=0.028(15'). Panel <b>i</b>: p=0.419. Krustal-<br/>Wallis test for panel e, right; p=0.03, <math>\chi</math>2(2) =13.64 with Dunn's multiple<br/>comparisons test. mCherry vs Gq **p=0.0026, mCherry-Atropine vs Gq<br/>*p=0.0253.<br/>Two-tailed Mann-Whitney test for AUC for panel <b>b</b>, right: ***p&lt;0.0001,<br/>panel <b>c</b>, right: p=0.0653.<br/>Two-tailed unpaired t-test for panel <b>d</b>, right: ***p&lt;0.0001.<br/>Data are shown as mean ± SEM.</p=0.0001(30'),> |
| Fig. 6 I Effects of ablation of<br>parasympathetic pancreatic<br>innervation.             | Two-tailed Mann-Whitney test was used for statistical analyses in panel<br><b>b</b> : *p=0.016 and panel <b>c</b> : left, p= 0.904, center, p=0.167, right, p=<br>0.142.<br>Two-way ANOVA was used for statistical analyses in panel <b>d</b> : p=0.753,<br>F=0.568. panel <b>g</b> : p=0.917, F=0.330. panel h: p=0.241, F= 1.389. All<br>analyses were corrected by Sidak's multiple comparisons test.<br>Two-tailed Paired t-test was used for statistical analysis in panel <b>e</b> : left<br>p= 0.112, right *p= 0.032.<br>Mixed-Effect analysis was used for statistical analysis corrected by<br>Sidak's multiple comparisons for panel <b>i</b> : p=0.917, F=0.166.<br>Data are shown as mean ± SEM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fig. 7 I Pancreas sympathetic<br>activation impairs glucose<br>homeostasis                | Two-way ANOVA with Sidak's multiple comparison test was used for statistical analyses in panel <b>c</b> : $p=0.023$ , $F=2.418$ . panel d: $p=0.040$ , $F=2.18$ , *p=0.013 (30') and *p=0.030 (45'), panel <b>e</b> : , p=0.684, F=0.688. panel f: $p=0.475$ , F=0.944.<br>Mixed-Effect analysis with Sidak's multiple comparison test was used for panel <b>g</b> : $p=0.391$ , F=1.021 and <b>h</b> : $p=0.506$ , F= 0.713.<br>Two-tailed unpaired t-test was used in panel <b>c</b> , right: $p=0.629$ . panel <b>d</b> , right: *p=0.020, panel <b>e</b> , right: $p=0.263$ and panel <b>f</b> , right: $p=0.1833$ Data are shown as mean ± SEM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Supplementary Table 3. Statistical details for Extended Data Figs. 1–4.

| Figure number and title                                                                                                                     | Statistical Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extended Data Fig. 1 I<br>Distribution of CTβ+ pancreas–<br>innervating neurons across<br>ganglia                                           | Two-tailed Mann-Whitney test, n = 3 mice, 402 CT $\beta$ + pancreas-<br>innervating neurons for CG, 304 CT $\beta$ + pancreas-innervating<br>neurons for L-NG, 251 CT $\beta$ + pancreas-innervating neurons for R-<br>NG, 264 CT $\beta$ + pancreas-innervating neurons for L-DRG, 141 CT $\beta$ +<br>pancreas-innervating neurons for R-DRG: L-NG vs. R-NG,<br>*****p<0.0001, L-DRGs vs. R-DRGs, **p=0.001).<br>Data are shown as mean ± SEM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Extended Data Fig 2. I Off-target<br>expression after intrapancreatic<br>delivery of AAV                                                    | Kruskal-Wallis test, corrected using Dunn's multiple comparison test. <b>b</b> : lower panel, p = 0.521, $\chi^{2}_{(3)} = 2.449$ , c: lower panel, p = 0.475, $\chi^{2}_{(3)} = 2.744$ , <b>d</b> : upper panel, p = 0.534, $\chi^{2}_{(3)} = 2.188$ , lower panel, p = 0.511, $\chi^{2}_{(3)} = 2.310$ , <b>e</b> : upper panel p = 0.002, $\chi^{2}_{(3)} = 14.45$ *p=0.020 AAV9 vs AAVrg, *p=0.033 AAV8 vs AAVrg; lower panel p = 0.002, $\chi^{2}_{(3)} = 14.69$ , <b>f</b> : upper panel p = 0.034, $\chi^{2}_{(3)} = 8.67$ ; *p=0.050 AAV8 vs AAV6, lower panel p = 0.085, $\chi^{2}_{(3)} = 6.67$ . Data are shown as mean ± SEM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Extended Data Fig 3. I Neuronal<br>specific promoters for gene<br>delivery into pancreatic<br>innervation.                                  | One-way ANOVA corrected by Tukey's multiple comparison test<br>used for panel <b>c</b> , left panel: HEK293T cells, p < 0.0001, F = 108.1.<br>JeT vs hSyn ****p<0.0001, JeT vs NSE *****p<0.0001, N2A cells, p<br>< 0.0001, F = 50.90. JeT vs hSyn ****p<0.0001, JeT vs NSE<br>****p<0.0001, hSyn vs NSE **p=0.009. Panel <b>c</b> , right: HEK293T<br>cells, p < 0.0001, N2A cells, p < 0.0001, F = 38.86. JeT vs hSyn<br>****p<0.0001, hSyn vs NSE **p=0.002. Panel <b>d</b> , right: HEK293T<br>cells, p < 0.0001, F = 95.12. JeT vs hSyn ****p<0.0001, JeT vs NSE<br>****p<0.0001, N2A cells, p < 0.0001, F = 50.90. JeT vs hSyn<br>****p<0.0001, N2A cells, p < 0.0001, F = 50.90. JeT vs hSyn<br>****p<0.0001, JeT vs NSE ****p<0.0001, hSyn vs NSE**p=0.002.<br>Krustal-Wallis corrected by Dunn's multiple comparison test used<br>for panel <b>d</b> , left: HEK293T cells, p = 0.0037, $\chi^2_{(2)}$ = 11.19.<br>JeTvs.hSyn **p=0.003, JeTvs.NSE *p=0.044, N2A cells, p = 0.021,<br>$\chi^2_{(2)}$ = 7.776. JeTvs.hSyn *p=0.019<br>Two-tailed Mann-Whitney test was used for panels <b>e</b> and <b>f</b> .<br>Data are shown as mean ± SEM. |
| Extended Data Fig 4. I CNO does<br>not affect GTT in wild-type (WT)<br>mice and female ChAT-IRES-<br>cre/AAV8-Syn-DIO-hM3D(Gq)-<br>mCherry. | Two-way ANOVA corrected by Sidak's multiple comparisons tests<br><b>a</b> : p=0.811, F=0.530. <b>b</b> : p<0.001, F=4.552. (*p=0.022(15'),<br>*p=0.010(30'), *p=0.0145(45'), *p=0.0132(90') <b>c</b> : p=0.130, F<br>=1.667. <b>d</b> : p=0.351, F=1.137. <b>e</b> : p=0.155, F=1.464. <b>f</b> : p=0.674,<br>F=0.698. <b>g</b> : p=0.025, F= 2.483. <b>h</b> : p=0.015, F=52.729. <b>i</b> : p=0.993,<br>F=0.122. Mixed-Effect analysis with Sidak's multiple comparisons<br><b>m</b> : p=0.018, F=4.977. <b>n</b> : p=0.994, F=1.050. <b>o</b> : p=0.677, F=0.868.<br>Two-tailed Mann-Whitney test (right <b>b</b> : **p=0.001, right <b>d</b> : p=0.104).<br>Two-tailed Unpaired t-test (right <b>a</b> : p=0.573. <b>c</b> : p=0.913. <b>j</b> : p=0.407.<br><b>k</b> : p=0.114. <b>l</b> : p=0.375.<br>Data are shown as mean ± SEM                                                                                                                                                                                                                                                                                                                |

## **Captions for the Supplementary Videos**

**Supplementary Video 1** I Lightsheet microscopy images of mouse pancreatic samples cleared with iDISCO+ and immunostained for insulin (blue) and vesicular acetylcholine transporter (VAChT, white) demonstrating dense parasympathetic innervation and intrapancreatic ganglia. (https://drive.google.com/file/d/117DauzJ95DiU0xp6eLpHt-SHo\_1fpa2J/view?usp=sharing)

**Supplementary Video 2** I Lightsheet microscopy images of mouse pancreatic samples cleared with iDISCO+ and stained for insulin (blue) and tyrosine hydroxylase (TH, white) demonstrating dense catecholaminergic innervation of the pancreas.

(https://drive.google.com/file/d/1KDvqx6sOnycew\_FMH40SuqOBoateX491/view?usp=sharing)

**Supplementary Video 3** I Confocal microscopy images of pancreas-innervating neurons in CG cleared with iDISCO+ demonstrating 3D distribution of pancreas-projecting neurons and the approach used for segmentation and assessment of neural volume using Imaris with neurons color-coded based on their volumes.