Supplementary Figures and Tables

Context-dependent roles for Toll-like receptors 2 and 9 in the pathogenesis of *Staphylococcus aureus* osteomyelitis

Supplemental Figure 1. Mice deficient in TLR2 or TLR9 do not incur increased bacterial burdens during osteomyelitis. A-B) WT and $Tlr2^{-/-}$ mice (A) or WT and $Tlr9^{-/-}$ mice (B) were subjected to osteomyelitis by intraosseous injection of 10⁵ (A) or 10⁶ (B) CFUs of WT *S. aureus*. Infected femurs, kidneys, and livers were extracted on the indicated day post-infection (A) or on day 14 post-infection (B). Organ homogenates were plated for CFU enumeration. Error bars denote SD. Dotted lines indicate Log transformed limits of detection. A) Femurs were harvested at day 1 (WT n = 4, $Tlr2^{-/-} n = 5$), day 2 (WT n = 3, $Tlr2^{-/-} n = 3$). CFU burdens were compared between genotypes by Mann-Whitney U test. *p < 0.05. If not denoted with asterisks, statistical difference between genotypes was not significant. B) CFU burdens were compared by t-test (femur) or Mann-Whitney U test (liver, kidney). If not denoted with asterisks, statistical

difference between genotypes was not significant. Results compiled from 3 independent experiments. For femurs, n = 15 for WT and for n = 14 for $TIr9^{-/-}$. For liver and kidneys, n = 4 for WT and n = 3 for $TIr9^{-/-}$.

Supplemental Figure 2. Mice deficient in TLR2 and TLR9 do not incur increased bacterial burdens over multiple infection time points. A-C) WT and Tlr2/9^{-/-} mice were subjected to osteomyelitis by intraosseous injection of 10⁶ CFUs of S. aureus. Mice were euthanized on the indicated day post-infection and organs were collected for CFU enumeration. CFU burdens from each organ were compared between genotypes for each time point using a t-test or Mann-Whitney U test, depending on normality of the data. *p < 0.05. If not denoted with asterisks, statistical difference between genotypes was not significant. Error bars denote SD. Dotted lines represent the Log₁₀ transformed limits of detection. For days 1, 2, 5, and 14, n = 5 per group. For day 7, n = 6 per group. D) WT and *Tlr2/9^{-/-}* mice were subjected to osteomyelitis by intraosseous injection of 10⁵ CFUs of WT S. aureus. Mice were euthanized on day 7 post-infection. Organs were extracted and homogenized for CFU enumeration. CFU burdens were compared between genotypes using a Mann-Whitney U test. No significant differences were detected. n = 5per group. Error is plotted as \pm SD. Dotted lines indicate Log₁₀ transformed limits of detection.

Supplemental Figure 3. WT and *Tlr2/9^{-/-}* mice have comparable trabecular bone measurements at baseline. 8-9-week-old female mice were euthanized, and femurs were extracted, fixed, and imaged by μ CT. Parameters of trabecular bone including %-BV/TV (**A**), trabecular thickness (**B**), number (**C**), and spacing (**D**) were measured. Comparisons were made between genotypes by Mann-Whitney U test. No significant differences were detected. n = 3 per group. Error bars denote SD.

Supplemental Figure 4. Bacterial load is not affected by loss of TLR2 and/or 9. A-B) BMDMs of the indicated genotype were primed with RANKL + CMG 14-12 supernatant for 2 days. RANKL was withdrawn and cells were infected with WT *S. aureus* at a MOI of 25. CFUs were enumerated from cell lysates at the indicated time point. Dotted lines indicate the limit of detection. For all, n = 3 technical replicates per group. **A)** Log₁₀ CFUs were analyzed by nonparametric one-way ANOVA. A Kruskal-Wallis post-hoc test was used to compare CFUs between knockout and WT cells and no significant differences were detected. **B)** After 2 days of infection, cells were lysed, serially diluted, and plated to measure CFUs. Log₁₀ CFU burdens were analyzed by non-parametric one-way ANOVA. No significant differences were detected.

Supplemental Table 1. BMDMs were cultured in media containing 35 ng/ml RANKL + CMG 14-12 supernatant for 2 days. Cells were then changed to RANKL-free media and stimulated with 7% vol/vol of supernatant from the $\Delta psma1-4 \Delta spa$ strain. Cytokine responses were measured after 12 h of stimulation. Average cytokine in pg/ml is shown ± standard deviation (SD).

*Under LOD measurement used in mean and SD calculation or only measured value reported

#One or more measurements omitted from mean and SD calculation because the coefficient of variation for duplicate samples was greater than 30% or because the measured value exceeded the detection maximum.

Supplemental Table 1: RANKL → No RANKL							
Cytokine	WT	WT	TIr2⁻⁄-	TIr9⁻⁄-	Tlr2/9 ^{-/-}		
	vehicle	∆psmα1-4	∆psmα1-4	∆psmα1-4	∆psmα1-4		
		∆spa	∆spa	∆spa	∆spa		
G-CSF	3.24 ± 0.29	2235.67 ±	8.85 ± 6.74	3059.67 ±	3.06 ± 0.47		
		258.11		150.07			
GM-CSF	30.21 ± 1.76	29.58 ± 5.60	24.17 ± 7.50	31.93 ± 3.19	26.05 ± 1.84		
INFγ	2.27 ± 0.27	3.29 ± 0.32	1.86 ± 0.75	4.36 ± 0.75	1.65 ± 0.10		
IL-1α	28.57 ± 2.78	63.17 ±	13.46 ± 7.48	79.29 ±	27.97 ± 8.19		
		13.08		17.29			
IL-1β	2.60 ± 0.84	2.46 ± 0.58	1.81 ± 0.66	3.57 ± 0.52	0.52 *1.75 ± 0.75		
IL-2	11.86 ± 0.47	9.37 ± 0.35	9.22 ± 1.43	12.12 ± 5.38	9.74 ± 2.37		
IL-4	[#] 0.75 ± 0.19	*0.70 ± 0.16	0.63 ± 0.12	0.79 ± 0.23	*0.55 ± .01		
IL-5	7.03 ± 1.99	11.66 ± 2.13	5.94 ± 1.50	[#] 13.50 ±	6.15 ± 1.86		
				0.27			
IL-6	5.10 ± 1.31	129.47 ±	6.31 ± 3.50	140.89 ±	5.68 ± 2.15		
		11.96		13.06			
IL-7	2.27 ± 0.65	2.16 ± 0.54	1.85 ± 0.46	2.76 ± 1.11	1.88 ± 0.55		
IL-9	67.59 ± 5.83	69.10 ± 7.39	41.74 ±	72.54 ±	48.36 ±		
			11.86	18.84	10.83		
IL-10	3.90 ± 0.91	221.52 ±	4.27 ± 1.35	213.15 ±	4.38 ± 0.36		
		30.61		3.82			
IL-12 (p40)	2.11 ± 0.80	2.64 ± 0.45	1.83 ± 0.95	4.49 ± 1.23	2.09 ± 0.54		
IL-12 (p70)	13.73 ± 2.92	11.52 ± 3.36	8.74 ± 1.27	14.70 ± 4.21	8.37 ± 3.97		
IL-13	2.56 ± 0.16	3.70 ± 0.54	$'0 \pm 0.54$ 1.16 ± 0.14 3.65 ± 0		1.62 ± 0.72		
IL-15	14.71 ± 3.41	19.96 ± 5.68	$3 13.02 \pm 5.11 21.72 \pm$		14.70 ± 1.86		
IL-17	0.77 ± 0.11	15.63 ± 0.89	*0.60 ± 0.14	13.30 ± 0.50	*0.64 ± 0.21		
IP-10	251.70 ±	428.80 ±	115.70 ±	345.77 ±	188.17 ±		
	49.17	86.71	10.57	78.95	32.92		
KC	29.39 ± 1.50	1345.33 ±	50.10 ±	1397.33 ±	31.39 ± 2.11		
		208.46	14.27	240.35			
MCP-1	194.88 ±	1257.00 ±	217.59 ±	1063.87 ±	319.46 ±		
	23.34	143.95	18.15	122.33	9.10		
MIP-1α	32.39 ± 1.73	1718.00 ±	50.79 ±	1181.67 ±	44.94 ± 4.76		
		239.06	11.99	19.22			
ΜΙΡ-1β	51.12 ± 4.46	8136.67 ±	88.19 ±	5285.00 ±	78.43 ± 5.50		
		1852.34	10.37	52.46			
MIP-2	92.75 ± 8.76	$13168.00 \pm$	636.84 ±	#13164.00	324.89 ±		
		11/4.41	44.73	40.40 0.55	47.91		
RANTES	3.96 ± 0.54	13.32 ± 1.42	2.76 ± 0.60	13.12 ± 0.55	3.39 ± 0.41		
ΤΝϜα	5.06 ± 0.81	27.59 ± 1.80	6.38 ± 1.38	28.40 ± 1.81	5.04 ± 0.43		

Supplemental Table 2. BMDMs were cultured in media containing CMG 14-12 supernatant for 2 days. Cells were then stimulated with 7% vol/vol of supernatant from the $\Delta psma1-4 \Delta spa$ strain. Cytokine responses were measured after 12 h of stimulation. Average cytokine in pg/ml is shown ± SD.

*Under LOD measurement used in mean and SD calculation or only measured value reported

#One or more measurements omitted from mean and SD calculation because the coefficient of variation for duplicate samples was greater than 30% or because the measured value exceeded the detection maximum

<X All measurements were under detection minimum

>X All measurements were over detection maximum

Supplemental Table 2: No RANKL → No RANKL							
	WT	WT	TIr2-/-	TIr9 ^{-/-}	TIr2/9 ^{-/-}		
Cytokine	vehicle	∆psmα1-4	∆psmα1-4	∆psmα1-4	∆psmα1-4		
	venicie	∆spa	∆spa	∆spa	∆spa		
G-CSF	*0.89 ± 0.30	2951.67 ± 284.82	*1.05 ± 0.41	3657.67 ± 515.04	0.93 ± 0.15		
GM-CSF	12.70 ± 3.80	*13.38 ± 8.20	*7.56 ± 3.33	25.38 ± 5.67	11.45 ± 1.01		
INFγ	*0.83 ± 0.34	2.18 ± 0.52	*0.76 ± 0.23	3.39 ± 0.61	*0.63 ± 0.16		
IL-1α	11.31 ± 4.94	74.09 ± 9.49	[*] 11.14± 6.01	96.79 ± 2.53	13.74 ± 6.08		
IL-1β	*1.197 ± 0.51	2.16 ± 0.93	<0.90	3.58 ± 2.24	<0.90		
IL-2	3.83 ± 0.80	4.85 ± 1.34	#7.93 ± 1.05	9.03 ± 2.55	5.81 ± 1.71		
IL-4	<0.55	<0.55	<0.55	<0.55	<0.55		
IL-5	2.02 ± 0.83	3.49 ± 1.13	1.37 ± 0.32	4.54 ± 0.68	2.01 ± 0.13		
IL-6	0.85 ±	265.87 ± 44.93	1.32±0.92	512.12 ± 177.25	1.46 ± 0.37		
IL-7	<0.77	<0.77	<0.77	1.28 ± 0.12	*0.78 ± 0.02		
IL-9	15.15 ± 6.29	59.97 ± 9.00	19.78 ± 12.84	72.12 ± 7.96	15.17 ± 3.20		
IL-10	1.61 ± 0.12	304.30 ± 30.61	[*] 1.73 ± 0.88	313.69 ± 19.98	1.41 ± 0.42		
IL-12 (p40)	*1.73 ± 1.26	*2.22 ± 1.56	*1.14	3.07 ± 0.26	2.44 ± 0.65		
IL-12 (p70)	*1.86 ± 0.88	*3.50 ± 2.39	4.02 ± 0.55	6.30 ± 2.46	3.64 ± 0.77		
IL-13	2.93 ± 0.89	4.36 ± 0.95	#1.48 ± 0.10	7.16 ± 1.46	2.10 ± 0.96		
IL-15	*4.02 ± 3.66	*3.41 ± 1.59	3.26 ± 1.97	8.28 ± 3.32	3.36 ± 2.33		
IL-17	2.74 ± 0.67	26.00 ± 1.80	[#] 1.83 ± 0.64	28.04 ± 1.92	1.41 ± 0.13		
ID-10	632.80 ±	483.16 ±	[#] 273.16 ±	757.18 ±	477.56 ±		
11 - 10	170.51	122.59	21.58	162.12	253.45		
КС	67.46 ±	3020.67 ±	87.73 ±	4079.00 ±	66.83 ±		
	16.55	578.69	17.13	465.54	13.38		
MCP-1	721.07 ± 30.04	2511.00 ± 398.65	#620.58 ± 17.79	4016.00 ± 1535.26	878.09 ± 71.08		
30.04 MIP-1α 226.94 ± 18.88		[#] 9878.00	#200.56 ± 1.41	>15053	168.96 ± 13.96		
ΜΙΡ-1β	728.12 ± 85.37	>9967	[#] 611.94 ± 26.57	>9967	463.52 ± 36.68		
MIP-2	462.50 ± 72.45	>14319	1993.67 ± 295.11	>14319	1142.00 ±108.57		
RANTES	4.47 ± 1.24	56.32 ± 7.26	2.81 ± 1.44	66.56 ± 10.24	4.12 ± 1.09		
ΤΝFα	5.68 ± 0.92	101.80 ± 12.72	7.34 ± 1.61	32.12 ± 21.75	5.34 ± 0.46		

Supplemental Table 3. BMDMs were cultured in media containing 35 ng/ml RANKL + CMG 14-12 supernatant for 2 days. RANKL was continued and cells were stimulated with 7% vol/vol of supernatant from the $\Delta psma1-4 \Delta spa$ strain. Cytokine responses were measured after 12 h of stimulation. Average cytokine in pg/ml is shown ± SD.

*Under LOD measurement used in mean and SD calculation or only measured value reported

#One measurement omitted from mean and SD calculation because the coefficient of variation for duplicate samples was greater than 30%.

Supplemental Table 3: RANKL → RANKL							
	\ \ /T	WT	TIr2-/-	TIr9 ^{-/-}	Tlr2/9 ^{-/-}		
Cytokine	vehicle	∆psmα1-4	∆psmα1-4	∆psmα1-4	∆psmα1-4		
Cytokine	venicie	∆spa	∆spa	∆spa	∆spa		
G-CSF	#2.62 ± 0.00	1556.00 ± 448.64	3.73 ± 0.82	1771.00 ± 251.81	4.92 ± 1.20		
GM-CSF	29.17 ± 8.09	*22.27 ± 16.62	32.70 ± 1.47	28.34 ± 4.49	29.45 ± 1.93		
INFγ	1.67 ± 0.25	2.23 ± 0.88	2.61 ± 0.39	2.74 ± 0.18	2.31 ± 0.39		
IL-1α	29.51 ± 15.56	67.61 ± 22.26	48.67 ± 10.47	73.12 ± 6.90	39.94 ± 8.50		
IL-1β	1.83 ± 1.13	*2.30 ± 1.28	2.59 ± 0.28	3.43 ± 0.66	1.97 ± 0.59		
IL-2	9.70 ± 0.68	14.22 ± 1.11	18.49 ± 2.98	14.09 ± 2.63	15.77 ± 3.80		
IL-4	*0.60 ± 0.09	*0.71 ± 0.09	0.86 ± 0.13	0.66 ± 0.00	0.63 ± 0.04		
IL-5	6.44 ± 2.08	8.25 ± 1.60	7.32 ± 1.73	7.11 ± 1.09	6.97 ± 1.35		
IL-6	#4.86 ± 0.47	94.94 ± 30.76	7.23 ± 2.43	106.23 ± 12.77	8.94 ± 1.47		
IL-7	2.34 ± 1.55	*1.58 ± 0.74	2.76 ± 0.54	2.37 ± 0.13	2.44 ± 0.35		
IL-9	55.79 ± 8.09	66.22 ± 10.71	79.82 ± 7.57	77.21 ± 6.63	73.25 ± 10.50		
IL-10	4.69 ± 1.65	253.46 ± 44.59	11.26 ± 0.76	249.53 ± 11.41	9.29 ± 2.01		
IL-12 (p40)	*2.12 ± 1.25	*1.90 ± 1.04	3.61 ± 0.70	3.57 ± 0.29	2.19 ± 0.45		
IL-12 (p70)	[#] 12.21 ± 0.59	10.83 ± 3.99	14.84 ± 0.96	15.94 ± 2.48	16.22 ± 3.13		
IL-13	3.08 ± 0.46	3.10 ± 1.48	2.17 ± 0.67	3.36 ± 0.71	2.09 ± 0.31		
IL-15	14.62 ± 11.88	*13.39 ± 10.18	19.18 ± 4.09	21.32 ± 1.22	23.27 ± 6.51		
IL-17	*0.65 ± 0.13	12.23 ± 2.68	0.77 ± 0.13	9.39 ± 1.06	0.81 ± 0.07		
IP-10	455.73 ± 110.01	425.95 ± 250.95	188.92 ± 67.60	329.83 ± 89.40	205.14 ± 54.59		
КС	#38.86 ± 1.08	984.60 ± 239.27	52.59 ± 2.14	1051.55 ± 119.45	45.36 ± 4.29		
MCP-1	174.03 ± 27.57	932.05 ± 255.42	161.24 ± 5.99	776.28 ± 42.69	247.82 ± 6.68		
MIP-1α	30.15 ± 3.95	925.49 ± 188.22	38.05 ± 3.92	650.46 ± 35.97	37.42 ± 0.23		
ΜΙΡ-1β	45.99 ± 8.48	3931.33 ± 1472.54	65.75 ± 4.46	2186.00 ± 259.28	65.24 ± 1.70		
MIP-2	91.93 ± 25.85	10484.67 ± 2100.01	746.96 ± 30.80	13295.33 ± 1008.15	503.89 ± 46.82		
RANTES	4.17 ± 0.48	11.17 ± 2.96	4.03 ± 0.28	11.34 ± 1.35	4.36 ± 0.08		
ΤΝFα	6.95 ± 0.91	25.08 ± 4.52	9.67 ± 1.16	27.46 ± 1.00	9.34 ± 0.35		

Supplemental Table 4. BMDMs were cultured in media with CMG 14-12 supernatant for 2 days. Cells were then moved to media containing 35 ng/ml RANKL + CMG 14-12 supernatant and stimulated with 7% vol/vol of supernatant from the $\Delta psma1-4 \Delta spa$ strain. Cytokine responses were measured after 12 h of stimulation. Average cytokine in pg/ml is shown ± SD.

*Under LOD measurement used in mean and SD calculation or only measured value reported

#One or more measurements omitted from mean and SD calculation because the coefficient of variation for duplicate samples was greater than 30% or because the measured value exceeded the detection maximum.

>X All measurements were over detection maximum

Supplemental Table 4: No RANKL → RANKL								
	WT WT <i>Tir2^{-/-} Tir9^{-/-}</i>				Tlr2/9 ^{-/-}			
Cytokino	vohiclo	∆psma1-4	∆psmα1-4	∆psma1-4	∆ psmα1-4			
Cytokine	venicie	∆spa	∆spa	∆spa	∆spa			
G-CSF	*0.86 ± 0.32	2786.00 ± 176.60	*1.10 ± 0.45	2507.33 ± 156.30	*0.99 ± 0.37			
GM-CSF	13.42 ± 1.67	21.33 ± 2.46	8.32 ± 2.14	23.02 ± 2.96	*8.26 ± 3.77			
INFγ	*0.68 ± 0.08	3.58 ± 1.02	0.86 ± 0.20	3.42 ± 1.18	*0.80 ± 0.28			
IL-1α	12.68 ± 2.95	86.24 ± 12.75	16.46 ± 5.41	80.67 ± 6.67	14.64 ± 14.07			
IL-1β	*1.11 ± 0.37	4.99 ± 0.35	*1.11 ± 0.37	4.22 ± 1.40	<0.90			
IL-2	5.21 ± 1.19	10.30 ± 1.30	6.59 ± 2.86	6.86 ± 1.97	5.11 ± 3.39			
IL-4	<0.55	<0.55	<0.55	<0.55	<0.55			
IL-5	1.44 ± 0.42	3.64 ± 0.45	1.72 ± 0.24	3.04 ± 0.52	1.37 ± 0.12			
IL-6	1.17 ± 0.58	364.28 ± 20.56	2.06 ± 0.74	481.89 ± 96.28	1.45 ± 0.58			
IL-7	*0.88 ± 0.19	*0.84 ± 0.09	*0.83 ± 0.10	*0.86 ± 0.15	*0.88 ± 0.19			
IL-9	17.10 ± 7.63	74.87 ± 5.26	18.73 ± 6.33	64.50 ± 5.38	17.16 ± 5.01			
IL-10	2.90 ± 0.31	342.56 ± 40.25	3.24 ± 0.51	302.45 ± 13.55	1.94 ± 0.24			
IL-12 (p40)	2.51 ± 0.75	4.24 ± 0.76	*1.01 ± 0.25	4.97 ± 0.68	1.79 ± 1.27			
IL-12 (p70)	1.69 ± 0.40	#8.90 ± 4.09	*2.21 ± 0.86	4.54 ± 0.60	*2.41 ± 1.11			
IL-13	4.70 ± 0.48	5.32 ± 0.62	1.58 ± 0.15	7.08 ± 1.81	1.92 ± 0.48			
IL-15	*4.02 ± 3.66	8.48 ± 3.66	*3.22 ± 2.45	7.39 ± 4.17	*2.91 ± 1.38			
IL-17	1.42 ± 0.10	27.74 ± 1.73	1.50 ± 0.45	26.85 ± 1.16	0.87 ± 0.17			
IP-10	1477.00 ±	647.46 ±	300.88 ±	816.43 ±	398.81			
11-10	423.47	92.92	20.84	195.73	±76.14			
кс	109.90 ±	3742.67 ±	90.86 ±	3921.67 ±	59.02 ±			
	21.33	468.76	25.27	290.82	13.01			
MCP-1	733.01 ±	2742.33 ±	526.79 ±	$3080.33 \pm$	752.70 ±			
	/2./6	377.35	31.64 276.73		37.47			
MIP-1α	167.32 ±	#14596	$164.44 \pm$	711801.50 ± 504.69	136.90 ±			
	10.79	> 0067	31.04 441.04 ±	394.00	225.25 ±			
ΜΙΡ-1β	401.03 ±	>9907	441.94 ± >9967		20 3/			
	637.85 +	<u>\14310</u>	2116 33 +		1144 40 +			
MIP-2	46.31		704.98	>14319	181.17			
RANTES	6.21 ± 1.69	80.11 ± 9.63	3.38 ± 0.78	84.47 ±0.59	3.65 ± 1.25			
ΤΝϜα	TNFa 5.03 ± 0.69 $\begin{array}{c} 127.58 \pm \\ 12.27 \end{array}$ $\begin{array}{c} 6.35 \pm 2.39 \\ 3.70 \end{array}$		4.55 ± 0.95					

~				~		~				
Su	pr	Demental	l able 5.	Sec	uences	tor	primers	used in	RI-a	IPCR.

Gene	Protein Target	Fwd	Rv	Source
Actb	β-Actin	5'-	5"-	Citation 1.
		GCAAGTGCTTCTAGG	AAGAAAGGGTGTAAA	
		CGGAC-3'	ACGCAGC-3'	
Ctsk	Cathepsin-	5'-	5'-	Citations
	к	GAAGAAGACTCACCA	TCCAGGTTATGGGCA	2, 3-5.
		GAAGCAG-3'	GAGATT-3'	Primer Bank
				31982433a1
Nfatc1	NFATc1	5'-	5'-	Citation 6.
		CCCGTCACATTCTGGT	CAAGTAACCGTGTAG	
		CCAT-3'	CTGCACAA-3'	
Oscar	OSCAR	5'-TGGCGGTTTGCA	5'-GATCCGTTACCA	Citation 7.
		CTCTTCA-3'	GCAGTTCCAGA-3'	
Tnfrsf1	RANK	5'-GGACGGTGT	5'-GCAGTCTGA	Citations
1a	Receptor	TGCAGCAGAT-3'	GTTCCAGTGGTA-3'	3-5.
				Primer Bank
				31981958a1

References for Supplemental Table 5

- An, D., Kim, K. & Lu, W. Defective Entry into Mitosis 1 (Dim1) Negatively Regulates Osteoclastogenesis by Inhibiting the Expression of Nuclear Factor of Activated T-cells, Cytoplasmic, Calcineurin-dependent 1 (NFATc1). *Journal of Biological Chemistry* 289, 24366– 24373 (2014).
- 2. Zhang, J. *et al.* Exercise-induced irisin in bone and systemic irisin administration reveal new regulatory mechanisms of bone metabolism. *Bone Res* **5**, (2017).
- Spandidos, A., Wang, X., Wang, H. & Seed, B. PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification. *Nucleic Acids Res* 38, D792– D799 (2010).
- Spandidos, A. *et al.* A comprehensive collection of experimentally validated primers for Polymerase Chain Reaction quantitation of murine transcript abundance. *BMC Genomics* 9, 1– 17 (2008).
- 5. Wang, X. & Seed, B. A PCR primer bank for quantitative gene expression analysis. *Nucleic Acids Res* **31**, e154 (2003).
- Luo, J. *et al.* LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. *Nat Med* 22, 539–546 (2016).
- Cui, W. *et al.* CD200 and its receptor, CD200R, modulate bone mass via the differentiation of osteoclasts. *Proc Natl Acad Sci U S A* **104**, 14436 (2007).