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Soil properties

Table S1: Soil properties obtained from the SoilGrids250m database [1] and their predicted

effect on soil organism abundance.

Soil property Expected effect on soil organism abundance

Organic carbon (tonnes / ha) Positive: Soil organisms are generally less abundant in soils

with low organic carbon [2, 3] or where organic carbon has

been removed by intensive agriculture [4].

Bulk density (kg / m3) Negative: Soils with high bulk density are more compacted

and so less hospitable [5, 6, 7].

pH in potassium chloride Variable: relationship is expected to depend on taxa and

land use; for example earthworms generally increase in

abundance with pH [8, 9], while soil arthropod and nemat-

ode abundance correlate with pH in grassland in an oppos-

ite way [10]. Similarly, potworms (Enchytraeidae) domin-

ate in low pH because of reduced competition from earth-

worms [11].

Available soil water capacity %

Saturated water %

Wilting point %

Positive: Most studies report soil organism abundance is

positively correlated with soil moisture [3, 12, 13, 14], and

sensitive to drought [15, 16] although responses may differ

between spatial scales [17].

Clay %

Silt %

Sand %

Variable: Soils with higher clay content tend to have more

organic material and better water retention, which are

both linked to higher abundance of soil organisms. Soils

with a high proportion of sand have lower water detention

potential, so are less favourable [18]

3



Table S2: Numbers of sites within each biome for above-ground and soil biodiversity, and the

weight given to above-ground sites within each biome.

Biome Above-ground Soil Weight

Boreal Forests/Taiga 534 541 1.013

Temperate Conifer Forests 517 93 0.180

Temperate Broadleaf & Mixed Forests 7,160 4,579 0.640

Montane Grasslands & Shrublands 972 1 0.001

Temperate Grasslands, Savannas & Shrublands 1,138 22 0.019

Mediterranean Forests, Woodlands & Scrub 1,682 236 0.140

Deserts & Xeric Shrublands 236 37 0.157

Tropical & Subtropical Grasslands, Savannas & Shrublands 1,900 392 0.206

Tropical & Subtropical Coniferous Forests 300 67 0.223

Flooded Grasslands & Savannas 39 12 0.308

Tropical & Subtropical Dry Broadleaf Forests 368 144 0.391

Tropical & Subtropical Moist Broadleaf Forests 4,779 1,023 0.214

Mangroves 26 8 0.308
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Table S3: Land use and land-use intensity classification definitions (after Hudson et al. 2014 [19])

Land use type Minimal use Light use Intense use

Primary vegetation - native vegetation that is not known or

inferred to have ever been completely destroyed, by human

actions or by extreme natural events that do not normally

play a role in ecosystem dynamics. Sites where primary ve-

getation has been destroyed by natural events that are part

of the normal ecosystem dynamic (e.g. fire in Mediterranean

ecosystems) remain as primary vegetation provided that re-

generation is possible. Primary vegetation can be used by

people, or been degraded, so long as it has never been com-

pletely destroyed.

Any disturbances identified

are very minor (e.g. a trail

or path) or very limited in

the scope of their effect (e.g.

hunting of a particular species

of limited ecological import-

ance).

One or more disturbances of

moderate intensity (e.g. se-

lective logging) or breadth of

impact (e.g. bush meat ex-

traction), which are not severe

enough to markedly change

the nature of the ecosystems.

Primary sites in suburban set-

tings are at least Light use.

One or more disturbances

that are severe enough to

markedly change the nature of

the ecosystem; this includes

clear felling of part of the site

too recently for much recov-

ery to have occurred. Primary

sites in fully urban settings

should be classed as Intense

use.

Secondary vegetation - vegetation where the original

primary vegetation was completely destroyed. This could

be by human actions (including fire), and includes sites re-

covering to a natural state following a period of human-

dominated land use. Secondary vegetation includes areas

where humans have made an active attempt (through plant-

ing etc.) to restore an area to a more natural state. Al-

though not managed as intensively as the human-dominated

classes, such sites can be used by people in much the same

way as primary vegetation sites.

As above As above As above



Plantation forest - previously cleared areas that people have

planted with crop trees or crop shrubs for commercial or

subsistence harvesting of wood and/or fruit.

Extensively managed or

mixed timber, fruit/coffee,

oil-palm or rubber plantations

in which native understorey

and/or other native tree

species are tolerated, which

are not treated with pesticide

of fertiliser, and which have

not been recently (<20 years)

clear-felled.

Monoculture

fruit/coffee/rubber plant-

ations with limited pesticide

input, or mixed species

plantations with significant

inputs. Monoculture timber

plantations of mixed age with

no recent (<20 years) clear-

felling. Monoculture oil-palm

plantations with no recent

(<20 years) clear-felling.

Monoculture

fruit/coffee/rubber plant-

ations with significant

pesticide input. Mono-

culture timber plantations

with similarly aged trees or

timber/oil-palm plantations

with extensive recent (<20

years) clear-felling.

Cropland - land that people have planted with herbaceous

crops, even if these crops will be fed to livestock once har-

vested.

Low-intensity farms, typically

with small fields, mixed crops,

crop rotation, little or no in-

organic fertiliser use, little or

no pesticide use, little or no

ploughing, little or no irriga-

tion, little or no mechanisa-

tion.

Medium intensity farming,

typically showing some but

not many of the following:

large fields, annual plough-

ing, inorganic fertiliser ap-

plication, pesticide applica-

tion, irrigation, no crop ro-

tation, mechanisation, mono-

culture crop. Organic farms

in developed countries often

fall within this category, as

may high-intensity farming in

developing countries.

High-intensity monoculture

farming, typically showing

many of the following fea-

tures: large fields, annual

ploughing, inorganic fertil-

iser application, pesticide

application, irrigation, mech-

anisation, no crop rotation.



Pasture - land where livestock is known to be grazed regu-

larly or permanently directly on the land.

Pasture with minimal input

of fertiliser and pesticide, and

will low stock density (not

high enough to cause signific-

ant disturbance or stop regen-

eration of vegetation).

Pasture either with signific-

ant input of fertiliser or pesti-

cide, or with high stock dens-

ity (high enough to cause sig-

nificant disturbance or to stop

regeneration of vegetation).

Pasture with significant in-

put of fertiliser or pesticide,

and with high stock density

(high enough to cause signi-

ficant disturbance or to stop

regeneration of vegetation).

Urban - areas with human habitation and/or buildings,

where the primary vegetation has been removed, and where

such vegetation is predominantly managed for civic or per-

sonal amenity.

Extensive managed green

spaces, villages.

Suburban (e.g. gardens), or

small managed or unmanaged

green spaces in cities.

Fully urban with no signific-

ant green spaces.



Table S4: Data sources used in this analysis in addition to those in Hudson et al. (2016) [20] and which will be made available in a later addition to the PREDICTS

database. For sources marked † data are available from the referenced paper. Figures here represent available data as curated by the PREDICTS team and will not

necessarily match figures in the original papers.

Reference Country Biome Studies Sites Samples Taxa Dates sampled

Albrecht and Haider (2013) [21] Germany Temperate Broadleaf & Mixed Forests 1 120 24,240 202 2008 - 2008

Blasi et al. (2013) [22] Italy Mediterranean Forests, Woodlands & Scrub 1 55 1,430 26 2007 - 2008

Bösing et al. (2014) [23] South Africa Deserts & Xeric Shrublands 1 22 242 11 2007 - 2007

Bogyó et al. (2015) [24] Hungary Temperate Broadleaf & Mixed Forests 1 12 168 14 2001 - 2001

Bone and Jones (2010) (unpublished) [25] United Kingdom Temperate Broadleaf & Mixed Forests 1 78 1,326 17 2010 - 2010

Bravo-Monroy et al. (2015) [26] Colombia Tropical & Subtropical Moist Broadleaf Forests 1 12 48 4 2011 - 2011

Burton (2015) (unpublished) [27] United Kingdom Temperate Broadleaf & Mixed Forests 1 33 363 11 2015 - 2015

Burton and Eggleton (2016) [28] United Kingdom Temperate Broadleaf & Mixed Forests 3 179 9,151 152 2013 - 2013

Calcaterra et al. (2010) [29] Argentina Flooded Grasslands & Savannas 1 45 2,250 50 2007 - 2008

Carpenter et al. (2012) (unpublished) [30] United Kingdom Temperate Broadleaf & Mixed Forests 1 105 6,195 59 2012 - 2012

Connelly et al. (2015) [31] United States Temperate Broadleaf & Mixed Forests 1 13 871 67 2012 - 2013

Cusser et al. (2015) [32] United States Temperate Grasslands, Savannas & Shrublands 1 9 450 50 2013 - 2013

Davies et al. (2015) [33] Australia Deserts & Xeric Shrublands 1 10 290 29 2013 - 2013

De Smedt et al. (2016) [34] Belgium Temperate Broadleaf & Mixed Forests 1 6 102 17 2011 - 2011

Eggleton et al. (2005) [35] United Kingdom Temperate Broadleaf & Mixed Forests 5 106 2,806 341 2001 - 2002

Farahat and Linderholm (2012) [36] Egypt Deserts & Xeric Shrublands 1 8 504 63 2010 - 2011

Farrell et al. (2011) [37] United Kingdom Temperate Broadleaf & Mixed Forests 1 20 760 38 2008 - 2009

Ferreira et al. (2013) [38] Brazil Tropical & Subtropical Moist Broadleaf Forests 1 7 98 14 2007 - 2008

Forrest et al. (2015) [39] United States Mediterranean Forests, Woodlands & Scrub 1 16 2,240 140 2002 - 2002

Gardner et al. (2007) [40] Brazil Tropical & Subtropical Moist Broadleaf Forests 1 3 159 53 2004 - 2005

Giangarelli et al. (2009) [41] Brazil Tropical & Subtropical Moist Broadleaf Forest 1 9 9 1 2001 - 2006

Hendrix et al. (2010) † [42] United States Temperate Broadleaf & Mixed Forests 1 5 365 73 2005 - 2005

Hodson et al. (2020) [43] United Kingdom Temperate Broadleaf & Mixed Forests 2 1,058 15,341 29 2013 - 2013

Holway and Suarez (2006) [44] United States Mediterranean Forests, Woodlands & Scrub 2 58 2,138 65 1998 - 1998

Horváth et al. (2012) [45] Hungary Temperate Broadleaf & Mixed Forests 1 6 414 69 2009 - 2009



Jackson et al. (2014) [46] United States Temperate Broadleaf & Mixed Forests 1 72 2,232 31 2010 - 2011

Jalilova et al. (2013) [47] Kyrgyzstan Temperate Grasslands, Savannas & Shrublands 1 5 115 23 2005 - 2005

Jha and Vandermeer (2010) [48] Mexico Tropical & Subtropical Moist Broadleaf Forest 1 7 315 45 2006 - 2006

Jones and Eggleton (2014) [9] United Kingdom Temperate Broadleaf & Mixed Forests 2 56 1,008 36 2009 - 2009

Kambach et al. (2012) [49] Bolivia Tropical & Subtropical Moist Broadleaf Forest 2 48 4,584 191 2011 - 2011

Kazerani et al. (2013) [50] Iran Temperate Conifer Forests 1 4 68 17 2013 - 2013

Knoll and Penatti (2012) [51] Brazil Tropical & Subtropical Grasslands, Savannas & Shrublands 1 5 49 10 1993 - 1999

Kosewska et al. (2013) [52] Poland Temperate Broadleaf & Mixed Forests 1 3 210 70 2009 - 2009

Kremen and M’Gonigle (2015) † [53] United States Mediterranean Forests, Woodlands & Scrub 1 15 1,455 97 2013 - 2013

Kutt and Fisher (2011) [54] Australia Tropical & Subtropical Grasslands, Savannas & Shrublands 1 38 6,080 160 2003 - 2003

Lacasella et al. (2015) [55] Italy Temperate Broadleaf & Mixed Forests 1 108 13,392 124 2009 - 2009

Lange et al. (2011) [56] Germany Temperate Broadleaf & Mixed Forests 1 48 1,728 36 2008 - 2008

Leong et al. (2014) [57] United States Mediterranean Forests, Woodlands & Scrub 1 12 180 15 2011 - 2011

Leong et al. (2016) [58] United States Mediterranean Forests, Woodlands & Scrub 1 35 3,184 91 2012 - 2012

Magura et al. (2008) [59] Hungary Temperate Broadleaf & Mixed Forests 1 12 708 59 2001 - 2002

Marinaro and Grau (2015) [60] Argentina Tropical & Subtropical Dry Broadleaf Forests 2 56 2,120 72 2009 - 2011

Massawe et al. (2012) [61] United Republic of Tanzania Tropical & Subtropical Grasslands, Savannas & Shrublands 1 10 110 11 2009 - 2009

Minor and Cianciolo (2007) [62] United States Temperate Broadleaf & Mixed Forests 1 14 1,512 108 1999 - 1999

Mulder et al. (2011) [63] Netherlands Temperate Broadleaf & Mixed Forests 4 2,040 396,270 777 2010 - 2010

Mumme et al. (2015) [64] Indonesia Tropical & Subtropical Moist Broadleaf Forest 1 32 28,672 896 2012 - 2012

Murvanidze et al. (2008) [65] Georgia Deserts & Xeric Shrublands 1 14 1,750 125 2008 - 2008

National Earthworm Recording Scheme (2017) [66] United Kingdom Temperate Broadleaf & Mixed Forests 1 117 2,691 23 2015 - 2015

Open Air Laboratories (OPAL) (2009) [67] United Kingdom Temperate Broadleaf & Mixed Forests 1 251 5,522 22 2009 - 2009

Pall et al. (2014) [68] Argentina Temperate Grasslands, Savannas & Shrublands 3 18 198 33 2008 - 2008

Ponge et al. (2015) [69] France Temperate Broadleaf & Mixed Forests 1 25 1,725 69 2006 - 2006

Shadhabuddin (2013) † [70] Indonesia Tropical & Subtropical Moist Broadleaf Forest 2 8 184 46 2012 - 2012

Soga et al. (2014) [71] Japan Temperate Broadleaf & Mixed Forests 2 42 1,596 76 2012 - 2012

Taboada et al. (2006) [72] Spain Mediterranean Forests, Woodlands & Scrub 1 20 1,220 61 2004 - 2004

Tonhasca et al. (2002) † [73] Brazil Tropical & Subtropical Moist Broadleaf Forest 1 9 189 21 1997 - 1999

Topp-Jørgensen et al. (2009) † [74] United Republic of Tanzania Tropical & Subtropical Moist Broadleaf Forest 2 6 27 9 2000 - 2000



Vu and Quang Vu (2011) [75] Viet Nam Tropical & Subtropical Moist Broadleaf Forest 1 4 448 112 2008 - 2009

Yan and Bao (2008) [76] China Montane Grasslands & Shrublands 1 26 6,032 232 2007 - 2007

Yan and Bao (2008a) [77] China Montane Grasslands & Shrublands 1 4 200 50 2006 - 2006

Yan and Bao (2011) [78] China Temperate Conifer Forests 1 4 236 59 2006 - 2006



Model structures

Structure of models fitted, response variable: log(total abundance+1), random effects struc-

ture: (1 — SS) + (1 — SSB). LUI = land use and intensity, BD = bulk density, OC = organic

carbon.

Full model: LUI + CLAY + habitat layer + pH + OC + BD + LUI:habitat layer +

LandUse:phkcl + LandUse:OC + LandUse:clay + LandUse:BD + habitat layer:phkcl + hab-

itat layer:OC + habitat layer:clay + habitat layer:BD + LandUse:habitat layer:pH + Land-

Use:habitat layer:OC + LandUse:habitat layer:clay + LandUse:habitat layer:BD

Model for testing hypothesis 1) Soil and above-ground abundance respond differently to land-

use: LUI + clay + habitat layer + pH + OC + BD + LandUse:pH + LandUse:OC + Land-

Use:CLAY + LandUse:BD + habitat layer:pH + habitat layer:OC + habitat layer:clay + habitat

layer:BD

Model for testing hypothesis 2) soil physical properties mediate these differential responses:

LUI + clay + habitat layer + pH + OC + BD + LUI:habitat layer + habitat layer:pH + habitat

layer:OC + habitat layer:clay + habitat layer:BD

Model for testing hypothesis 3) modulation of abundance by soil properties is greatest for soil

biota: LUI + clay + habitat layer + pH + OC + BD + LUI:habitat layer + LandUse:pH +

LandUse:OC + LandUse:clay + LandUse:BD
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Results

Figure S1: The explanatory power of models increases markedly with their complexity, from a

model containing only habitat layer, through models considering only main effects of habitat

layer and either land use intensity (LUI) or soil properties, through to additive and finally

interactive models.

Stratum

LUI

Stratum + LUI

Stratum + soil

Stratum + LUI + soil

Stratum * LUI * soil

Marginal R2 Conditional R2 Unexplained

0.0 0.2 0.4 0.6 0.8 1.0
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Unweighted model results

Figure S2: Response of above-ground (circles) and soil (triangles) organismal abundance to land-

use type and intensity (from left to right within each land use: minimal, light and intense use)

compared to abundance in primary vegetation in unweighted model. Responses have been back-

transformed. Median values are used for other fixed effects. Error bars show 95% confidence

intervals.
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Figure S3: The (back-transformed) response of abundance to soil properties for five land uses

for soil biodiversity (left) and above-ground biodiversity (right), with median values for other

fixed effects. Shading spans ±0.5 standard errors, and rugs along the x axes show the values of

the explanatory variables represented in the data set used for modelling.
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Figure S4: The explanatory power of the unweighted models increases markedly with their

complexity, from a model containing only habitat layer, through models considering only main

effects of habitat layer and either land use intensity (LUI) or soil properties, through to additive

and finally interactive models.

Stratum

LUI

Stratum + LUI

Stratum + soil

Stratum + LUI + soil

Stratum * LUI * soil

Marginal R2 Conditional R2 Unexplained

0.0 0.2 0.4 0.6 0.8 1.0
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Invertebrate-only model results

Figure S5: Response of above-ground (circles) and soil (triangles) invertebrate abundance to

land-use type and intensity (from left to right within each land use: minimal, light and intense

use) compared to abundance in primary vegetation using invertebrate-only subset of the dataset.

Responses have been back-transformed. Median values are used for other fixed effects. Error

bars show 95% confidence intervals.
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Figure S6: The (back-transformed) response of abundance to soil properties for five land uses

for soil invertebrate biodiversity (left) and above-ground invertebrate biodiversity (right), with

median values for other fixed effects. Shading spans ±0.5 standard errors, and rugs along the x

axes show the values of the explanatory variables represented in the data set used for modelling.
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