Supporting Information

Review and prospects on the ecotoxicity of mixtures of nanoparticles and hybrid nanomaterials

Fan Zhang ^a, Zhuang Wang ^b, Willie J.G.M. Peijnenburg ^{a,c,*}, Martina G. Vijver ^a

^a Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, The Netherlands

^b Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, People's Republic of China

^c Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven 3720 BA, The Netherlands

* Corresponding author:

E-mail address: peijnenburg@cml.leidenuniv.nl (W. J. G. M. Peijnenburg)

Tables 4 Figures 2 Pages 37

Figure S1. Flowchart showing the decision process for inclusion and exclusion of literature on the ecotoxicity of mixtures of nanomaterials, identified using the ISI Web of Knowledge and PubMed search.

ENPs				Types of						
Types of mixtures	Ecological species	Test concentrations	Toxicity endpoints	joint interactions	References					
	Algae									
nTiO ₂ (anatase) +	<i>Chlorella</i> sp	nTiO ₂ (anatase) + nTiO ₂ (rutile): 0.25+0.25, 0.25+0.5, and 0.5+0.5 mg/L	Cell viability, chlorophyll content, uptake/internalization, cell surface morphology,	Antagonistic	Iswarya et al.,					
nTiO ₂ (rutile)		nTiO ₂ (anatase) + nTiO ₂ (rutile): 0.25+1, 0.5+0.25, 0.5+1, 1+0.25, 1+0.5, and 1+1 mg/L	Ultra-structural changes, DNA damage, and ROS generation	Additive	2015					
$nSiO_2 + nTiO_2$			Chlorophyll content, intracellular levels of ROS, mitochondrial membrane potential, permeability of cell membrane, antioxidant activities, and cell surface morphology	n.d.						
(anatase@rutile)				1						
$nS_1O_2 + nZrO_2$		$nSiO_2$: 1 µg/L and 1 mg/L		n.d.						
nTiO ₂ (anatase@rutile) + nZrO ₂	Scenedesmus obliquus	nTiO ₂ (anatase@rutile): 1 μg/L and 1 mg/L nZrO ₂ : 1 μg/L and 1 mg/L Mixtures (1:1 and 1:1:1 ratios)		n.d.	Liu et al., 2018					
$\frac{nSiO_2 + nTiO_2}{(anatase@rutile) + nZrO_2}$				Synergistic						
nCdS + nZnS				Antagonistic						
nCdS + nTiO ₂ (anatase)		nCdS: 12 mg/L nSiO ₂ (with no inclusions): 143.5 mg/L	Growth inhibition, esterase activity,	Synergistic	D'1 1 4 1 2022					
nCdS+ nSiO ₂ (with no inclusions)	Heterosigma akashiwo	nSiO ₂ (with metal inclusions): 2.1 mg/L nTiO ₂ (anatase): 79.5 mg/L	membrane potential, ROS generation, and cell size	Synergistic	Pikula et al., 2022					
nCdS + nSiO ₂ (with metal inclusions)		nZnS: 53 mg/L	generation, and cell size	Antagonistic						

Table S1. List of studies on the joint toxicological effects of multiple metal-based engineered nanoparticles (ENPs) on ecological species ^a

$nTiO_2(anatase) +$				Synergistic	
nZnS					
nSiO ₂ (with no				Synergistic	
inclusions) + nZnS					
$nSiO_2$ (with metal				Antagonistic	
inclusions) + nZnS					
nSiO ₂ (with no					
inclusions) + $nTiO_2$				Synergistic	
(anatase)					
nSiO ₂ (with metal					
inclusions) + $nTiO_2$				Additive	
(anatase)					
nSiO ₂ (with no					
inclusions) + $nSiO_2$				Additive	
(with metal				Additive	
inclusions)					
		$nTiO_2$ (Spherical, anatase@rutile) + $nTiO_2$			
nTiO ₂ (Spherical,	Scenedesmus obliquus	(Tubular):	Growth inhibition and	Additive	
anatase@rutile) +		2.33+13.16 and 19.75+211.26 mg/L	intracellular ROS		Wang et al., 2020
$nTiO_2$ (Tubular)	Chlorella mranoidosa	$nTiO_2$ (Spherical, anatase@rutile) + $nTiO_2$	generation	Additive	
	Chiorena pyrenolaosa	(Tubular): 0.13+0.002 and 5.38+4.87 mg/L		Synergistic	
		nCuO: 2.1 μg Cu/L-4.3 mg Cu/L			
nCuO + nZnO	Scenedesmus obliquus	nZnO: 6.6 μg Zn/L-33.1 mg Zn/L	Growth inhibition	Additive	Ye et al., 2017
		Mixtures: equal toxic ratio			
		Bacteria			
	Escherichia coli		, , , , , , , , ,	1	Breisch et al.,
nAg + nPt	Staphylococcus aureus	nAg + nPt: 30+70, 50+50, and 70+30 wt%	Antimicrobial activity	n.d.	2020
	Escherichia coli			Synergistic	Chen et al., 2020

nCuO + nTiO ₂ (anatase@rutile)		nCuO + nTiO ₂ (anatase@rutile): 0.1+2, 0.2+2, 0.3+2, and 0.4+2 mg/L	Bacterial ATP levels, cell membrane integrity, and ROS production	Slight additive	
nAg + nCuO nAg + nTiO				Additive	
(anatase)	Nituificin a hastania	The concentration of each metallic/oxide	Nitrification inhibition	Additive	Chained the 2000
nAg + nZnO	Nitritying bacteria	nanoparticles was 1 mg/L	concentrations	Antagonistic	Choi and Hu, 2009
nAg + nCuO + $nTiO_2$ (anatase)				Additive	
nTiO ₂ (anatase) + nZnO	Escherichia coli	nTiO ₂ (anatase):1, 10, 100, and 1000 mg/L nZnO:1, 10, 100, and 1000 mg/L Mixtures (1:1 ratio)	Growth reduction and cell wall damage	Antagonistic	Srivastava and Kumar, 2017
nTiO ₂	Escherichia coli	$nTiO_{1}$ (anotage (mutile) $\pm nZnO_{2}$ 10 ± 1 and	ATP levels, cell membrane integrity, ROS		
(anatase@rutile) + nZnO	Aeromonas hydrophila	- n HO ₂ (anatase@rutile) + nZnO: 10+1 and 10+25 mg/L	production, and Antagonist nanoparticle/bacterial surface interactions	Antagonistic	Tong et al., 2015
nAg + nTiO ₂ (anatase@rutile)	Escherichia coli	nAg: 5, 10, 20, 30, and 40 μg/L nTiO ₂ (anatase@rutile): 1 and 10 mg/L	ATP levels	n.d. (under dark)	Wilke et al., 2016
nAg + nTiO ₂ (anatase@rutile)	Escherichia coli	nAg: 5, 10, 20, and 30 μ g/L nTiO ₂ (anatase@rutile): 1 and 2 or 10 mg/L	ATP levels, cell membrane integrity, and ROS production	Synergistic (under light)	Wilke et al., 2018
$nCeO_2 + nZnO$		nCeO ₂ + nZnO: 1+10, 10+10, and 50+10 mg/L	Cell size, charge, morphology, density,	Synergistic	
nCeO ₂ + nTiO ₂ (anatase)	Nitrosomonas europaea	$nCeO_2 + nTiO_2$ (anatase): 50+1, 50+10, and 50+50 mg/L	ammonia removal rate, amoA gene expression, and AMO activity	Antagonistic	Yu et al., 2016a

nTiO ₂ (anatase) + nZnO	Nitrosomonas europaea	nTiO ₂ (anatase) + nZnO: 1+10, 10+10, and 50+10 mg/L	Cell size, charge, morphology, density, membrane integrity, ammonia removal rate, AMO activity, and transcriptional response	Antagonistic	Yu et al., 2016b
$p \wedge q + p C u$	Escherichia coli	40 mL of nAg and 40 mL of nCu were separately synthesized in 3% (w/y) of chitosan	Bacterial growth	nd	Zain et al. 2014
in Ag + in Cu	Bacillus subtilis	and then mixed together	inhibition	n.u.	Zaiii Ct ai., 2014
nCuO + nZn		nCu (<i>EC</i> ₅₀): 4.1 mg/L		Synergistic	
nCuO + nZnO	$ \begin{array}{c c} nZnO \\ \hline nZn \end{array} & nZn (EC_{50}): 20.5 mg/L \\ nCuO (EC_{50}): 118.7 mg/L \\ nZnO (EC_{50}): 11.6 mg/L \end{array} $		Synergistic		
nCu + nZn		Bioluminescence	Synergistic	Zhang et al. 2020	
nCu + nCuO	v ibi io jischer i	Equitoxic binary mixtures of nanoparticles were	inhibition	Antagonistic	
nCu + nZnO		prepared based on the EC_{50} values of individual		Antagonistic	
nZn + nZnO		nanoparticles to determine their joint effects		Additive	
		Daphnia	•	·	
nAg + nZnO		nAg: 0.05 to 0.25 mg·Ag/L and nZnO: 0.5 to 1.3 mg·Zn/L for immobilization tests; Combined exposures: based on a full factorial design	Immobilization and	Synergistic	Azevedo et al.,
nAg + nZnO	Dupiniu niugnu	nAg: 0.095 to 0.5 mg·Ag/L and nZnO: 0.1 to 0.4 mg·Zn/L for reproduction tests; Combined exposures: a fixed ray design based on individual toxic units	reproduction	Antagonistic	2017
$\overline{nTiO_2(anatase)} + nTiO_2(rutile)$	Ceriodaphnia dubia	nTiO ₂ (anatase): 4.63, 9.26, 13.89, 18.52, 23.15, 27.78, and 32.41 mg/L	Mortality and biouptake	Antagonistic (under	Iswarya et al., 2016

		nTiO ₂ (rutile): 6, 12, 18, 24, 30, 36, and 42		visible	
		mg/L		irradiation)	
		Mixtures: equal toxic proportions			
		nTiO ₂ (anatase): 2.82, 5.64, 8.46, 11.28, 14.10,			
		16.92, and 19.74 mg/L		Additive	
		nTiO ₂ (rutile): 2.97, 5.94, 8.91, 11.88, 14.85,		(under UV-A	
		17.82, and 20.79 mg/L		irradiation)	
		Mixtures: equal toxic proportions			
		Mixtures: 75, 300, and 1200 µM		Antagonistic	
		the mixtures treated algal diet	Mortality ultra-structural	(under	
nTiO ₂ (anatase) +		In case of a binary mixture, the equal	deformities	visible	Iswarya et al
nTiO ₂ (rutile)	Ceriodaphnia dubia	concentration of anatase and rutile	bioaccumulation, and	irradiation)	2018
		nanoparticles forms the total concentration of	biomagnification	Antagonistic	2010
		binary mixture		(under UV-A	
				irradiation)	
				Synergistic	
				(lower	
				concentratio	
				n, under	
				visible	
		Mixtures: 75, 150, 300, 600, and 1200 µM		irradiation)	
nTiO ₂ (anatase) +		the mixtures treated algal diet	Mortality and oxidative	Additive	Iswarya et al
nTiO ₂ (rutile)	Ceriodaphnia dubia	The binary mixture comprises an equal	stress (MDA, CAT, and	(higher	2019
(rune)		concentration of rutile and anatase	GSH)	concentratio	2017
		nanoparticles		n, under	
				visible	
				irradiation)	
				Additive	
				(lower	
				concentratio	

				n, under UV-	
				А	
				irradiation)	
				Antagonistic	
				(higher	
				concentratio	
				n, under UV-	
				А	
				irradiation)	
nAg + nZnO	Daphnia magna	nAg: 1-25 μg/L and nZnO: 0.25-5 mg/L	Immobilization and feeding inhibition	Synergistic	Lopes et al., 2016
			Reproduction and growth,		
		Joint toxicity of binary mixtures was	rates of filtration and		
$nCu \pm nCr$	Daphnia magna	determined at an equal concentration (1:1), and	ingestion, as well as	More-than-	Lu $at al = 2017$
		the total concentrations were 0.4, 2, 10, 50, and	changes in enzyme	additive	Lu et al., 2017
		100 µg/L	activities: AChE, SOD,		
			CAT, and GST		
$nTiO_2(anatase) +$	Danhnia similis	70:30 anatase: rutile ratio (w/w)	Immobilization	nd	Marcone et al.,
nTiO ₂ (rutile)	Σαρππα simus	1 to 100 mg/L TiO ₂	minoomzation	n.d.	2012
		nCu + nZnO: 0.11 mg Cu/L + 1.29 mg Zn/L	Mortality and	Additive	
nCu + nZnO	Daphnia magna	nCu + nZnO: 0.40 mg Cu/L + 4.01 mg Zn/L	bioaccumulation	More-than-	Yu et al., 2022
			oloucoullulution	additive	
		Binary mixtures were also tested according to	Immobilization, mortality,	Gi-t'	
		an equiconcentration ratio of 1:1 and the total	reproduction (fecundity)	Synergistic	
nCuO + nZnO	Daphnia magna	exposure concentrations were 0.0004, 0.002,	and growth, as well as	Dential	Zhao et al., 2012
		0.01, 0.05, and 0.25 mg/L	filtration and ingestion	Partial	
			rates	additive	
		Fish			
	Cyprinus carpio			Antagonistic	

nAg + nTiO ₂ (anatase@rutile)		nAg: 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, and 0.70 mg/L for acute toxicity tests and nAg: 0.05 and 0.1 mg/L for chronic toxicity tests nTiO ₂ (anatase@rutile): 1 mg/L	Mortality, bioaccumulation, oxidative stress (SOD, CAT, and GST), and gill	Synergistic Additive	Haghighat et al., 2021
			histopathology		
		nCu: 0.39, 0.78, 1.56, 3.13, 6.25, 12.5, and 25	Cell viability, cell		Hernández-
nCu + nZnO	Poeciliopsis lucida	μg/mL	morphology, and metal	n.d.	Moreno et al.,
		nZnO: 6.25 μg/mL	internalization		2016
			Survival, metal		
		nCu: 0.0425, 0.085, 0.17, and 0.34 mg/L	internalization, and		Hernández-
nCu + nZnO	Oncorhynchus mykiss	nZnO: 1.25 mg/L	oxidative stress (EROD	n.d.	Moreno et al.,
			activity, GST activity, and		2019
			GSH/GSSG ratio)		
$nTiO_2$ (spherical, anatase) + $nZnO$	Danio rerio	nTiO ₂ (spherical, anatase): 1.5, 3, 6, 12, and 24 mg Ti/L	Mortality and hatching	Antagonistic	Hua et al., 2016
(stick-shaped)		nZnO: 2, 4, 8, 16, and 32 mg Zn/L	Tate		
$nCeO_2 + nCuO$	Zebrafish embryos	nCeO ₂ : 0.01, 0.1, 1, 10, and 50 μg/mL nCuO: 0.01, 0.1, 1, 10, and 50 μg/mL Mixtures (1:1 ratio)	Mortality rate, hatching rate, malformations, oxidative stress genes, CAT enzyme activity, DNA damage, and	n.d.	Kaur et al., 2019
			Ovidative stress		
			biomorkors		
			in the liver brain and		
$mC_{2}O + mT_{2}O_{2}$		The second	aille and		Mangaum at al
$11CuO + 1111O_2$	Cyprinus carpio	5.0 ± 10 mg/l	giiis and	n.d.	
(allatase@futile)		5.0+10 mg/L	activity (a biomarker that		2010
			indicates neurotoxioity) in		
			the brain and musels as		
			the brain and muscle, as		

			well as induce		
			histopathological		
			alterations in the gills,		
			liver and retina		
			Histopathological		
$nCuO + nTiO_2$	Cuprinus carpio	$nCuO + nTiO_2$ (anatase@rutile): 2.5+10 and	anomalies of gill and	Synergistic	Mansouri et al.,
(anatase@rutile)	Cyprinus curpio	5.0+10 mg/L	intestine tissues in C.	Synergistic	2017
			carpio		
			Biochemical responses		
			(AchE activity, protein		
			carbonylation, lipid		Miranda et al
$nTiO_2 + nZnO$	Prochilodus lineatus	$nTiO_2 + nZnO: 1+1 \ \mu g/L$	peroxidation, and non-	n.d.	2016
			protein thiols) and injuries		2010
			in organs (histological and		
			ultra-structural analyses)		
			Frequency of		
			micronucleus,	Antagonistic	
		nCuO: 6.25, 12.5, 25, 50, and 100 mg/L	haematology,		
nAg + nCuO	Clarias gariepinus	nAg: 6.25, 12.5, 25, 50, and 100 mg/L	histopathology (skin, gills		Ogunsuyi et al.,
	0	Mixtures (1:1 ratio)	and liver), and hepatic		2019
			oxidative stress analysis	Synergistic	
			(MDA, reduced GSH,		
			SOD, and CAT)		
$nCuO + nCeO_2$				Antagonistic	
nCuO + nZnO		20, 40, 80, 160, and 320 mg/L. The binary and	AChE activity, Na ⁺ /K ⁺ -	Synergistic	
$nCeO_2 + nZnO$	Carassius auratus	ternary mixtures were tested at an equi-	ATPase activity, SOD	Antagonistic	Xia et al., 2013
$nCeO_2 + nCuO +$		concentration ratio of 1:1 or 1:1:1 (W/V)	activity, and CAT activity	Additive	
nZnO				1 144111 1 0	
		Fungi			

nAg + nMoS ₂ (chitosan functionalization)	Saccharomyces cerevisiae	nAg: 5, 10, 20, 30, and 40 μg/L nMoS ₂ (chitosan functionalization): 1 and 10 mg/L	Oxidative stress (intracellular ROS generation), membrane stress (intracellular lactate dehydrogenase activity), and metabolic activities	Synergistic	Yang et al., 2018
		Insects			
nCdO + nPbO	Apis mellifera	nCdO: 0.01 mg/mL nPbO: 0.65 mg/mL	Content of nCdO and nPbO in midgut tissues, survival, morphological assessment of midgut tissues, ultrastructure observations, and incidence of apoptosis and necrosis of midgut epithelia	Antagonistic	Dabour et al., 2019
nZn + nCu	Folsomia candida	nZn: nCu: 300+300 mg/kg	Survival and reproduction	Antagonistic	Loéko et al. 2022
nZnO + nCuO		nZnO: nCuO: 300+300 mg/kg	Survivar and reproduction	Synergistic	Josko et al., 2022
		Plants	·	·	
nCo + nFe + nNi	Lactuca sativa	Influent: 2,700 mg nCo + 50,000 mg nFe + 6,250 mg nNi; DI Water 123 kg	Germination and growth	n.d.	Hassanein et al., 2021
nTiO ₂ (anatase) + nZnO	Vigna angularis	nTiO ₂ (anatase): 20, 40, 60, 80, 100, and 200 μg/mL nZnO: 20, 40, 60, 80, 100, and 200 μg/mL Mixtures (1:1 ratio)	Seed germination, root/shoot length, total chlorophyll content, carotenoids and lipid peroxidation, oxidative stress and antioxidant enzyme activity, kinetic uptake and transport	n.d.	Jahan et al., 2018
nCuO + nZnO	Hordeum vulgare	nCuO: 300 mg Cu/kg	Biomass, plant mineral	n.d.	Josko et al., 2021

		nZnO: 300 mg Zn/kg	composition as well as		
		Mixtures (1:1 ratio)	expression of genes		
			regulating metal		
			homeostasis		
			(ZIP1,3,6,8,10,14, RAN1,		
			PAA1,2, MTP1, COPT5)		
			and detoxification (MT1-		
			3)		
nCuO + nZnO	Lepidium sativum				
$nCuO + nTiO_2$	T		Seed germination, root		
$nCuO + nCr_2O_3$	Linum usitatissimum	Concentration of each nanoparticles was set to	growth inhibition rates,		
$nCuO + nFe_2O_3$		be 100 mg/L	and the external and	Antagonistic	Jośko et al., 2017
$nZnO + nTiO_2$	Cucumis sativus	Mixtures (1:1 ratio)	internal surface area of		
$nZnO + nCr_2O_3$			root		
$nZnO + nFe_2O_3$	Triticum aestivum				
			Germination percent,		
nCdO + nCuO	Vigna radiata	0.1, 1, and 10 mg/L	relative germination rate,	n.d.	Jung et al., 2020
		Mixtures (1:1 ratio)	and metal accumulations		
		nCuO: 0.06 and 0.12 mg/L			
nCuO + nZnO	Lactuca sativa	nZnO: 0.12 and 0.25 mg/L			
nCuO + nNiO		nNiO: 0.15 and 0.3 mg/L	Root and shoot growth	Additive	Kongetal 2021
nZnO + nNiO		nCuO: 0.09 and 0.18 mg/L	Root and shoot growin	7 Idditi ve	11011g et ul., 2021
	Raphanus sativus	nZnO: 0.31 and 0.62 mg/L			
		nNiO: 0.71 and 1.42 mg/L			
nCu + nZnO	Lactuca sativa	nCu: 0.10 to 0.80 mg/L	Relative root elongation	Antagonistic	Liu et al 2016
		nZnO: 0.50 to 50.00 mg/L	rate	Tintagombrie	Ela et al., 2010
$nTiO_2(anatase) +$	Pisum sativum	800 mg of TiO ₂ per kg of soil	TiO ₂ particles' entry in	nd	Muccifora et al.,
nTiO ₂ (rutile)	1 154111 541174111	Mixture of anatase and rutile nTiO ₂ : 1:1 ratio	the root system,	11.0.	2021

			bioaccumulation, relative distribution, and localiz- ation, as well as the main crystalline form preferentially absorbed and their effect in cells ultrastructure of plant		
nCuO + nZnO	Spinacia oleracea	nCuO: 10, 100, and 1000 mg/L nZnO: 10, 100, and 1000 mg/L Mixtures (1:1 ratio)	roots Root length, shoot length, total weight, chlorophyll content, carotenoid content, and ion content	n.d.	Singh and Kumar, 2016
nCuO + nZnO	Raphanus sativus	nCuO: 10, 100, and 1000 mg/kg nZnO: 10, 100, and 1000 mg/kg Mixtures (1:1 ratio)	of <i>S. oleracea</i> plants Seed germination (root length, shoot length, and fresh weight) and metal uptake	Antagonistic	Singh and Kumar, 2018
nCuO + nZnO	Raphanus sativus	nCuO: 0.1, 1, 10, 100, and 1000 mg/L nZnO: 0.1, 1, 10, 100, and 1000 mg/L Mixtures (1:1 ratio)	Seed germination (root length, shoot length, and fresh weight) and metal uptake	Antagonistic	Singh and Kumar, 2019
nCuO + nZnO	Spinacia oleracea	nCuO + nZnO: $1.2 \times 10^{-4} + 1.2 \times 10^{-4}$, 1.2×10^{-3} ³ +1.2×10 ⁻³ , $1.2 \times 10^{-2} + 1.2 \times 10^{-2}$ mol/kg of soil	Maturity, plant fresh weight, root length, and metal uptake	Additive	Singh and Kumar, 2020a
nAg ₂ O + nTiO ₂ (anatase)	Spinacia oleracea	nAg ₂ O: 1 and 10 mg/kg nTiO ₂ (anatase): 1 and 10 mg/kg Mixtures (1:1 ratio)	Plant physiology and development (root length, shoot length, and fresh weight), total chlorophyll and carotenoid contents, and metal uptake	Additive	Singh and Kumar, 2020b

nCeO ₂ + nZnO	Pisum sativum	Ce: 100 and 200 mg/L Zn: 100 and 200 mg/L Mixtures (1:1 ratio)	Plant growth (root and stem lengths and fresh weight), Ce and Zn concentrations in roots and shoots, photosynthesis pigments (contents of chlorophyll a, chlorophyll b, and carotenoids), and photosynthetic parameters (leaf net photosynthesis, sub-stomatal CO ₂ concentration, transpiration, stomatal conductance, photosynthetic water use efficiency, and photosynthetic CO ₂ response curve	n.d.	Skiba et al., 2021
nCdO + nCuO	Vigna radiata	nCdO + nCuO: 1+1, 10+10, and 100+100 mg/kg	Seed germination, plant growth, and metal accumulation	Antagonistic	Subpiramaniyam et al., 2021

 a N.d. = not determined. AChE – acetylcholinesterase, AMO – ammonia monooxygenase, ATP – adenosine triphosphate, ATPase – adenosine triphosphatase, CAT – catalase, COX – cyclooxygenase, EROD – ethoxyresorufin-O-deethylase, GSH – glutathione, GSSG – oxidized glutathione, GST – glutathione S-transferase, LPO – lipid peroxidation, MDA malondialdehyde, nMoS₂ – molybdenum disulfide nanosheets, ROS – reactive oxygen species, SOD – superoxide dismutase.

For presentation purposes, $nSiO_2$ (with metal inclusions) is shortened to $nSiO_2(m)$, $nTiO_2$ (anatase) is shortened to $nTiO_2(a)$, $nTiO_2$ (anatase@rutile) is shortened to $nTiO_2(a@r)$, $nTiO_2$ (rutile) is shortened to $nTiO_2(r)$.

Table S2. List of studies on the joint toxicological effects of multiple engineered nanoparticles (ENPs) comprising of nonmetal-based components onecological species a

ENPs Types of mixtures	Ecological species	Test concentrations	Toxicity endpoints	Types of joint interactions	References	
	Scenedesmus obliquus		Cell viability, morphological changes, oxidative stress	Antagonistic		
nPS + nTiO ₂ (anatase@rutile)		nPS: 1 mg/L nTiO ₂ (anatase@rutile): 0.025, 0.25, and 2.5 mg/L	(total ROS, superoxide radical, hydroxyl radical), antioxidant activity, photosynthetic efficiency, and esterase activity	Additive	Das et al., 2022	
nPS + nZnO	Ctenopharyngodon idella	nPS: 760 μg/L nZnO: 760 μg/L	Behavioral, biochemical (nitric oxide dosage, TBARS, hydrogen peroxide, total glutathione content, DPPH radicals' scavenging, SOD, and AChE activity, nutritional status), and genotoxic biomarkers	No observed antagonistic, synergistic or additive effect	Estrela et al., 2021	
MWCNTs + nCuO	Tetradesmus obliquus	MWCNTs: 1, 10, and 100 mg/L nCuO: 2 and 200 mg/L	Growth inhibition, membrane damage, physical damage, oxidative stress (ROS level, SOD, and MDA), and internalization of Cu	n.d.	Fang et al., 2022	
nSe + nZnO	Zebra fish <i>(D. rerio)</i>	nSe + nZnO (2 mg/kg each)	Survivability, growth performance parameters, intracellular ROS, gene expression, and fecundity and development	Synergetic	Fasil et al., 2021	

MWCNTs + nZnO	Brassica rapa	MWCNTs: 10 and 100 mg/L nZnO: 10, 50, and 100 mg/L	The length of roots and stems, chlorophyll content, oxidative stress (relative ROS, soluble sugar, and MDA contents), antioxidant enzyme activity (CAT, POD, and SOD), metal element content, and root scanning electron microscopy	Synergetic	Hong et al., 2022	
nPS + nAg	Chlamydomonas reinhardtii Ochromonas danica	nAg: 3, 10, 30, 100, and 200 μg/L nPS: 3 and 30 mg C/L nAg: 10, 30, 100, 200, and 300 μg/L nPS: 3 and 30 mg C/L	Cell-specific growth rate and subcellular distributions	Synergistic	Huang et al., 2019	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Chlorella sp.	nPS, COOH-nPS, and NH ₂ -nPS: 5 mg/L nTiO ₂ (anatase@rutile): 0.25, 0.5, and 1 mg/L	Cell viability, oxidative stress (total ROS, superoxide and hydroxyl radical, CAT and SOD, and MDA), maximum quantum yield of PS II, and esterase activity	Antagonistic	Natarajan et al., 2022	
GNs + nZnO	Capoeta fusca	GNs + nZnO: 6.5+0.04 and 6.5+0.09 mg/L	Bioconcentration (uptake and elimination)	n.d.	Sayadi et al., 2021	
MLGs + nZnO	MLGs + nZnO Capoeta fusca MLGs: 6.5 mg/L nZnO: 0.1, 0.4, 0.9, 1, 5, 10, 15, 20, 25, and 30 mg/L for acute toxicity test and nZnO: 0.09 mg/L for behavioural assay		Lethality, histopathological and behavioral changes	Synergistic Antagonistic	Sayadi et al., 2022	
GO + nZnO	Scenedesmus obliquus	GO: 0.5-50 mg/L nZnO: 0.01-50 mg/L Mixture ratios: EC_{10} and EC_{50} of each component	Growth inhibition rate and total ROS level	Additive	Ye et al., 2018	

	Daphnia magna	GO: 1-80 mg/L nZnO: 0.01-0.4 mg/L Mixture ratios: <i>EC</i> ₁₀ and <i>EC</i> ₅₀ of each component	Immobilization rate and total ROS level	Additive	
	Danio rerio	GO: 20-160 mg/L nZnO: 2-20 mg/L Mixture ratios: <i>LC</i> ₁₀ and <i>LC</i> ₅₀ of each component	Lethality and total ROS level	Antagonistic	
CNCs + nZnO	Eremosphaera viridis	CNCs: 100 mg/L nZnO: 1, 5, and 10 mg/L	Dry weight, chlorophyll a, chlorophyll b, ROS level, CAT activity, MDA content, cellular superficial- and ultra-structures, elemental distribution as well as proteins and lipids in a single algal cell	n.d.	Yin et al., 2022
$GNs + nZrO_2$		GNs: 0.1 and 1 mg/L nZrO ₂ : 1, 5, 10, 17.5, 25, and 50 mg/L GNs + nZrO ₂ : 1+ <i>EC</i> ₁₀ and 1+ <i>EC</i> ₅₀ mg/L	Growth inhibition, intracellular levels of ROS, mitochondrial membrane	Synergistic	W (1.2021
$rGO + nZrO_2$	Chiorella pyrenoidosa	rGO: 0.1 and 1 mg/L nZrO ₂ : 1, 5, 10, 17.5, 25, and 50 mg/L rGO + nZrO ₂ : 1+ <i>EC</i> ₁₀ and 1+ <i>EC</i> ₅₀ mg/L	cell membrane, and cellular superficial- and ultra- structures	Synergistic	wang et al., 2021
MWCNTs + nPS	Microcystis aeruginosa	MWCNTs: 5, 10, 20, and 50 mg/L nPS: 5, 10, 20, and 50 mg/L	Growth (cell density), photosynthesis (chlorophyll a), total protein, antioxidant responses (SOD and MDA), membrane damage, genetic material damage, and metabolic process	Antagonistic	Zhang et al., 2022

	Chlorella pyrenoidosa	GO: 25 mg/L	Growth inhibition,		
$\mathrm{GO}+\mathrm{nAl_2O_3}$		nAl ₂ O ₃ : 50, 100, 150, 300, 450, and 600	membrane damage, oxidative	n.d.	Zhao et al., 2018
		mg/L	stress, and physical damage		
	Gymnodinium		Cell density, specific growth		
			rates, total intracellular ROS,	A	71
$COD_{\alpha} + \pi 7\pi O$		GQDs + nZnO: 1+1, 20+5, and 20+20	enzyme activities (SOD and		
GQDs + nznO		mg/L	ATPase), and surface	Antagomstic	Ziiu et al., 2022
			interaction of nanoparticles		
			and algal cells		

^{*a*} N.d. = not determined. AChE – acetylcholinesterase, ATPase – adenosine triphosphatase, CNCs – cellulose nanocrystals, COOH-nPS – carboxylfunctionalized polystyrene nanoplastics, DPPH – diphenyl-1-picrylhydrazyl, $EC_{10} - 10\%$ effect concentration, $EC_{50} - 50\%$ effect concentration, GNs – graphene nanosheets, GO – graphene oxide, GQDs – graphene quantum dots, $LC_{10} - 10\%$ lethal concentration, $LC_{50} - 50\%$ lethal concentration, MDA– malondialdehyde, MLGs – multi-layer graphenes, MWCNTs – multiwall carbon nanotubes, NH₂-nPS – amine-functionalized polystyrene nanoplastics, POD – peroxidase, nPS – polystyrene nanoplastics, rGO – reduced graphene oxide, nSe – nano-selenium, SOD – superoxide dismutase, SWCNTs – single walled carbon nanotubes, TBARS – thiobarbituric acid reactive species.

For presentation purposes, $nTiO_2$ (anatase@rutile) is shortened to $nTiO_2(a@r)$.

ENPs Types of mixtures	Ecological species	Potentiation or attenuation of effects		References
$n \wedge \alpha + n \mathbf{P} t$	Escherichia coli	n P t significantly increased the toyicity of $n \wedge a$	^	Breisch et al.,
IIAg + IIFt	Staphylococcus aureus	inft significantly increased the toxicity of inAg		2020
MWCNTs + pCuO	Tatradasmus obliguus	The existence of nCuO in some groups reduced cell membrane damage caused by MWCNTs		E
WWWCIVIS + lieuo	Ten uuesmus oonquus	The highest concentration of nCuO combined with the highest concentration of MWCNTs enhanced the induced ROS level	Î	1 ang 01 an, 2022
		nTiO ₂ increased acute toxicity of nAg	1	
$n \wedge a + n Ti O_{2}$		nTiO ₂ increased Ag accumulation in liver and intestine	1	Haghighat et al
(anatase@rutile)	Cyprinus carpio	nTiO ₂ decreased Ag accumulation in gills	\downarrow	
(unduse(wrune)		nTiO ₂ somewhat mitigated the effects of nAg on antioxidant enzymes activities	Ļ	2021
nCu + nZnO	Poeciliopsis lucida	The cytotoxicity exerted by nCu was enhanced in presence of non-toxic concentrations of nZnO	↑	Hernández- Moreno et al., 2016
nCu + nZnO	Oncorhynchus mykiss	The co-exposure of rainbow trout to non-toxic concentrations of nCu and a fixed non-toxic concentration of nZnO resulted in lethal effects	Ţ	Hernández- Moreno et al., 2019
nTiO ₂ (anatase) + nZnO	Vigna angularis	The combination led to attenuated uptake and translocation behavior	Ļ	Jahan et al., 2018
		After combined treatment of ENPs, the extractable concentrations of Cu and Zn were lower than upon individual exposure in bulk soil	Ļ	
nCuO + nZnO	Hordeum vulgare	Genes related to metal uptake (ZIP) and cellular compartment (PAA2, RAN1) were mostly up-regulated by single rather than combined application of ENPs	↓	Jośko et al., 2021
nCdO + nCuO	Vigna radiata	The germination rate of the nCdO + nCuO treatment was less than that of the single metal exposure under both humidities (70% and 80%) at 48 h	Ļ	Jung et al., 2020

Table S3. List of studies on the potentiation or attenuation of effects of mixtures of individual engineered nanoparticles (ENPs) on ecological species ^a

$nCuO + nCeO_2$	Zebrafish embryos	The harmful effects of the mixtures were more than nCeO ₂ and less than that of nCuO		Kaur et al., 2019
nCuO + nTiO ₂ (anatase@rutile)	Cyprinus carpio	The joint presence of $nTiO_2$ can potentially increase the uptake of nCuO in the tissues of carp		Mansouri et al., 2016
$nCeO_2 + nZnO$	Pisum sativum	The effects of nZnO were decreased by nCeO ₂	\downarrow	Skiba et al., 2021
GNs + nZnO	Capoeta fusca	The presence of GNs reduced the bioavailability of nZnO		Sayadi et al., 2021
$nAg + nTiO_2$ (anatase@rutile)	Escherichia coli	nTiO ₂ attenuated the toxicity of nAg	↓	Wilke et al., 2016
$nAg + nMoS_2$	Saccharomyces	$nMoS_2$ attenuated the oxidative stress induced by nAg on the yeast cells		Vang et al. 2018
functionalization)	cerevisiae	nAg inhibited the metabolic activities in yeast cells, but this inhibition phenomenon could be alleviated by nMoS ₂	Ļ	
$CNC_{2} + n7nO$	Eremosphaera	The addition of CNCs enhanced the bioavailability and toxicity of nZnO to the algae		Vin et al. 2022
CINCS + nZnO	viridis	The nZnO-CNC association enhanced the envelopment of the algal cells and exerted strong oxidative stress as compared to bare nZnO	1	1 III et al., 2022
$GO + nAl_2O_3$	Chlorella pyrenoidosa	Algal growth inhibition by GO with coexisting nAl ₂ O ₃ particles was much lower than the sum of inhibitions from the individual materials for nAl ₂ O ₃ , showing the toxicity mitigation by nAl ₂ O ₃		Zhao et al., 2018
		GO-induced algal membrane damage was suppressed by the nAl ₂ O ₃	\downarrow	

 a^{\uparrow} indicates the potentiation of effect of mixtures of individual ENPs and \downarrow indicates the attenuation of effect of mixtures of individual ENPs. CNCs – cellulose nanocrystals, GNs – graphene nanosheets, GO – graphene oxide, MWCNTs – multiwall carbon nanotubes. For presentation purposes, nTiO₂ (anatase) is shortened to nTiO₂(a), nTiO₂ (anatase@rutile) is shortened to nTiO₂(a@r).

Types of hybrid NMs	Ecological species	Toxicity endpoints	Minimum inhibitory concentration	Toxic effects	References
nAg@nZnO	Daphnia magna	Immobilization and reproduction	n.d.	nAg@nZnO hybrid NMs showed higher toxicity than predicted based on the toxicity of nAg and nZnO	Azevedo et al., 2017
GO@nZnO	Escherichia coli Staphylococcus aureus	Growth of bacteria	n.d.	The antibacterial activity of GO@nZnO nanorods hybrid NMs has been demonstrated	Bhaisare et al., 2016
α-nFe2O3@nCo3O4	B. subtilis S. aureus E. coli	Bacterial growth inhibition	90 mg/dL 75 mg/dL 60 mg/dL	The enhanced bactericidal activity of the α -nFe ₂ O ₃ @nCo ₃ O ₄ nanocomposite was the result of synergistic effects of iron oxide and	Bhushan et al., 2018
	S. typhi		45 mg/dL	cobalt oxide nanoparticles	
GO@nAg	Fusarium graminearum	Spore germination inhibition	n.d.	The GO@nAg nanocomposite showed almost a 3- and 7-fold increase of inhibition efficiency over pure nAg and GO suspension, respectively.	Chen et al., 2016
nTiO2@MWCNT	Danio rerio embryos	Acute toxicity, hatching rate, growth, yolk sac size, and sarcomere length	n.d.	TiO ₂ @MWCNT hybrid NMs showed no acute toxicity to zebrafish embryos	Da Silva et al., 2018
GO@nAg	Zebrafish embryos	Mortality, malformation, edema, hatching, total length, and yolk sac size	n.d.	 With chorion: LC₅₀ of GO@nAg hybrid NMs: 1.4 [1.3-1.7] mg/L; Without chorion: LC₅₀ of GO@nAg hybrid NMs: 1.0 [0.9-1.2] mg/L; The toxic effects of GO@nAg were lower than AgNO₃, but higher than GO 	de Medeiros et al., 2021

Table S4. List of studies on th	e toxicological effects	of multicomponent nanomate	erials (NMs) on ecological species
---------------------------------	-------------------------	----------------------------	-------------	-------------------------

nSe@nIO	Staphylococcus aureus	Biofilm viability	n.d.	The relative fraction of dead-to-live bacteria of the nanocomposites (400.0%) was much higher than that of nSe (51.6%) and nIO (60.0%)	Li et al., 2020
GO@polyvinylpyrroli done-stabilized nAg	Pseudomonas aeruginosa	Bacterial growth inhibition	n.d.	This hybrid nanocomposite poses enhanced antibacterial activity against carbapenem- resistant <i>P. aeruginosa</i> strains through a possible synergy between toxicity mecha- nisms of GO nanosheets and nAg	Lozovskis et al., 2020
nTiO ₂ @MWCNT- CNF	Pseudokirchneriella subcapitata	Growth inhibition and sublethal oxidative stress	n.d.	Acute exposure of <i>P. subcapitata</i> to various concentrations of TiO ₂ @MWCNT-CNF nanocomposite may cause algal growth inhibition including undesirable sublethal oxidative stress effects	Malatjie et al., 2022
nZn@nCuO	<i>Xenopus laevis</i> embyos	Bioaccumulation, oxidative stress, and histopathology	n.d.	nZn@nCuO nanocomposite does induce only mild acute toxicity in <i>X. laevis</i> embryos. Nevertheless, these effects are smaller than those of nZnO. Interestingly, embryos exposed to the nanocomposite accumulate NPs more efficiently than those exposed to nCuO and nZnO, but the internalized NMs do not induce severe acute toxicity	Mantecca et al., 2015
nAg@GO Chit-nAg@GO	Staphylococcus aureus UCLA 8076 Staphylococcus aureus 1190R	Bacterial growth inhibition	nAg@GO: 1.90 Ag + 1.5 GO μg/mL Chit-nAg@GO (1:8): 1.19 Ag + 1.41 GO μg/mL	Chit-nAg@GO exhibit higher antibacterial activity than most of the antibacterial agents based on nAg or nAg@GO reported	Marta et al., 2015

PSF-CNF@nAg	Bacillus subtilis Escherichia coli	Bacterial growth inhibition	n.d.	In solid phase the gram-positive bacteria showed higher sensitivity for PSF- CNF@nAg membranes, while in liquid phase the antimicrobial activity of the hybrid membrane is more pronounced towards gram-negative species. Furthermore, in the case of <i>E. coli</i> , the growth inhibition in liquid medium is probably due to the synergetic action of the	Mocanu et al., 2019
Ag-nZnO@SWCNT Au-nZnO@SWCNT	Escherichia coli			All multicomponent NMs have been reported to possess strong antimicrobial	Mohammed
Ag-nZnO@MWCNT Au-nZnO@MWCNT	Staphylococcus aureus	Viable cell numbers	n.d.	bacteria, due to synergistic effect between metal-doped ZnO nanoparticles and carbon nanotubes	et al., 2019
nAg@GO	Escherichia coli Staphylococcus aureus	Antimicrobial effect mean inhibition zone	n.d.	An increase in the inhibition zone with the increase in amount of nAg@GO nanocomposite is obvious due to greater antimicrobial agents	Naeem et al., 2019
	Escherichia coli		5.9 μg/mL	rGO@nCu ₂ O nanocomposite have a	
rGO@nCu2O	Pseudo-monas aeruginosa	Bacterial growth inhibition	2.9 μg/mL	higher antimicrobial activity toward gram- negative and gram-positive bacteria when	Selim et al., 2020
	Bacillus subtilis		2.9 μg/mL	kanamycin and streptomycin	
nAu@nZnO	Ruditapes decussatus	Levels of H ₂ O ₂ , MDA, intracellular iron and calcium as well as the activities of SOD and CAT	n.d.	nAu@nZnO hybrid NMs induced biochemical and histological alterations within either the digestive gland or gill tissues at high concentration	Sellami et al., 2017

nAg@MWCNT	Methylobacterium spp.	Bacterial growth	30 µg/mI	30 μg/mL of synthesized Ag@MWCNTs yielded an efficient level of antibacterial	Seo et al.,
	Sphingomonas spp.	inhibition	50 µg me	activity against <i>Methylobacterium</i> spp. and <i>Sphingomonas</i> spp.	2014
nAu@nAg	Escherichia coli	Bacterial growth	10 μg/mL	Compared with individual nAg and the simple mixture of nAu and nAg, bimetallic nAu@nAg with remarkable stability and a long-term antibacterial efficiency while	Yang et al.,
	Staphylococcus aureus	inhibition	15 μg/mL	antibacterial activity against both gram- negative and gram-positive bacteria, even at a lower silver concentration	2017
nAg@GO	Escherichia coli	Bacterial growth	3.2 μg/mL	After conjugating to GO sheets, the antibacterial activities of nAg against <i>E</i> .	Zhu et al.,
	Bacillus subtilis	<i>acillus subtilis</i> inhibition		coli and B. subtilis were significantly enhanced	2013

^{*a*} N.d. = not determined, Chit – chitosan, CNCs – cellulose nanocrystals, CNF – carbon nanofiber, GO – graphene oxide, IO – iron oxide, MWCNT – multiwall carbon nanotube, PSF – polysulfone, rGO – reduced graphene oxide, SWCNT – single walled carbon nanotube.

Figure S2. Minimum inhibitory concentrations (MICs) for bacteria exposed to multicomponent nanomaterials.

REFERENCES

- Azevedo, S.L., Holz, T., Rodrigues, J., Monteiro, T., Costa, F.M., Soares, A.M.V.M., Loureiro, S.,
 2017. A mixture toxicity approach to predict the toxicity of Ag decorated ZnO nanomaterials.
 Sci. Total Environ. 579, 337–344.
- Bhaisare, M.L., Wu, B.-S., Wu, M.-C., Khan, M.S., Tseng, M.-H., Wu, H.-F., 2016. MALDI MS analysis, disk diffusion and optical density measurements for the antimicrobial effect of zinc oxide nanorods integrated in graphene oxide nanostructures. Biomater. Sci. 4, 183–194.
- Bhushan, M., Kumar, Y., Periyasamy, L., Viswanath, A.K., 2018. Antibacterial applications of α-Fe₂O₃/Co₃O₄ nanocomposites and study of their structural, optical, magnetic and cytotoxic characteristics. Appl. Nanosci. 8, 137–153.
- Breisch, M., Loza, K., Pappert, K., Rostek, A., Rurainsky, C., Tschulik, K., Heggen, M., Epple, M., Tiller, J.C., Schildhauer, T.A., Köller, M., Sengstock, C., 2020. Enhanced dissolution of silver nanoparticles in a physical mixture with platinum nanoparticles based on the sacrificial anode effect. Nanotechnology 31, 055703.
- Chen, J., Sun, L., Cheng, Y., Lu, Z., Shao, K., Li, T., Hu, C., Han, H., 2016. Graphene oxide-silver nanocomposite: novel agricultural antifungal agent against *Fusarium graminearum* for crop disease prevention. ACS Appl. Mater. Interfaces 8, 24057–24070.
- Chen, X., Wilke, C.M., Gaillard, J.-F., Gray, K.A., 2020. Combined toxicity of nano-CuO/nano-TiO₂ and CuSO₄/nano-TiO₂ on *Escherichia coli* in aquatic environments under dark and light conditions. NanoImpact 19, 100250.
- Choi, O., Hu, Z., 2009. Role of reactive oxygen species in determining nitrification inhibition by metallic/oxide nanoparticles. J. Environ. Eng. 135, 1365–1370.
- Da Silva, G.H., Clemente, Z., Khan, L.U., Coa, F., Neto, L.L.R., Carvalho, H.W.P., Castro, V.L.,

Martinez, D.S.T., Monteiro, R.T.R., 2018. Toxicity assessment of TiO₂-MWCNT nanohybrid material with enhanced photocatalytic activity on *Danio rerio* (Zebrafish) embryos. Ecotoxicol. Environ. Saf. 165, 136–143.

- Dabour, K., Al Naggar, Y., Masry, S., Naiem, E., Giesy, J.P., 2019. Cellular alterations in midgut cells of honey bee workers (*Apis millefera* L.) exposed to sublethal concentrations of CdO or PbO nanoparticles or their binary mixture. Sci. Total Environ. 651, 1356–1367.
- Das, S., Thiagarajan, V., Chandrasekaran, N., Ravindran, B., Mukherjee, A., 2022. Nanoplastics enhance the toxic effects of titanium dioxide nanoparticle in freshwater algae *Scenedesmus obliquus*. Comp. Biochem. Phys. C 256, 109305.
- de Medeiros, A.M.Z., Khan, L.U., da Silva, G.H., Ospina, C.A., Alves, O.L., de Castro, V.L., Martinez, D.S.T., 2021. Graphene oxide-silver nanoparticle hybrid material: an integrated nanosafety study in zebrafish embryos. Ecotoxicol. Environ. Saf. 209, 111776.
- Estrela, F.N., Batista Guimarães, A.T., Silva, F.G., Marinho da Luz, T., Silva, A.M., Pereira, P.S.,
 Malafaia, G., 2021. Effects of polystyrene nanoplastics on *Ctenopharyngodon idella* (grass carp) after individual and combined exposure with zinc oxide nanoparticles. J. Hazard. Mater. 403, 123879.
- Fang, R., Gong, J., Cao, W., Chen, Z., Huang, D., Ye, J., Cai, Z., 2022. The combined toxicity and mechanism of multi-walled carbon nanotubes and nano copper oxide toward freshwater algae: *Tetradesmus obliquus*. J. Environ. Sci. 112, 376–387.
- Fasil, D.M., Hamdi, H., Al-Barty, A., Zaid, A.A., Parashar, S.K.S., Das, B., 2021. Selenium and zinc oxide multinutrient supplementation enhanced growth performance in zebra fish by modulating oxidative stress and growth-related gene expression. Front. Bioeng. Biotechnol. 9, 721717.

- Haghighat, F., Kim, Y., Sourinejad, I., Yu, I.J., Johari, S.A., 2021. Titanium dioxide nanoparticles affect the toxicity of silver nanoparticles in common carp (*Cyprinus carpio*). Chemosphere 262, 127805.
- Hassanein, A., Keller, E., Lansing, S., 2021. Effect of metal nanoparticles in anaerobic digestion production and plant uptake from effluent fertilizer. Bioresour. Technol. 321, 124455.
- Hernández-Moreno, D., Li, L., Connolly, M., Conde, E., Fernández, M., Schuster, M., Navas, J.M., Fernández-Cruz, M.-L., 2016. Mechanisms underlying the enhancement of toxicity caused by the coincubation of zinc oxide and copper nanoparticles in a fish hepatoma cell line. Environ. Toxicol. Chem. 35, 2562–2570.
- Hernández-Moreno, D., Valdehita, A., Conde, E., Rucandio, I., Navas, J.M., Fernández-Cruz, M.L., 2019. Acute toxic effects caused by the co-exposure of nanoparticles of ZnO and Cu in rainbow trout. Sci. Total Environ. 687, 24–33.
- Hong, M., Gong, J.-L., Cao, W.-C., Fang, R., Cai, Z., Ye, J., Chen, Z.-P., Tang, W.-W., 2022. The combined toxicity and mechanism of multi-walled carbon nanotubes and nano zinc oxide toward the cabbage. Environ. Sci. Pollut. Res. 29, 3540–3554.
- Hua, J., Peijnenburg, W.J.G.M., Vijver, M.G., 2016. TiO₂ nanoparticles reduce the effects of ZnO nanoparticles and Zn ions on zebrafish embryos (*Danio rerio*). NanoImpact 2, 45–53.
- Huang, B., Wei, Z.-B., Yang, L.-Y., Pan, K., Miao, A.-J., 2019. Combined toxicity of silver nanoparticles with hematite or plastic nanoparticles toward two freshwater algae. Environ. Sci. Technol. 53, 3871–3879.
- Iswarya, V., Bhuvaneshwari, M., Alex, S.A., Iyer, S., Chaudhuri, G., Chandrasekaran, P.T., Bhalerao, G.M., Chakravarty, S., Raichur, A.M., Chandrasekaran, N., Mukherjee, A., 2015.

Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: *Chlorella* sp. Aquat. Toxicol. 161, 154–169.

- Iswarya, V., Bhuvaneshwari, M., Chandrasekaran, N., Mukherjee, A., 2016. Individual and binary toxicity of anatase and rutile nanoparticles towards *Ceriodaphnia dubia*. Aquat. Toxicol. 178, 209–221.
- Iswarya, V., Bhuvaneshwari, M., Chandrasekaran, N., Mukherjee, A., 2018. Trophic transfer potential of two different crystalline phases of TiO₂ NPs from *Chlorella* sp. to *Ceriodaphnia dubia*. Aquat. Toxicol. 197, 89–97.
- Iswarya, V., Palanivel, A., Chandrasekaran, N., Mukherjee, A., 2019. Toxic effect of different types of titanium dioxide nanoparticles on *Ceriodaphnia dubia* in a freshwater system. Environ. Sci. Pollut. Res. 26, 11998–12013.
- Jahan, S., Alias, Y.B., Bakar, A.F.B.A., Yusoff, I.B., 2018. Toxicity evaluation of ZnO and TiO₂ nanomaterials in hydroponic red bean (*Vigna angularis*) plant: physiology, biochemistry and kinetic transport. J. Environ. Sci. 72, 140–152.
- Jośko, I., Oleszczuk, P., Skwarek, E., 2017. Toxicity of combined mixtures of nanoparticles to plants. J. Hazard. Mater. 331, 200–209.
- Jośko, I., Kusiak, M., Xing, B., Oleszczuk, P., 2021. Combined effect of nano-CuO and nano-ZnO in plant-related system: from bioavailability in soil to transcriptional regulation of metal homeostasis in barley. J. Hazard. Mater. 416, 126230.
- Jośko, I., Krasucka, P., Skwarek, E., Oleszczuk, P., Sheteiwy, M., 2022. The co-occurrence of Znand Cu-based engineered nanoparticles in soils: the metal extractability vs. toxicity to *Folsomia candida*. Chemosphere 287 (Pt 3), 132252.

- Jung, E.S., Sivakumar, S., Hong, S.-C., Yi, P.-I., Jang, S.-H., Suh, J.-M., 2020. Influence of relative humidity on germination and metal accumulation in *Vigna radiata* exposed to metal-based nanoparticles. Sustainability 12, 1347.
- Kaur, J., Khatri, M., Puri, S., 2019. Toxicological evaluation of metal oxide nanoparticles and mixed exposures at low doses using zebra fish and THP1 cell line. Environ. Toxicol. 34, 375– 387.
- Kong, I.C., Ko, K.-S., Koh, D.-C., 2021. Comparisons of the effect of different metal oxide nanoparticles on the root and shoot growth under shaking and non-shaking incubation, different plants, and binary mixture conditions. Nanomaterials 11, 1653.
- Li, S., Chang, R., Chen, J., Mi, G., Xie, Z., Webster, T.J., 2020. Novel magnetic nanocomposites combining selenium and iron oxide with excellent anti-biofilm properties. J. Mater. Sci. 55, 1012–1022.
- Liu, Y., Baas, J., Peijnenburg, W.J.G.M., Vijver, M.G., 2016. Evaluating the combined toxicity of Cu and ZnO nanoparticles: utility of the concept of additivity and a nested experimental design. Environ. Sci. Technol. 50, 5328–5337.
- Liu, Y., Wang, S., Wang, Z., Ye, N., Fang, H., Wang, D., 2018. TiO₂, SiO₂ and ZrO₂ nanoparticles synergistically provoke cellular oxidative damage in freshwater microalgae. Nanomaterials 8, 95.
- Lopes, S., Pinheiro, C., Soares, A.M.V.M., Loureiro, S., 2016. Joint toxicity prediction of nanoparticles and ionic counterparts: simulating toxicity under a fate scenario. J. Hazard. Mater. 320, 1–9.

- Lozovskis, P., Jankauskaitė, V., Guobienė, A., Kareivienė, V., Vitkauskienė, A., 2020. Effect of graphene oxide and silver nanoparticles hybrid composite on *P. aeruginosa* strains with acquired resistance genes. Int. J. Nanomedicine 15, 5147–5163.
- Lu, G., Yang, H., Xia, J., Zong, Y., Liu, J., 2017. Toxicity of Cu and Cr Nanoparticles to Daphnia magna. Water Air Soil Pollut. 228, 18.
- Malatjie, T.S., Botha, T.L., Kuvarega, A.T., Madima, N., de Bruyn, K., Tekere, M., Nkambule, T.T.I., Mamba, B.B., Msagati, T.A.M., 2022. Toxicity evaluation of TiO₂/MWCNT-CNF hybrid nanocomposites with enhanced photocatalytic activity toward freshwater microalgae: *Pseudokirchneriella subcapitata*. Chemosphere 291, 132891.
- Mansouri, B., Maleki, A., Johari, S.A., Shahmoradi, B., Mohammadi, E., Shahsavari, S., Davari,
 B., 2016. Copper bioaccumulation and depuration in common carp (*Cyprinus carpio*)
 following co-exposure to TiO₂ and CuO Nanoparticles. Arch. Environ. Contam. Toxicol. 71, 541–552.
- Mansouri, B., Maleki, A., Johari, S.A., Shahmoradi, B., Mohammadi, E., Davari, B., 2017.
 Histopathological effects of copper oxide nanoparticles on the gill and intestine of common carp (*Cyprinus carpio*) in the presence of titanium dioxide nanoparticles. Chem. Ecol. 33, 295–308.
- Mantecca, P., Moschini, E., Bonfanti, P., Fascio, U., Perelshtein, I., Lipovsky, A., Chirico, G., Bacchetta, R., Del Giacco, L., Colombo, A., Gedanken, A., 2015. Toxicity evaluation of a new Zn-doped CuO nanocomposite with highly effective antibacterial properties. Toxicol. Sci. 146, 16–30.
- Marcone, G.P.S., Oliveira, A.C., Almeida, G., Umbuzeiro, G.A., Jardim, W.F., 2012. Ecotoxicity of TiO₂ to *Daphnia similis* under irradiation. J. Hazard. Mater. 211–212, 436–442.

- Marta, B., Potara, M., Iliut, M., Jakab, E., Radu, T., Imre-Lucaci, F., Katona, G., Popescu, O., Astilean, S., 2015. Designing chitosan–silver nanoparticles–graphene oxide nanohybrids with enhanced antibacterial activity against *Staphylococcus aureus*. Colloid. Surface. A 487, 113– 120.
- Miranda, R.R., Damaso da Silveira, A.L.R., de Jesus, I.P., Grötzner, S.R., Voigt, C.L., Campos, S.X., Garcia, J.R.E., Randi, M.A.F., Ribeiro, C.A.O., Filipak Neto, F., 2016. Effects of realistic concentrations of TiO₂ and ZnO nanoparticles in *Prochilodus lineatus* juvenile fish. Environ. Sci. Pollut. Res. 23, 5179–5188.
- Mocanu, A., Rusen, E., Diacon, A., Isopencu, G., Mustățea, G., Şomoghi, R., Dinescu, A., 2019. Antimicrobial properties of polysulfone membranes modified with carbon nanofibers and silver nanoparticles. Mater. Chem. Phys. 223, 39–45.
- Mohammed, M.K.A., Ahmed, D.S., Mohammad, M.R., 2019. Studying antimicrobial activity of carbon nanotubes decorated with metal-doped ZnO hybrid materials. Mater. Res. Express 6, 055404.
- Muccifora, S., Castillo-Michel, H., Barbieri, F., Bellani, L., Ruffini Castiglione, M., Spanò, C., Pradas del Real, A.E., Giorgetti, L., Tassi, E.L., 2021. Synchrotron radiation spectroscopy and transmission electron microscopy techniques to evaluate TiO₂ NPs incorporation, speciation, and impact on root cells ultrastructure of *Pisum sativum* L. plants. Nanomaterials 11, 921.
- Naeem, H., Ajmal, M., Qureshi, R.B., Muntha, S.T., Farooq, M., Siddiq, M., 2019. Facile synthesis of graphene oxide–silver nanocomposite for decontamination of water from multiple pollutants by adsorption, catalysis and antibacterial activity. J. Environ. Manage. 230, 199– 211.

- Natarajan, L., Jenifer, M.A., Chandrasekaran, N., Suraishkumar, G.K., Mukherjee, A., 2022. Polystyrene nanoplastics diminish the toxic effects of Nano-TiO₂ in marine algae *Chlorella* sp. Environ. Res. 204, 112400.
- Ogunsuyi, O.I., Fadoju, O.M., Akanni, O.O., Alabi, O.A., Alimba, C.G., Cambier, S., Eswara, S., Gutleb, A.C., Adaramoye, O.A., Bakare, A.A., 2019. Genetic and systemic toxicity induced by silver and copper oxide nanoparticles, and their mixture in *Clarias gariepinus* (Burchell, 1822). Environ. Sci. Pollut. Res. 26, 27470–27481.
- Pikula, K., Johari, S.A., Santos-Oliveira, R., Golokhvast, K., 2022. Individual and binary mixture toxicity of five nanoparticles in marine microalga *Heterosigma akashiwo*. Int. J. Mol. Sci. 23, 990.
- Sayadi, M.H., Pavlaki, M.D., Martins, R., Mansouri, B., Tyler, C.R., Kharkan, J., Shekari, H., 2021. Bioaccumulation and toxicokinetics of zinc oxide nanoparticles (ZnO NPs) co-exposed with graphene nanosheets (GNs) in the blackfish (*Capoeta fusca*). Chemosphere 269, 128689.
- Sayadi, M.H., Pavlaki, M.D., Loureiro, S., Martins, R., Tyler, C.R., Mansouri, B., Kharkan, J., Shekari, H., 2022. Co-exposure of zinc oxide nanoparticles and multi-layer graphenes in blackfish (*Capoeta fusca*): evaluation of lethal, behavioural, and histopathological effects. Ecotoxicology 31, 425–439.
- Selim, M.S., Samak, N.A., Hao, Z., Xing, J., 2020. Facile design of reduced graphene oxide decorated with Cu₂O nanocube composite as antibiofilm active material. Mater. Chem. Phys. 239, 122300.
- Sellami, B., Mezni, A., Khazri, A., Bouzidi, I., Saidani, W., Sheehan, D., Beyrem, H., 2017. Toxicity assessment of ZnO-decorated Au nanoparticles in the Mediterranean clam *Ruditapes decussatus*. Aquat. Toxicol. 188, 10–19.

- Seo, Y., Hwang, J., Kim, J., Jeong, Y., Hwang, M.P, Choi, J., 2014. Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles. Int. J. Nanomedicine 9, 4621–4629.
- Singh, D., Kumar, A., 2016. Impact of irrigation using water containing CuO and ZnO nanoparticles on *Spinach oleracea* grown in soil media. Bull. Environ. Contam. Toxicol. 97, 548–553.
- Singh, D., Kumar, A., 2018. Investigating long-term effect of nanoparticles on growth of *Raphanus sativus* plants: a trans-generational study. Ecotoxicology 27, 23–31.
- Singh, D., Kumar, A., 2019. Assessment of toxic interaction of nano zinc oxide and nano copper oxide on germination of *Raphanus sativus* seeds. Environ. Monit. Assess. 191, 703.
- Singh, D., Kumar, A., 2020a. Quantification of metal uptake in *Spinacia oleracea* irrigated with water containing a mixture of CuO and ZnO nanoparticles. Chemosphere 243, 125239.
- Singh, D., Kumar, A., 2020b. Binary mixture of nanoparticles in sewage sludge: impact on spinach growth. Chemosphere 254, 126794.
- Skiba, E., Pietrzak, M., Glińska, S., Wolf, W.M., 2021. The combined effect of ZnO and CeO₂ nanoparticles on *Pisum sativum* L.: a photosynthesis and nutrients uptake study. Cells 10, 3105.
- Srivastava, S., Kumar, A., 2017. Comparative cytotoxicity of nanoparticles and ions to *Escherichia coli* in binary mixtures. J. Environ. Sci. 55, 11–19.
- Subpiramaniyam, S., Hong, S.-C., Yi, P.-I., Jang, S.-H., Suh, J.-M., Jung, E.-S., Park, J.-S., Cho, L.-H., 2021. Influence of sawdust addition on the toxic effects of cadmium and copper oxide nanoparticles on *Vigna radiata* seeds. Environ. Pollut. 289, 117311.
- Tong, T., Wilke, C.M., Wu, J., Binh, C.T.T., Kelly, J.J., Gaillard, J.-F., Gray, K.A., 2015. Combined

toxicity of nano-ZnO and nano-TiO₂: from single- to multinanomaterial systems. Environ. Sci. Technol. 49, 8113–8123.

- Wang, Z., Jin, S., Zhang, F., Wang, D., 2020. Combined toxicity of TiO₂ nanospherical particles and TiO₂ nanotubes to two microalgae with different morphology. Nanomaterials 10, 2559.
- Wang, Z., Zhang, F., Vijver, M.G., Peijnenburg, W.J.G.M., 2021. Graphene nanoplatelets and reduced graphene oxide elevate the microalgal cytotoxicity of nano-zirconium oxide. Chemosphere 276, 130015.
- Wilke, C.M., Tong, T., Gaillard, J.-F., Gray, K.A., 2016. Attenuation of microbial stress due to nano-Ag and nano-TiO₂ interactions under dark conditions. Environ. Sci. Technol. 50, 11302– 11310.
- Wilke, C.M., Wunderlich, B., Gaillard, J.-F., Gray, K.A., 2018. Synergistic bacterial stress results from exposure to nano-Ag and nano-TiO₂ mixtures under light in environmental media. Environ. Sci. Technol. 52, 3185–3194.
- Xia, J., Zhao, H.Z., Lu, G.H., 2013. Effects of selected metal oxide nanoparticles on multiple biomarkers in *Carassius auratus*. Biomed. Environ. Sci. 26, 742–749.
- Yang, L., Yan, W., Wang, H., Zhuang, H., Zhang, J., 2017. Shell thickness-dependent antibacterial activity and biocompatibility of gold@silver core-shell nanoparticles. RSC Adv. 7, 11355– 11361.
- Yang, Q., Zhang, L., Ben, A., Wu, N., Yi, Y., Jiang, L., Huang, H., Yu, Y., 2018. Effects of dispersible MoS₂ nanosheets and nano-silver coexistence on the metabolome of yeast. Chemosphere 198, 216–225.
- Ye, N., Wang, Z., Fang, H., Wang, S., Zhang, F., 2017. Combined ecotoxicity of binary zinc oxide and copper oxide nanoparticles to *Scenedesmus obliquus*. J. Environ. Sci. Heal. A 52, 555–

560.

- Ye, N., Wang, Z., Wang, S., Peijnenburg, W.J.G.M., 2018. Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: particles outperform dissolved ions. Nanotoxicology 12, 423–438.
- Yin, J., Huang, G., An, C., Feng, R., 2022. Nanocellulose enhances the dispersion and toxicity of ZnO NPs to green algae *Eremosphaera viridis*. Environ. Sci.: Nano 9, 393–405.
- Yu, Q., Wang, Z., Wang, G., Peijnenburg, W.J.G.M., Vijver, M.G., 2022. Effects of natural organic matter on the joint toxicity and accumulation of Cu nanoparticles and ZnO nanoparticles in *Daphnia magna*. Environ. Pollut. 292, 118413.
- Yu, R., Wu, J., Liu, M., Zhu, G., Chen, L., Chang, Y., Lu, H., 2016a. Toxicity of binary mixtures of metal oxide nanoparticles to *Nitrosomonas europaea*. Chemosphere 153, 187–197.
- Yu, R., Wu, J., Liu, M., Chen, L., Zhu, G., Lu, H., 2016b. Physiological and transcriptional responses of *Nitrosomonas europaea* to TiO₂ and ZnO nanoparticles and their mixtures. Environ. Sci. Pollut. Res. 23, 13023–13034.
- Zain, N.M., Stapley, A.G.F., Shama, G., 2014. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohyd. Polym. 112, 195– 202.
- Zhang, H., Shi, J., Su, Y., Li, W., Wilkinson, K.J., Xie, B., 2020. Acute toxicity evaluation of nanoparticles mixtures using luminescent bacteria. Environ. Monit. Assess. 192, 484.
- Zhang, Y., Li, X., Liang, J., Luo, Y., Tang, N., Ye, S., Zhu, Z., Xing, W., Guo, J., Zhang, H., 2022. *Microcystis aeruginosa*'s exposure to an antagonism of nanoplastics and MWCNTs: the disorders in cellular and metabolic processes. Chemosphere 288, 132516.

- Zhao, H-Z., Lu, G-H., Xia, J., Jin, S-G., 2012. Toxicity of nanoscale CuO and ZnO to *Daphnia magna*. Chem. Res. Chin. Univ. 28, 209–213.
- Zhao, J., Dai, Y., Wang, Z., Ren, W., Wei, Y., Cao, X., Xing, B., 2018. Toxicity of GO to freshwater algae in the presence of Al₂O₃ particles with different morphologies: importance of heteroaggregation. Environ. Sci. Technol. 52, 13448–13456.
- Zhu, X., Tan, L., Zhao, T., Huang, W., Guo, X., Wang, J., Wang, J., 2022. Alone and combined toxicity of ZnO nanoparticles and graphene quantum dots on microalgae *Gymnodinium*. Environ. Sci. Pollut. Res. 29, 47310–47322.
- Zhu, Z., Su, M., Ma, L., Ma, L., Liu, D., Wang, Z., 2013. Preparation of graphene oxide–silver nanoparticle nanohybrids with highly antibacterial capability. Talanta 117, 449–455.