1 Supplementary material for

- 2 BNIP3 phosphorylation by JNK1/2 promotes mitophagy via enhancing its stability under hypoxia
- 3 Yun-Ling He, Jian Li, Sheng-Hui Gong, Xiang Cheng, Ming Zhao, Yan Cao, Tong Zhao, Yong-Qi Zhao, Ming
- 4 Fan, Hai-Tao Wu, Ling-Ling Zhu, Li-Ying Wu
- 5 Corresponding authors:
- 6 Ming Fan, Email: fanmingchina@126.com;
- 7 Hai-Tao Wu, Email: wuht@bmi.ac.cn;
- 8 Ling-Ling Zhu, Email: linglingzhu@hotmail.com;
- 9 Li-Ying Wu, Email: liyingwu_china@163.com

10 This file includes:

- 11 Fig. S1. Hypoxia regulates mitophagy and phosphorylation of BNIP3.
- 12 Fig. S2. Phosphorylation of BNIP3 at S60/T66 is critical to promote mitophagy
- 13 Fig. S3 BNIP3 interacts with ubiquitin.
- 14 Fig. S4. JNK1/2 is the kinase responsible for BNIP3 phosphorylation.
- 15 Fig. S5. BNIP3 phosphorylation at S60/T66 by JNK enhances mitophagy.
- 16 Table S1. The primer information for Site-directed mutagenesis and siRNA-resistant constructs.
- 17 Table S2. List of siRNA used in this study.
- 18 Table S3. Sequence of real-time PCR primer used in this study.
- 19

е

		(0.3	%	0	2		
kDa	0	12	24	36	48	72	96	Time (h)
130-	*	-	1	1	-	2		HIF-1α
35-			_	_	-			
25-		-	2			-	-	BNIP3
15-			-		-		•	TOMM20
15-	ő		-					- LC3-I - LC3-II
40-	-	-	•	-		-		β-actin
lane	1	2	3	4	5	6	7	

20 Fig. S1. Hypoxia regulates mitophagy and phosphorylation of BNIP3.

- 21 (a) Mitochondria morphology was analyzed via transmission electron microscopy (TEM) after PC12 cells were
- 22 exposed to 20% O₂, 10% O₂ or 0.3% O₂ for 24 h. The red boxes indicate representative mitochondria exposed to
- different oxygen conditions. Scale bar, 500 nm. (b) PC12 cells were exposed to 20% O₂, 10% O₂ or 0.3% O₂ for
- 24 b. Cells were identified by immunofluorescence staining with antibodies against β -actin (white outline) and
- 25 TOMM20 (red), and nuclear DNA was marked using DAPI (blue). Scale bars, 10 µm. The percentage of cells
- with no or few TOMM20 was quantified. n = 30. (c) PC12 cells were treated the same as in **a**, and mitophagy
- 27 was identified and quantified by co-localization of autophagosomes (GFP-LC3, green) and mitochondria
- 28 (Mitotracker, red). Scale bar, $10 \mu m$. n = 40. (d) PC12 cells stably expressing mt-Keima were exposed to 0.3%
- O_2 for 0, 12, 24 h, and mitophagy was quantified by the ratio of acidic (590 nm, red) to normal mitochondria
- 30 (440 nm, green). Scale bar, 10 μ m. n \geq 30. (e) HeLa cells were exposed to 0.3% O₂ for the indicated time, the
- 31 levels of BNIP3 and mitophagy related proteins were detected via western blotting. n=3. The data are expressed
- 32 as means \pm SEM. **P* < 0.05, ***P* < 0.01, ****P* < 0.001 versus the indicated group.

а

33 Fig. S2. Phosphorylation of BNIP3 at S60/T66 is critical to promote mitophagy.

- 34 (a) HeLa cells were transfected with empty vector, WT or the indicated mutated Flag-BNIP3, and then, the cell
- 35 lysates were subjected to immunoprecipitation (IP) with an anti-Flag antibody. Phosphorylation of BNIP3 at
- 36 S60/T66 was detected in the immune complexes via western blotting using an anti-phospho-MAPK/CDK
- 37 substrates antibody. n = 3. (b) HeLa cells were transfected with empty vector, WT or the indicated Flag-BNIP3
- 38 mutants for 48 h. Cell lysates were immunoprecipitated with the anti-Flag antibody and then subjected to
- 39 western blot analysis with BCL-2 and Flag antibodies. n = 3. (c) HeLa cells were co-transfected with GFP-LC3
- 40 and empty vector, WT or the indicated Flag-BNIP3 mutants for 48 h, same as Figure 2g, cell lysates were
- 41 immunoprecipitated with the anti-mouse IgG or the anti-GFP antibody and detected by western blotting. n = 3.
- 42 (d) HeLa cells were transfected with empty vector, WT or the indicated Flag-BNIP3 mutants for 48 h and
- 43 treated with 20 nM bafilomycin A1 (Baf A1) for additional 12 h. Cell lysates were analyzed by western blotting.
- 44 n = 3. (e) HeLa cells were transfected with GFP-LC3 and empty vector, WT or the indicated Flag-BNIP3
- 45 mutants for 48 h. The cells were then fixed and immunostained with Flag (blue) and TOMM20 (Red). The white
- 46 boxes indicate cells with few mitochondria. Scale bars, 10 μ m. n = 30. The data are expressed as means \pm SEM.
- 47 *P < 0.05, **P < 0.01, ***P < 0.001 versus the indicated group.

* IgG heavy and light chains

49 Fig. S3 BNIP3 interacts with ubiquitin.

- 50 PC12 cells were exposed to 20% O_2 or 0.3% O_2 supplemented with 10 μ M MG132 for 6 h. Cell lysates were
- 51 boiled and immunoprecipitated with mouse IgG or anti-BNIP3 antibody. Then, the immune complexes were
- 52 analyzed via western blotting. Asterisks indicate the heavy and light chains of IgG.

1 2 3 4 5 6 7 8 9

lane

а

54 Fig. S4. JNK1/2 is the kinase responsible for BNIP3 phosphorylation.

- (a) PC12 cells were treated with okadaic acid (OA) and PD184352 (left) or SP600125 (right) for 12 h and
- analyzed via western blotting with an anti-BNIP3 or anti- β -actin antibody. (b) PC12 cells were transfected with
- 57 negative control (NC) or the indicated siRNA for 48 h, and the mRNA levels of related genes (left) and BNIP3
- expression (right) were detected by real-time PCR and western blotting, respectively. $n \ge 3$. (c) HeLa cells
- 59 were transfected with Flag-BNIP3 and constitutively active JNK1 (HA-JNK1CA) (HA-MKK7-JNK1) or
- dominant negative JNK1 (HA-JNK1DN) (HA-JNK1-APF) for 48 h. Cell lysates were then immunoprecipitated
- 61 with an anti-Flag antibody and detected by western blotting with an anti-HA or anti-Flag antibody. (d) JNK1
- 62 and JNK2 knockdown HeLa cells were transfected with WT or S60/T66A and HA-JNK1^{CA} or HA-JNK1^{DN}
- 63 mutants, and 48 h post-transfection, cell lysates were immunoprecipitated with an anti-Flag antibody. The
- 64 immune complexes were then analyzed via western blotting with the indicated antibodies. n = 3. The data are
- expressed as means \pm SEM. *P < 0.05, **P < 0.01, ***P < 0.001 versus the indicated group.

b

С

67 Fig. S5. BNIP3 phosphorylation at S60/T66 by JNK enhances mitophagy.

- 68 (a) PC12 cells were exposed to 0.3% O₂ for the indicated time, phosphorylation of BNIP3 and expression of
- 69 PP1 and PP2A and JNK activity were detected via western blotting. n = 3. (b) Representative images of GFP-
- 70 LC3 puncta in Flag-BNIP3 stably expressed HeLa cells, co-transfected with plasmids encoding HA-JNK1. Cells
- 71 were identified by immunofluorescence staining with antibodies against HA (blue) and Flag (red). Scale bars, 10
- 72 μm. (c) HeLa cells stably expressing Flag-BNIP3 were transfected with CA or DN HA-JNK1 and
- 73 immunostained with HA (blue) and TOMM20 (Red). The percentage of cells with no or few TOMM20 was
- quantified. Scale bars, 10 μ m. n = 30. The data are expressed as means \pm SEM. *P < 0.05, **P < 0.01, ***P < 0.01,
- 75 0.001 versus the indicated group.

Plasmids name	Forward primer	Reverse primer
S12A	5'- AGAACCTGCAGGGCGCCTGGGTAGAACT GC-3'	5'- GCAGTTCTACCCAGGCGCCCTGCAGGTTC T-3'
S19A	5'- TAGAACTGCACTTCGCCAATGGGAATGG GA-3'	5'- TCCCATTCCCATTGGCGAAGTGCAGTTCT A-3'
S48A	5'- ATGCGCAGCATGAAGCTGGACGAAGCAG CT-3'	5'- AGCTGCTTCGTCCAGCTTCATGCTGCGCA T-3'
S56A	5'- GCAGCTCCAAGAGCGCTCACTGTGACAG CC-3'	5'- GGCTGTCACAGTGAGCGCTCTTGGAGCT GC-3'
S60A	5'- GCTCTCACTGTGACGCCCCACCTCGCTCC C-3'	5'- GGGAGCGAGGTGGGGGCGTCACAGTGAG AGC-3'
S60D	5'- GCTCTCACTGTGACGACCCACCTCGCTCC C-3'	5'- GGGAGCGAGGTGGGTCGTCACAGTGAGA GC-3'
S60E	5'- GCTCTCACTGTGACGAACCACCTCGCTCC C-3'	5'- GGGAGCGAGGTGGTTCGTCACAGTGAGA GC-3'
T66A	5'- CACCTCGCTCCCAGGCACCACAAGATAC CA-3'	5'- TGGTATCTTGTGGTGCCTGGGAGCGAGGT G-3'
S79A	5'- GAAATAGACACCCACGCCTTTGGTGAGA AAAA-3'	5'- TTTTTCTCACCAAAGGCGTGGGTGTCTAT TTC-3'
S85/T86A	5'- GTGAGAAAAACGCCGCTCTGTCTGAGGA AG-3'	5'- CTTCCTCAGACAGAGCGGCGTTTTTCTCA C-3'
S88A	5'- GAAAAACAGCACTCTGGCTGAGGAAGAT TATA-3'	5'- TATAATCTTCCTCAGCCAGAGTGCTGTTTT TC-3'
T141/S142A	5'- GCATGAGAAACGCAGCCGTGATGAAGAA AG-3'	5'- CTTTCTTCATCACGGCTGCGTTTCTCATGC -3'
<i>Bnip3</i> siRNA- resistant	5'- TTGGAAGGCGTTTAACGACCAGTACGTC CACCTTTTGAGGATCC-3'	5'- GGATCCTCAAAAGGTGGACGTACTGGTC GTTAAACGCCTTCCAA-3'
Jnk1 siRNA- resistant	5'- TCCTTGGCGAGATGGAGTATAAAGAAAA CGTGGA-3'	5'- TCCACGTTTTCTTTATACTCCATCTCGCCA AGGA-3'

77 Table S1. The primer information for the site-directed mutagenesis and the siRNA-resistant constructs.

79 Table S2. List of siRNA used in this study.

Gene name	Species	Target Sequences				
Bnip3	Rat	5'-CTGACAACTTCCACTAGTA-3'				
Erk1 (Mapk3)	Rat	5'-CGGCTGAAGGAGCTGATCT-3'				
Erk2 (Mapk1)	Rat	5'-GTGCTGTGTCTTCAAGAGC-3'				
Erk5 (Mapk7)	Rat	5'-CCCTCAGGGAACTGAAGAT-3'				
Jnk1 (Mapk8)	Rat	5-GCATGGGCTACAAGGAGAA-3'				
JNK1 (MAPK8)	Human	5'-AGCTCCACCACCAAAGATC-3'				
Jnk2 (Mapk9)	Rat	5'-GGAATTGTTTGTGCTGCTT-3'				
JNK2 (MAPK9)	Human	5'-TTCCAAGGCACTGACCATA-3'				
Jnk3 (Mapk10)	Rat	5'-GCCTCCGCCTCAGATATAT-3'				
Ppp1ca #1	Rat	5'-GCTTGTTGCTGGCCTATAA-3'				
Ppp1ca #2	Rat	5'-GAAATAGCCTCCATGTGCT-3'				
Ppp1cb #1	Rat	5'-CAAGTCTCGTGAAATCTTT-3'				
<i>Ppp1cb</i> #2	Rat	5'-CTTTATGATGTCACACCTT-3'				
Ppp1cc #1	Rat	5'-GTGACATCCACGGGCAGTA-3'				
<i>Ppp1cc</i> #2	Rat	5'-GTTGAAGATGGATATGAGT-3'				
Ppp2ca #1	Rat	5'-GAAAGTTTAACCTTGTACA-3'				
Ppp2ca #2	Rat	5'-GATACAAATTACTTGTTTA-3'				
<i>Ppp2cb</i> #1	Rat	5'-CTTTGATTATCTTCCACTT-3'				
Ppp2cb #2	Rat	5'-GCTTGTAATGGAAGGATAT-3'				

81	Table S3.	Sequence	of real-time	PCR	primer	used in	this study.
----	-----------	----------	--------------	-----	--------	---------	-------------

Gene name	Species	Forward primer	Reverse primer		
Actb	Rat	5'- GCAGGAGTACGATGAGTC CG-3'	5'- ACGCAGCTCAGTAACAGTCC -3'		
Bnip3	Rat	5'- GTCGCAGAGCGGGGAGG AGA-3'	5'- TCTGGGAGCGAGGTGGGCT G-3'		
Erk1 (Mapk3)	Rat	5'- TACCGAGCCCCAGAGATC AT-3'	5'- TGGGATGGGGAACCCAGTAT- 3'		
Erk2 (Mapk1)	Rat	5'- AATGTTCTGCACCGTGAC CT-3'	5'- TGGTCTGGATCTGCAACACG -3'		
Erk5 (Mapk7)	Rat	5'- CGCCCCACCTTTTGACTT TG-3'	5'- CCATGGCACAGTCTCCACTT- 3'		
Jnk1 (Mapk8)	Rat	5'- ACTTAAAGCCAGTCAGGC GA-3'	5'- TTGATGTACGGGTGCTGGAG -3'		
Jnk2 (Mapk9)	Rat	5'- TCCAGAAGTCATCCTGGG CA-3'	5'- CTCTTCCTGGGAACAGGACT T-3'		
Jnk3 (Mapk10)	Rat	5'- GTTTGGTACGACCCTGCT GA-3'	5'- GAGGGCTGGCCTTTGACTAC -3'		