Supporting Information

Daily Satellite Observations of Nitrogen Dioxide Air Pollution Inequality in New York City, New York and Newark, New Jersey: Evaluation and Application

Isabella M. Dressel¹, Mary Angelique G. Demetillo¹, Laura M. Judd², Scott J. Janz³, Kimberly P. Fields⁴, Kang Sun^{5,6}, Arlene M. Fiore⁷, Brian C. McDonald⁸, and Sally E. Pusede¹*

*Corresponding author: sepusede@virginia.edu

¹Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA

²NASA Langley Research Center, Hampton, VA 23681, USA

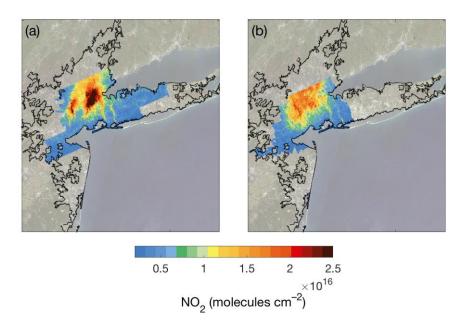
³NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

⁴Carter G. Woodson Institute for African American and African Studies, University of Virginia, Charlottesville, VA 22904, USA

⁵Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY 14260, USA

⁶Research and Education in eNergy, Environment and Water (RENEW) Institute, University at Buffalo, Buffalo, NY 14260, USA

⁷Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA


⁸Chemical Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, CO 80305, USA

SI includes: Figures S1–S5, Equation S1, and Tables S1–S8

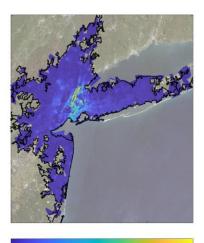
Table S1. GCAS and GeoTASO flight rasters on 13 LISTOS flight days. Small raster flight patterns occurred in the early morning (8:15–9:50 am LT, local time), late morning (9:50–11:30 am LT), early afternoon (1:15–3:00 pm LT), and late afternoon (3:00–4:45 pm LT). Large raster flight patterns were flown on days when elevated air pollution was predicted over the Long Island Sound region in the morning (9–11 am LT) and afternoon (1:30–4:10 pm LT).

Flight date	Morning	Afternoon
	Raster	Raster
25 Jun 2018	Large	Large
30 Jun 2018	Large	Large
2 Jul 2018	Large	Large
19 Jul 2018	Small	Small
20 Jul 2018	Small	Small
5 Aug 2018	Small	Small
6 Aug 2018	Small	Large
15 Aug 2018	Small	Small
16 Aug 2018	Large	Large
24 Aug 2018	Small	Small
28 Aug 2018	Large	Large
29 Aug 2018	Large	Large
6 Sep 2018	Large	Large

Figure S1. GCAS and GeoTASO NO₂ TVCDs (molecules cm⁻²) during large (a) and small (b) raster flight patterns. Examples are 2 July 2018 and 20 July 2018, respectively. The black outline represents the New York City–Newark UA. Background map data: Landsat 8 composite January 2017–June 2020.

Flight **Race-Ethnicity Population (%) Race-Ethnicity and** Poverty status (%) Circuit Poverty Status (%) **Black and African American** White Asian Hispanic and LIN HIW **Below poverty** Above poverty Latino 25 Jun 2018 17% 7% 72% 26% 15% AM 41% 12% 18% 41% 17% 12% 27% 18% 15% 7% 71% PM 30 Jun 2018 27% AM 41% 18% 12% 18% 15% 7% 71% PM 27% 7% 71% 41% 17% 12% 18% 15% 2 Jul 2018 39% 18% 12% 27% 20% 14% 8% 70% AM PM 39% 19% 12% 28% 20% 14% 8% 69% 19 Jul 2018 36% 20% 13% 28% 21% 12% 68% **AM** 1 8% 22% AM 2 36% 20% 13% 28% 11% 8% 67% PM 1 36% 20% 13% 28% 21% 11% 8% 67% PM 2 36% 20% 13% 28% 21% 11% 8% 67% 20 Jul 2018 36% 20% AM 1 13% 28% 22% 11% 9% 67% 20% 28% AM 2 36% 13% 21% 11% 8% 68% PM 1 11% 36% 20% 13% 27% 20% 8% 68% 22% **PM 2** 36% 20% 13% 28% 11% 8% 67% 5 Aug 2018 AM 1 36% 20% 13% 29% 22% 11% 9% 67% AM 2 36% 20% 13% 28% 22% 11% 8% 67% PM 1 20% 28% 22% 11% 9% 67% 36% 13% 12% PM 2 37% 20% 12% 28% 21% 8% 67% 6 Aug 2018 37% 27% **AM** 1 19% 13% 20% 12% 8% 68% AM 2 20% 21% 36% 13% 28% 11% 8% 67% 40% 20% 12% 26% 19% 14% 8% 70% PM

Table S2. Demographic group makeup (%) of populations sampled during each GCAS and GeoTASO flight raster, average flight raster


demographic group makeup of sampled populations during LISTOS, and UA demographic composition.

15 Aug 2018								
AM 1	37%	20%	13%	28%	21%	12%	8%	68%
AM 2	37%	19%	13%	28%	21%	12%	8%	68%
PM 1	37%	19%	13%	28%	21%	12%	8%	68%
PM 2	37%	20%	13%	28%	21%	12%	8%	68%
16 Aug 2018								
AM	44%	17%	12%	24%	14%	17%	6%	76%
PM	39%	18%	12%	27%	19%	14%	8%	70%
24 Aug 2018								
AM 1	35%	20%	13%	29%	22%	11%	9%	67%
AM 2	36%	20%	13%	28%	21%	11%	8%	67%
PM 1	36%	20%	13%	28%	21%	11%	8%	67%
PM 2	36%	20%	13%	28%	21%	11%	8%	67%
28 Aug 2018								
AM	40%	18%	12%	27%	19%	14%	7%	70%
PM	40%	18%	12%	27%	19%	14%	8%	70%
29 Aug 2018								
AM	40%	18%	12%	27%	19%	14%	7%	70%
PM	40%	18%	12%	27%	19%	14%	7%	70%
6 Sep 2018								
AM	40%	18%	12%	27%	19%	14%	8%	70%
PM	40%	18%	12%	27%	19%	14%	7%	71%
Mean of All	38%	19%	13%	28%	20%	13%	8%	69%
Flights								
Mean of All	44%	16%	11%	25%	17%	16%	7%	73%
UA Tracts								

Equation S1. Population-weighted NO₂ columns are calculated as the product of the census tractaveraged NO₂ TVCD (NO_{2,*j*}) and demographic group population (p_j) in the *i*th tract summed over all tracts with NO₂ data (*n*). The summation is divided by the demographic group population (p_j).

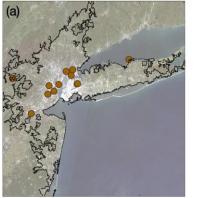
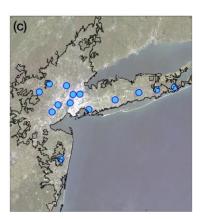
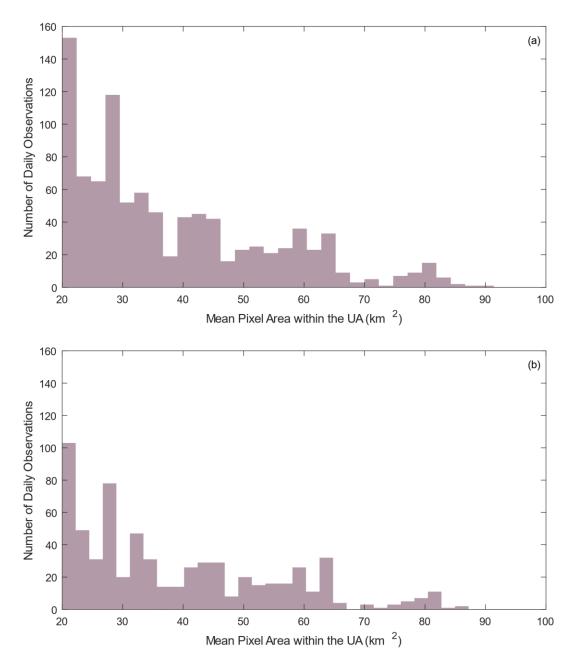

(SE1) Population-weighted NO_{2,j} =
$$\sum_{i=1}^{n} NO_{2,i} p_{i,j} / \sum_{i=1}^{n} p_{i,j}$$


Figure S2. Census tract population densities in the New York City–Newark UA (black line). Background map data: Landsat 8 composite January 2017–June 2020.



0 1 2 3 4 5 Population Density $\times 10^4$ (people km⁻²)

Figure S3. Locations of 11 NO₂* monitors (a), 17 O₃ monitors (b), and the 14 Automated Surface Observing System and Automated Weather Observing System stations (c). The black outline represents the New York City–Newark UA. Background map data: Landsat 8 composite January 2017–June 2020.


Table S3. GCAS and GeoTASO flight circuit population-weighted $NO_2 (x10^{15} \text{ molecules cm}^{-2})$ and relative inequalities during LISTOS for Black and African Americans, Hispanics and Latinos, and Asians compared to non-Hispanic/Latino whites, for below poverty versus above poverty tracts, and for LIN compared to HIW tracts.

Date		Population-w	eighted NO ₂		Di	ference (%)		Population-v	veighted NO ₂	Difference	Population-v	veighted NO ₂	Difference
	White	Black and African American	Hispanic/ Latino	Asian	Black and African American	Hispanic/ Latino	Asian	Below poverty	Above poverty	(%)	LIN	HIW	(%)
25 Jun 2018		American			American								
AM	3.7 ± 0.0	4.3 ± 0.1	3.3 ± 0.0	3.8 ± 0.0	15 ± 2	-9 ± 2	4 ± 2	4.0 ± 0.1	3.6 ± 0.0	8 ± 2	3.7 ± 0.1	3.3 ± 0.1	11 ± 3
PM	4.8 ± 0.1	5.8 ± 0.1	5.0 ± 0.1	5.6 ± 0.1	18 ± 2	4 ± 2	15 ± 2	6.3 ± 0.1	4.8 ± 0.1	28 ± 2	5.7 ± 0.1	4.0 ± 0.1	34 ± 3
30 Jun 2018													
AM	8.2 ± 0.2	10.5 ± 0.1	10.4 ± 0.2	10.0 ± 0.2	24 ± 2	23 ± 2	19 ± 3	12.6 ± 0.2	8.4 ± 0.1	40 ± 2	12.0 ± 0.2	6.7 ± 0.2	57 ± 3
PM	8.2 ± 0.2	11.0 ± 0.2	14.2 ± 0.2	11.3 ± 0.2	29 ± 3	54 ± 2	32 ± 3	14.4 ± 0.2	9.3 ± 0.1	43 ± 2	14.8 ± 0.3	8.0 ± 0.2	59 ± 3
2 Jul 2018													
AM	20.4 ± 0.5	21.1 ± 0.6	32.1 ± 0.6	22.4 ± 0.6	3 ± 4	45 ± 3	9 ± 3	32.9 ± 0.8	20.7 ± 0.4	46 ± 3	32.6 ± 0.8	22.6 ± 0.8	36 ± 4
PM	9.4 ± 0.2	11.5 ± 0.3	15.8 ± 0.2	10.2 ± 0.2	20 ± 3	51 ± 2	8 ± 3	16.1 ± 0.3	9.9 ± 0.1	48 ± 3	16.6 ± 0.3	10.2 ± 0.3	48 ± 3
19 Jul 2018													
AM 1	10.3 ± 0.2	10.2 ± 0.2	10.0 ± 0.2	9.5 ± 0.2	-1 ± 2	-2 ± 2	-8 ± 2	10.4 ± 0.2	10.0 ± 0.1	3 ± 2	10.1 ± 0.2	9.3 ± 0.2	9 ± 3
AM 2	12.3 ± 0.2	11.8 ± 0.2	11.2 ± 0.2	12.2 ± 0.2	-4 ± 2	-9 ± 2	-1 ± 2	11.5 ± 0.2	12.2 ± 0.2	-5 ± 2	11.4 ± 0.2	10.7 ± 0.3	7 ± 3
PM 1	18.1 ± 0.3	19.5 ± 0.3	18.6 ± 0.3	16.8 ± 0.3	7 ± 2	3 ± 2	-7 ± 2	20.5 ± 0.3	17.5 ± 0.2	16 ± 2	20.2 ± 0.3	19.7 ± 0.6	3 ± 4
PM 2	19.9 ± 0.3	20.6 ± 0.3	23.8 ± 0.3	19.4 ± 0.3	3 ± 2	18 ± 2	-2 ± 2	25.3 ± 0.4	19.1 ± 0.2	28 ± 2	25.7 ± 0.4	21.8 ± 0.7	17 ± 3
20 Jul 2018													
AM 1	22.6 ± 0.3	26.4 ± 0.4	27.4 ± 0.3	23.9 ± 0.3	15 ± 2	19 ± 2	5 ± 2	30.9 ± 0.4	22.4 ± 0.2	32 ± 2	29.0 ± 0.4	20.6 ± 0.6	34 ± 3
AM 2	26.4 ± 0.4	25.6 ± 0.4	32.1 ± 0.4	31.1 ± 0.5	-3 ± 2	19 ± 2	16 ± 2	31.4 ± 0.5	27.2 ± 0.3	14 ± 2	31.3 ± 0.5	27.4 ± 0.8	13 ± 3
PM 1	8.4 ± 0.1	8.3 ± 0.1	10.5 ± 0.1	7.7 ± 0.1	-1 ± 2	23 ± 2	-8 ± 2	9.8 ± 0.2	$8.4 {\pm} 0.1$	16 ± 2	10.5 ± 0.2	9.0 ± 0.2	16 ± 3
PM 2	7.5 ± 0.1	7.8 ± 0.1	10.2 ± 0.1	8.0 ± 0.1	4 ± 2	31 ± 2	7 ± 2	9.2 ± 0.1	8.0 ± 0.1	14 ± 2	9.7 ± 0.1	8.0 ± 0.2	19 ± 2
5 Aug 2018													
AM 1	8.4 ± 0.2	11.3 ± 0.2	9.0 ± 0.2	10.0 ± 0.2	30 ± 3	7 ± 3	18 ± 3	10.5 ± 0.2	8.8 ± 0.1	18 ± 3	10.0 ± 0.2	6.1 ± 0.3	48 ± 5
AM 2	8.1 ± 0.2	9.7 ± 0.2	7.7 ± 0.2	10.5 ± 0.2	17 ± 3	-6 ± 4	25 ± 3	8.5 ± 0.2	8.6 ± 0.2	-1 ± 3	8.2 ± 0.2	6.0 ± 0.3	31 ± 5
PM 1	6.7 ± 0.1	7.1 ± 0.1	7.2 ± 0.1	8.7 ± 0.1	6 ± 2	7 ± 2	26 ± 2	7.2 ± 0.1	$7. \pm 0.1$	1 ± 2	7.1 ± 0.1	6.9 ± 0.2	3 ± 3
PM 2	7.1 ± 0.1	7.4 ± 0.1	7.5 ± 0.1	9.1 ± 0.1	4 ± 2	6 ± 2	25 ± 2	7.6 ± 0.1	7.5 ± 0.1	2 ± 2	7.4 ± 0.1	7.0 ± 0.1	5 ± 2
6 Aug 2018													
AM 1	10.7 ± 0.2	14.2 ± 0.2	11.1 ± 0.2	13.3 ± 0.2	28 ± 2	3 ± 2	21 ± 2	12.5 ± 0.2	11.7 ± 0.1	7 ± 2	11.6 ± 0.2	9.0 ± 0.3	25 ± 4
AM 2	14.5 ± 0.2	17.9 ± 0.3	17.8 ± 0.3	20.2 ± 0.3	21 ± 2	20 ± 2	33 ± 2	17.7 ± 0.3	16.5 ± 0.2	7 ± 2	17.1 ± 0.3	13.4 ± 0.4	24 ± 4
PM	10.3 ± 0.1	12.6 ± 0.2	12.5 ± 0.2	12.7 ± 0.2	20 ± 2	20 ± 2	21 ± 2	13.2 ± 0.2	11.0 ± 0.1	19 ± 2	13.0 ± 0.2	10.2 ± 0.2	24 ± 3

15 Aug 2018													
AM 1	8.1 ± 0.1	9.8 ± 0.1	8.4 ± 0.1	10.0 ± 0.1	18 ± 2	21 ± 2	4 ± 2	9.5 ± 0.1	8.6 ± 0.1	10 ± 2	8.9 ± 0.1	6.9 ± 0.2	26 ± 3
AM 2	8.1 ± 0.1	9.5 ± 0.1	8.2 ± 0.2	9.8 ± 0.1	16 ± 2	19 ± 2	1 ± 2	9.1 ± 0.2	8.5 ± 0.1	7 ± 2	8.4 ± 0.2	7.0 ± 0.2	19 ± 3
PM 1	6.1 ± 0.1	7.1 ± 0.1	6.0 ± 0.1	7.4 ± 0.1	15 ± 2	19 ± 2	-2 ± 2	6.8 ± 0.1	6.3 ± 0.1	8 ± 2	6.3 ± 0.1	5.1 ± 0.1	22 ± 3
PM 2	7.2 ± 0.1	8.7 ± 0.1	6.7 ± 0.1	8.4 ± 0.1	18 ± 2	16 ± 2	-7 ± 2	8.0 ± 0.1	7.4 ± 0.1	8 ± 2	7.3 ± 0.1	6.3 ± 0.1	16 ± 3
16 Aug 2018													
AM	7.8 ± 0.1	10.3 ± 0.2	7.7 ± 0.1	8.7 ± 0.1	28 ± 2	12 ± 2	-1 ± 2	10.1 ± 0.2	7.9 ± 0.1	24 ± 3	9.4 ± 0.2	7.2 ± 0.2	26 ± 3
PM	8.5 ± 0.1	11.7 ± 0.2	9.1 ± 0.1	10.6 ± 0.1	31 ± 2	22 ± 2	7 ± 2	10.1 ± 0.2	9.3 ± 0.1	8 ± 2	9.6 ± 0.2	8.0 ± 0.2	18 ± 3
24 Aug 2018													
AM 1	10.7 ± 0.2	12.2 ± 0.2	10.8 ± 0.2	11.6 ± 0.2	12 ± 2	8 ± 2	1 ± 2	12.5 ± 0.2	10.6 ± 0.1	17 ± 2	11.3 ± 0.2	8.8 ± 0.3	25 ± 3
AM 2	21.2 ± 0.4	28.5 ± 0.5	23.5 ± 0.4	23.6 ± 0.4	30 ± 2	11 ± 2	10 ± 3	27.2 ± 0.5	22.2 ± 0.3	20 ± 2	25.1 ± 0.5	19.4 ± 0.6	25 ± 4
PM 1	16.6 ± 0.3	22.5 ± 0.4	28.2 ± 0.4	20.4 ± 0.4	30 ± 3	20 ± 3	51 ± 3	26.4 ± 0.6	19.3 ± 0.3	31 ± 3	27.3 ± 0.6	18.4 ± 0.6	39 ± 4
PM 2	13.1 ± 0.2	14.2 ± 0.2	17.5 ± 0.2	15.2 ± 0.2	8 ± 2	14 ± 2	28 ± 2	17.1 ± 0.3	13.7 ± 0.2	22 ± 2	17.2 ± 0.3	14.0 ± 0.4	20 ± 3
28 Aug 2018													
AM	12.4 ± 0.2	14.3 ± 0.2	16.0 ± 0.2	17.1 ± 0.2	14 ± 2	32 ± 2	25 ± 2	16.2 ± 0.2	13.6 ± 0.1	18 ± 2	15.7 ± 0.2	11.7 ± 0.2	29 ± 2
PM	8.6 ± 0.1	8.9 ± 0.1	9.4 ± 0.2	10.3 ± 0.2	3 ± 2	18 ± 2	8 ± 2	10.1 ± 0.2	8.0 ± 0.1	15 ± 2	9.9 ± 0.2	8.8 ± 0.2	12 ± 3
29 Aug 2018													
AM	13.4 ± 0.2	15.1 ± 0.2	17.5 ± 0.2	19.0 ± 0.3	12 ± 2	35 ± 2	27 ± 2	17.5 ± 0.3	14.6 ± 0.2	18 ± 2	17.6 ± 0.3	12.8 ± 0.2	32 ± 2
PM	7.5 ± 0.1	8.2 ± 0.1	8.1 ± 0.1	9.0 ± 0.1	9 ± 2	18 ± 2	7 ± 2	8.4 ± 0.1	7.8 ± 0.1	7 ± 2	8.1 ± 0.1	7.5 ± 0.2	8 ± 3
6 Sep 2018													
AM	11.4 ± 0.2	12.1 ± 0.2	14.6 ± 0.2	14.6 ± 0.2	6 ± 2	24 ± 2	24 ± 2	15.0 ± 0.2	11.8 ± 0.1	24 ± 2	14.7 ± 0.2	11.0 ± 0.2	29 ± 3
PM	7.9 ± 0.1	8.5 ± 0.1	9.7 ± 0.2	9.7 ± 0.2	7 ± 2	21 ± 2	21 ± 2	10.4 ± 0.2	8.0 ± 0.1	26 ± 2	9.9 ± 0.2	8.2 ± 0.2	20 ± 3

Table S4. Correlation coefficients for absolute and relative inequalities observed by GCAS and GeoTASO during LISTOS and UAmean NO₂* mixing ratios (during flight times), surface wind speeds (during flight times), surface temperatures (during flight times), daily maximum temperatures, and UA-mean MD8A O₃ mixing ratios. Pearson correlation coefficients (*r*) are given for correlations with NO₂ and Spearman rank correlation coefficients (ρ) are given for all others. All correlation coefficients are significant to 1% (*p* < 0.010) unless indicated unless indicated (†), which means significant to 5%.

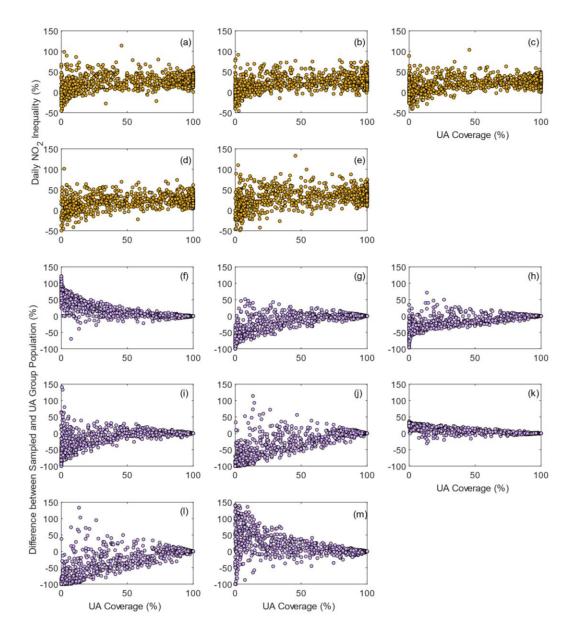

		Correlat	tions with A	bsolute Cir	cuit Inequalities			Corr	elations wi	th Relative Circuit	Inequalities
	Surface Wind Speeds	Surface NO ₂ *	NO ₂ TVCDs	MD8A O3	Surface Temperature	Daily Maximum Temperature	Surface Wind Speeds	NO ₂ TVCDs	MD8A O3	Surface Temperature	Maximum Temperature
Black and African Americans	-0.495	0.366†	_	_	_	_	-	_	_	_	-
Hispanics and Latinos	-	_	0.574	0.364†	_	_	-	0.328†	0.365†	_	_
Asians	_	_	-	-	0.363†	0.519	-	-	-	0.565	0.679
Below Poverty Tracts	-	0.459	0.613	_	_	_	-	_	_	_	_
LINs	-0.520	0.416^{\dagger}	0.530	-	_	-	-0.362†	-	-	-	0.329†

Figure S4. Daily TROPOMI overpass mean pixel areas within the UA (qa value > 0.75) over May 2018–September 2021 on all days (a) and days with over 30% UA coverage (b).

Table S5. Effect of TROPOMI pixel area on mean and individual daily relative inequalities (May 2018–September 2021) on all observation days for Black and African Americans, Hispanics and Latinos, and Asians compared to non-Hispanic/Latino whites, for below poverty versus above poverty tracts, and for LIN compared to HIW tracts. Daily inequalities are assessed using the coefficient of variation. Errors are 95% confidence intervals based on bootstrapped distributions sampled with replacement 10^4 times.

		Mean of Dail	y Inequalit	ies			Daily Ir	nequalities		
		Relative Inec	qualities (%	6)			on			
Pixel Area (km ²)	Black and African Americans	Hispanics and Latinos	Asians	Below Poverty Tracts	LINs	Black and African Americans	Hispanics and Latinos	Asians	Below Poverty Tracts	LINs
20-25	25 ± 3	24 ± 3	22 ± 2	24 ± 2	34 ± 3	0.78	0.83	0.79	0.66	0.67
25-30	23 ± 3	22 ± 3	20 ± 3	22 ± 3	32 ± 4	0.93	0.97	0.91	0.85	0.80
30-35	25 ± 3	24 ± 3	25 ± 3	21 ± 3	32 ± 4	0.76	0.76	0.62	0.78	0.70
35–45	25 ± 3	21 ± 3	21 ± 3	18 ± 5	32 ± 4	0.78	0.92	0.87	1.49	0.72
45-60	25 ± 3	22 ± 3	23 ± 3	21 ± 3	33 ± 4	0.81	0.87	0.78	0.83	0.79
>60	19 ± 3	19 ± 3	18 ± 3	19 ± 3	26 ± 4	0.91	0.97	0.88	0.81	0.86

Figure S5. Daily TROPOMI relative NO₂ inequalities over May 2018–September 2021 as a function of overpass percent UA coverage (%) for Black and African Americans (a), Hispanics and Latinos (b), and Asians (c) compared to non-Hispanic/Latino whites, below-poverty versus above poverty tracts (d), and LIN compared to HIW tracts (e), and daily percent difference in sampled census tract demographics (%) from total UA demographics versus percent UA coverage (%) for non-Hispanic/Latino whites (f), Black and African Americans (g), Hispanics and Latinos (h), Asians (i), below-poverty tracts (j), above poverty tracts (k), LINs (l), and HIWs (m).

Table S6. Influence of UA-mean daily (12–3 pm LT) surface wind speeds, NO₂ mixing ratios, and TROPOMI pixel areas on mean daily Pearson correlation coefficients between TROPOMI NO₂ TVCDs and surface NO₂* concentrations at distances between TROPOMI pixel centers and surface NO₂* monitors. Bootstrapped 95% confidence intervals sampled with replacement 10⁵ times are reported for column-surface correlation coefficients on days with low and high wind speeds, surface NO₂* concentrations, column NO₂ concentrations, and pixel areas, defined as the days in the lowest quartile bin and highest quartile bin, respectively. Only significant correlation coefficients are included in means (p < 0.050).

	Wind	Wind speeds		e NO ₂ *	Column NO ₂		Pixel	area
	Low	High	Low	High	Low	High	Small	Large
<1 km	0.63 ± 0.08	0.57 ± 0.07	0.57 ± 0.06	0.65 ± 0.10	0.52 ± 0.11	0.64 ± 0.06	0.59 ± 0.06	0.63 ± 0.07
<2 km	0.61 ± 0.07	0.50 ± 0.06	0.51 ± 0.05	0.63 ± 0.10	0.50 ± 0.08	0.59 ± 0.06	0.55 ± 0.06	0.53 ± 0.07
2–5 km	0.56 ± 0.06	0.43 ± 0.05	0.47 ± 0.04	0.57 ± 0.08	0.51 ± 0.04	0.53 ± 0.05	0.49 ± 0.04	0.49 ± 0.06
5–10 km	0.50 ± 0.04	0.38 ± 0.04	0.40 ± 0.03	0.55 ± 0.04	0.42 ± 0.04	0.48 ± 0.04	0.43 ± 0.03	0.42 ± 0.04

Table S7. Correlation coefficients between daily absolute inequalities and UA-mean NO₂* mixing ratios (12–3 pm LT), NO₂ TVCDs, surface wind speeds (12–3 pm LT), surface temperatures (12–3 pm LT), daily maximum temperatures, and MD8A O₃ mixing ratios and between daily relative inequalities and UA-mean NO₂* mixing ratios and NO₂ TVCDs. Pearson correlation coefficients (*r*) are given for correlations between inequalities and surface NO₂* and NO₂ TVCDs. Spearman rank correlation coefficients (ρ) are given for all other correlations. Relationships are analyzed during ozone season (May–September) for days with TROPOMI observations with >60% UA coverage. All correlation coefficients are significant to 1% (*p* < 0.010) unless indicated unless indicated (†), which means significant to 5%.

			0	zone Season						
			Abso	olute Inequality			Relative	Relative Inequality		
-	Wind Speed	Surface NO ₂ *	Column NO2	Surface Ozone	Temperature	Maximum Temperature	Surface NO2*	Column NO ₂		
Black and African Americans	-0.40	0.58	0.63	0.36	_	_	0.21	_		
Asians	-0.32	0.62	0.65	0.50	0.22	0.27	0.41	0.31		
Hispanics and Latinos	-0.43	0.57	0.65	0.46	0.19	0.19	0.19	_		
Below- poverty tracts	-0.38	0.64	0.63	0.46	0.18	0.23	0.34	0.18		
LIN	-0.41	0.65	0.65	0.45	0.15^{+}	0.19	0.32	0.13†		

Table S8. Ratio of weekday (Tuesday–Friday) to weekend (Saturday–Sunday) populationweighted MDA8 O₃ NAAQS exceedance frequencies over May 2018–September 2021 for non-Hispanic/Latino whites, Black and African Americans, Hispanics, Asians, above poverty tracts, below poverty tracts, HIWs, and LINs for census tract center distances of 1–10 km from an O₃ monitor. Weekdays are defined as Tuesdays–Fridays and weekends as Saturdays–Sundays, with weekday and weekend census tract-averaged exceedance counts divided by four and two, respectively. Uncertainties are provided as standard errors.

Radius from Monitor	Non-Hispanic/ Latino whites	Black and African	Hispanics/ Latinos	Asians	Above Poverty	Below Poverty	HIWs	LINs
		Americans						
1 km	1.2 ± 0.1	1.3 ± 0.1	1.0 ± 0.1	1.3 ± 0.1	1.2 ± 0.1	1.1 ± 0.1	4.2 ± 2.8	1.1 ± 0.1
2 km	1.3 ± 0.1	1.2 ± 0.1	1.1 ± 0.0	1.3 ± 0.1	1.3 ± 0.1	1.1 ± 0.0	1.2 ± 0.2	1.1 ± 0.0
5 km	1.4 ± 0.0	1.2 ± 0.0	1.1 ± 0.0	1.3 ± 0.0	1.3 ± 0.0	1.1 ± 0.0	1.3 ± 0.1	1.1 ± 0.0
7 km	1.3 ± 0.0	1.2 ± 0.0	1.2 ± 0.0	1.3 ± 0.0	1.3 ± 0.0	1.2 ± 0.0	1.3 ± 0.1	1.2 ± 0.0
10 km	1.3 ± 0.0	1.2 ± 0.0	1.2 ± 0.0	1.3 ± 0.0	1.3 ± 0.0	1.2 ± 0.0	1.2 ± 0.0	1.2 ± 0.0