Supplementary Material

Sequence-based prediction of the cellular toxicity associated with amyloid aggregation within protein condensates

Attila Horvath¹, Michele Vendruscolo² and Monika Fuxreiter^{3,4*}

¹John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601 Australia ²Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK ³Department of Biomedical Sciences, University of Padova, PD 35131, Italy ⁴Department of Physics and Astronomy, University of Padova, PD 35131, Italy

Supplementary Tables

Table S1. Comparison of droplet-forming probabilities, amyloid-forming probabilities and multiplicity of binding modes in single mutants of droplet, amyloid and aggregation hotspot regions. Classification was based on the position of the mutation. Differences were obtained between the mutant and the wild-type parameters.

toxic: $\Delta e_{tox} > 0$ non-toxic: $\Delta e_{tox} \le 0$ N: number of mutants p_{AP} : amyloid-promoting probability p_{DP} : droplet-promoting probability MBM: multiplicity of binding modes Δp_{AP} : change in amyloid-promoting probability Δp_{DP} : change in droplet-promoting probability ΔMBM : change in multiplicity of binding modes

Table S2. Comparison of droplet-forming probabilities, amyloid-forming probabilities and multiplicity of binding modes in double mutants of droplet, amyloid and aggregation hot-spot regions. Classification was based on the position of both mutations. Differences were obtained between the mutant and the wild-type parameters. The median of the distribution is shown.

toxic: $\Delta e_{tox} > 0$ non-toxic: $\Delta e_{tox} \le 0$ N: number of mutants p_{AP} : amyloid-promoting probability p_{DP} : droplet-promoting probability MBM: multiplicity of binding modes Δp_{AP} : change in amyloid-promoting probability Δp_{DP} : change in droplet-promoting probability ΔMBM : change in multiplicity of binding modes

Table S3. Correlation between experimental (Δe_{tox}) and predicted (Δp_{tox}) change in cytotoxicity upon TDP-43 single and double missense mutants. Random Forest models were developed on single and double mutants, respectively. Pearson's correlation coefficients were computed by the R program. Models developed using mutations only in droplet region are marked as 'Drop'. The parameters of number of individual decision trees (*ntree*) and number of variables used at each split (*mtry*) in R with the randomForest package are displayed.

Table S4. Droplet-landscape characterisation of ALS-associated TDP-43 single (Sheet 1) and double (Sheet 2) mutants. In double mutants at least one of the mutations was ALS-associated. Differences were obtained between the mutant and the wild-type parameters. In case of double mutants, the values were averaged for the 312-341 region.

MUT: type and position of the mutation(s) **TOX**: measured cytotoxicity (Δe_{tox}) **SD**: experimental std of cytotoxicity Δp_{AP} : change in amyloid-promoting probability Δp_{DP} : change in droplet-promoting probability ΔMBM : change in multiplicity of binding modes p_{AP} : amyloid-promoting probability p_{DP} : droplet-promoting probability **MBM**: multiplicity of binding modes

Supplementary Figures

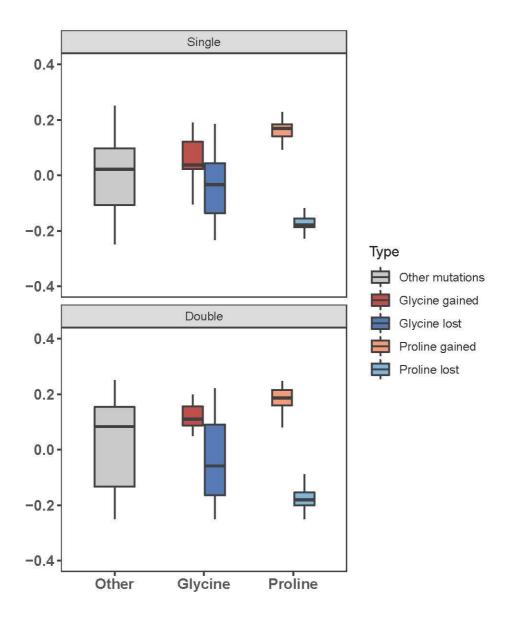


Figure S1. Enrichment in glycine and proline increase cytotoxicity. (A) Changes in glycine and proline compositions in single TDP-43 mutations. Mutations increasing G and P (red) increase cytotoxicity ($\Delta e_{tox} \sim 0.05$), whereas mutations leading to depletion of these two residues (blue) significantly decreased cytotoxicity ($\Delta e_{tox} \sim -0.2$). Other mutations (gray) have a smaller impact on cytotoxicity. (B) Changes in glycine and proline compositions in double TDP-43 mutations. Mutations increasing G and P (orange) increase significantly increase cytotoxicity, whereas mutations leading to depletion of these two residues (cyan) decrease cytotoxicity. Other mutations (gray) have decreased impact on cytotoxicity. Statistical analysis was performed using a Mann-Whitney test of the R program, all deviations between increased and decreased G/P content are significant.