Title: Vascular changes of the choroid and their correlations with visual acuity in pathological myopia

Yiyi Wang^{*1}, Sisi Chen^{*1,2}, Jue Lin¹, Wen Chen¹, Huimin Huang¹,Xin Fan¹, Xinyuan Cao¹, Meixiao Shen¹, Jie Ye¹, Shuangqian Zhu¹, Anquan Xue¹, Fan Lu^{§1,2}, Yilei Shao^{§1}

1.School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China

2. Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China*These authors contributed equally to the work presented here and should therefore be regarded as equivalent authors.

[§]Corresponding Authors:

Yilei Shao, MD, PhD and Fan Lu, MD, OD

Mailing address: School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang, China, 325027.

Tel: (086) 577-88824116; Fax: (086) 577-88824115

Email: magic_shao@163.com (Shao); lufan62@mail.eye.ac.cn (Lu)

Supplementary Materials

Parameters		CVI (%)	CT (mm)	LA (mm ²)	$SA(mm^2)$
CVI (%)	Coefficients P value	-	0.068 0.077	0.033 0.002	-0.012 0.521
CT (mm)	Coefficients <i>P</i> value	-	-	3.737 <0.001	2.262 <0.001
LA (mm ²)	Coefficients P value	-	-	-	1.543 <0.001

Supplementary Table 1. Correlation Among Choroidal Parameters After Adjusting for Other Variables

CVI, choroidal vascularity index; CT, choroidal thickness; LA, luminal area; SA,

stromal area.

Supplementary Table 2. Partial Correlation Analysis Based on Best-Corrected Visual Acuity

Control	Parameters		CVI (%)	LA (mm ²)	SA (mm ²)	CT (mm)
AL (mm)	BCVA (LogMAR)	Coefficients	-0.318	-0.15	-0.06	-0.12
		<i>P</i> value	<0.001	0.09	0.47	0.18

AL, axial length; BCVA, Best-Corrected Visual Acuity; CT, choroidal thickness; CVI,

choroidal vascularity index; LA, choroidal luminal area; SA, choroidal stromal area.

Supplementary Figure 1. The relationships among CVI, CT, LA, SA with AL were analyzed with exponential function and hyperbola. (A-D) CVI, CT, LA, and SA versus AL with exponential function $[y = A_1 \times e^{(-x/t_1)} + y_0]$, respectively. (E-H) CVI, CT, LA, and SA versus AL with hyperbola [y = a/(x - k) + b], respectively. AL, axial length; CT, choroidal thickness; CVI, choroidal vascularity index; LA, choroidal luminal area; SA, choroidal stromal area. A1, t1, y0, a, k and b are constants.

Supplementary Figure 2. The relationships among LA, SA, CT with AL were analyzed with hyperbola [y = a/(x - k) + b]. (A) LA versus BCVA. (B) SA versus BCVA. (C) CT versus BCVA. a, k and b are constants.

BCVA, best-corrected visual acuity; LA, choroidal luminal area; SA, choroidal

stromal area; CT, choroidal thickness.