
GigaScience

learnMSA: Learning and Aligning Large Protein Families
--Manuscript Draft--

Manuscript Number: GIGA-D-22-00144R1

Full Title: learnMSA: Learning and Aligning Large Protein Families

Article Type: Technical Note

Funding Information:

Abstract: Background: The alignment of large numbers of protein sequences is a challenging
task and its importance grows rapidly along with the size of biological datasets. State-
of-the-art algorithms have a tendency to produce less accurate alignments with an
increasing number of sequences. This is a fundamental problem since many
downstream tasks rely on accurate alignments.
Results: We present learnMSA, a novel statistical learning approach of profile hidden
Markov models (pHMMs) based on batch gradient descent. Fundamentally different
from popular aligners, we fit a custom recurrent neural network architecture for
(p)HMMs to potentially millions of sequences with respect to a maximum a posteriori
objective and decode an alignment. We rely on automatic differentiation of the log-
likelihood and thus, our approach is different from existing HMM training algorithms like
Baum–Welch. Our method does not involve progressive, regressive or divide-and-
conquer heuristics. We use uniform batch sampling to adapt to large datasets in linear
time without the requirement of a tree. When tested on ultra-large protein families with
up to 3.5 million sequences, learnMSA is both more accurate and faster than state-of-
the-art tools. On the established benchmarks HomFam and BaliFam with smaller
sequence sets it matches state-of-the-art performance. All experiments where done on
a standard workstation with a GPU.
Conclusions: Our results show that learnMSA does not share the counter-intuitive
drawback of many popular heuristic aligners which can substantially lose accuracy
when many additional homologs are input. LearnMSA is a future-proof framework for
large alignments with many opportunities for further improvements.

Corresponding Author: Mario Stanke, Dr. rer. nat.
University Greifswald Faculty of Mathematics and Natural Sciences: Universitat
Greifswald Mathematisch-Naturwissenschaftliche Fakultat
Greifswald, MV GERMANY

Corresponding Author Secondary
Information:

Corresponding Author's Institution: University Greifswald Faculty of Mathematics and Natural Sciences: Universitat
Greifswald Mathematisch-Naturwissenschaftliche Fakultat

Corresponding Author's Secondary
Institution:

First Author: Felix Becker, M.Sc.

First Author Secondary Information:

Order of Authors: Felix Becker, M.Sc.

Mario Stanke, Dr. rer. nat.

Order of Authors Secondary Information:

Response to Reviewers: Dear Hans,

We thank the reviewers for the extensive and constructive criticism. We believe we
have fully addressed the reviewers and your concerns and issues and included two
versions of the manuscript, the second with changes marked in red. Importantly, our
tool is now easily installable via both PyPI/pip and Bioconda. Moreover, we have
performed additional experiments to support one of our arguments, where Reviewer #2
was “not convinced” and “suggested a rewording” only. We decided to elaborate more
on this concern, added a new Figure 3 and believe these additional results strengthen

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

the manuscript. Further, we registered learnMSA with bio.tools and scicrunch.org.

We address the reviewers’ comments point by point below.

--
Reviewer #1: The article describes an original method, learnMSA, for construction of
large multiple sequence alignments, that uses a recurrent neural network approach to
learn profile Hidden Markov models of protein sequence families. The method is
evaluated, and compared to state of the art methods, on existing benchmarks
containing very large test sets, some with more than a million sequences. The methods
and evaluation experiments are clearly described and the results indicate that
learnMSA is competitive in terms of alignment accuracy and calculation time.

Major criticisms:
1.Other recent work using deep learning approaches to construct multiple sequence
alignments should be discussed, and if possible included in the comparisons. For
example, Zhang et al. DeepMSA: constructing deep multiple sequence alignment to
improve contact prediction and fold-recognition for distant-homology proteins.
Bioinformatics. 2020; Kuang et al. DLPAlign: A Deep Learning based Progressive
Alignment Method for Multiple Protein Sequences CSBio2020: CSBio '20: Proceedings
of the Eleventh International Conference on Computational Systems-Biology and
Bioinformatics; Jafari et al. Using deep reinforcement learning approach for solving the
multiple sequence alignment problem. SN Applied Sciences volume 1, Article number:
592 (2019)

Authors: We thank the reviewer and have added a deep learning paragraph to the
introduction with 8 additional references. However, the first reference that Reviewer #1
listed (DeepMSA) does not present a machine learning method although its name may
suggest so. We could not include any deep learning based tools in the comparison as
there are no such mature tools, only prototypes or proof of concepts.

Reviewer #1: I tried to install and run the software (using Tensorflow 2.5.0), but it failed
with the following error message: "NotImplementedError: Cannot convert a symbolic
Tensor (msa_hmm_layer/strided_slice_47:0) to a numpy array. This error may indicate
that you're trying to pass a Tensor to a NumPy call, which is not supported".

Authors: We apologize for the inconveniences with the manual installation of learnMSA
and its dependencies. We could reproduce this error and found out it was due to a
version conflict with another package which TensorFlow depends on. To avoid such
problems in the future, we now built and deposited learnMSA as a package at the
Python Package Index (PyPi), which can be installed from the prompt by typing ‘pip
install learnMSA’. Alternatively, our tool can be installed using Bioconda preferably in a
clean conda environment with ‘conda create -n learnMSA learnMSA’ assuming that the
Bioconda channel is set up. Please see https://github.com/Gaius-Augustus/learnMSA
for detailed installation instructions.

Reviewer #1: More minor comments:
1.The method is demonstrated using protein sequences. Is it also suitable for the
alignment of DNA/RNA sequences?

Authors: In principle, learnMSA could also align DNA/RNAsequences, but this feature
is not implemented yet. Machine learning methods like profile HMMs can likely play out
their advantages for proteins due to the relative complexity of parameter space and
priors. We have added this comment to the Discussion in the manuscript.

--
Reviewer #2: The authors present a practically applicable implementation of a hitherto
unexplored approach for the multiple sequence alignment problem that was first
described in the 1990's by Eddy, Krogh, Sjolander, et al.. learnMSA takes advantage of
tensorflow to perform 'statistical alignment' by iterations of steepest descent and
algorithmic pruning to identify a single optimal profile hidden markov model for a set of
sequences. The pHMM model advances Eddy's Plan7 architecture in its support for
both ancestral state and repeat regions, and the accompanying code provides

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

mechanisms for HMM model visualisation in addition to emission of the multiple
alignment of the given sequences induced by the final model.

Authors: Thanks

Reviewer #2: Code. The authors provide a repository containing a python module
(with tests), a python script for command line execution, and a jupyter notebook
demonstrating the methodology and results visualisation. Whilst documentation is
sparse, the code performs as described. I look forward to the package being made
available via pip and ultimately bioconda. I also look forward to enhancements made
by the authors and the future learnMSA community that enable users to make use of
the additional data embodied by the learned pHMM.

Authors: We have now made learnMSA easily available as a command line tool via
both PyPI/pip and Bioconda. Please see https://github.com/Gaius-Augustus/learnMSA
for detailed installation instructions. The tool will be in active development beyond the
paper release.

Reviewer #2: Manuscript. Overall, the manuscript presents a clear account of the
theoretical approach and practical implementation. Clarity could be improved in some
areas, and suggestions are made below. The authors also devised challenging
benchmarks in order to evaluate their method, which demonstrated both its strengths
and potential weaknesses. Whilst the results are convincing, they necessarily rely on
MSA statistics that are difficult to interpret, but this should not be a barrier to
publication. Ideally, a more robust analysis could be performed with gold standard data
such as structures, perhaps by adapting established MSA benchmarking tools such as
OxBench.

Authors: Thank you for suggesting additional benchmarks to challenge learnMSA. The
reference alignments from HomStrad and BaliBase we chose for evaluation are both
already structure-based. To extrapolate accuracy on large sequence numbers,
manually selected homologs were added (by others, in other publications) to create the
extended benchmarks HomFam and BaliFam which we used. OxBench’s alignments
are again too shallow for themselves (2 to 122 sequences) to be a proper benchmark
for our focus on large sequence families. Manually adding homologs to OxBench
would require constructing a new benchmark altogether which we consider out of the
scope of our manuscript. We argue that two different benchmarks with structure based
reference alignments in combination with the large datasets from Pfam are already
quite suitable to alleviate dataset-specific biases in the evaluation.

Reviewer #2: Below I note a number of questions for the authors, followed by
suggested revisions, and finally a handful of grammar/typo fixes.

Q1. are the disadvantages regarding domain repeats (in Viterbi decoding) addressable
?

Authors: Indeed, this is a good point to raise. Currently, our approach does not make
explicit use of differences between the copies when a protein contains a domain
multiple times. If multiple copies occur, possibly one could do a higher-level alignment,
in which the characters are domain occurrences. Some suitable score for a pair of
domain occurrences has to be defined for that. We consider this an idea for future
improvements.

Reviewer #2: Q2. the model surgery employs a 50% threshold for discard of
underpopulated match states or over-represented insertions - are there situations
where this could cycle ? If so, can such pathologies be detected in the reported
statistics for the model ? Could these heuristics also cause the problems when
aligning sequences of greatly differing lengths ?

Authors: In a theoretical worst case scenario this could cycle, but only under very
unlucky conditions. Currently, this can be detected manually from the default output of
learnMSA which includes information about which positions were extended or
discarded after each iteration. Re-running learnMSA with larger thresholds (e.g. 60%)
should then fix the problems. For the software release accompanying the paper, we

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

limit the number of surgery iterations to at most 4, such that a cycling surgery does
probably little harm at all.
Concerning greatly differing sequence lengths, assuming that in a hypothetical
scenario when about 50% of the sequences are full-length and the others are short
fragments mapping to roughly the same segment of the protein, learnMSA has to
decide between a long model, where the fragments use the entry/exit-distribution or a
short model, where the flanks of the full length sequences are insertions. The long
model can accommodate the fragments rather cheaply, whereas in the short model the
flanks would be more expensive because they would be modeled as emission from a
background distribution. LearnMSA could indeed cycle in this specific case, but we
generally do multiple independent training runs and if one of the resulting models is by
chance the long model with higher score, it will be selected automatically.

Reviewer #2: Q3. The command line tool only supports output of the final MSA - is
there utility in a) reporting also the pHMM for the MSA and b) the ancestral probabilities
?

Authors: We have implemented a command line option to output the learned
evolutionary times tau of our ancestral probability layer as a text file. Likewise we
added command line options to support plotting the consensus sequence logo and a
graph representation of the HMM which was previously only possible with the
accompanying Jupyter notebook. These changes are currently only available via github
(main branch) but will be pushed to pip and conda with the next minor release.

Reviewer #2: Q4. Were SP/TC scores computed for match states only ? since MSA
tools do not 'exclude' inserts, learnMSAs alignments might be being unfairly penalised
in the SP/TC evaluations.

Authors: The scores are computed for all residues independent of whether the model
classifies them as matches or not. Indeed, this is potentially a bias against our method
when compared to traditional aligners. However, we believe the score should not
depend on a subjective choice of the assessed method of whether something is
suitable to be scored or not. Some, but not all, of our benchmark datasets included
upper/lower case amino acids objectively indicating conservative regions, but it
seemed inconsistent to evaluate them differently than other datasets that lack the
distinction.

In addition to SP/TC scores, we also computed the column score (not included in the
manuscript) which is a weighted TC score where each reference column is weighted
by the number of pairs (excluding gaps). This implicitly favors conserved columns
which correspond to the match states in the HMM (assuming it is correct), or put
differently errors made when not aligning insertions at all weight very little. However,
we saw no noticeable advantage of learnMSA when evaluating under the column score
compared to TC score which could indicate that the unfair penalisation is not critical.

Reviewer #2: Q5. You discuss the extension to ensemble/multi-pHMM learning - is this
mathematically feasible with the current approach without a grid search to find the
optimal number of learned-pHMM models that can describe all sequences ?

Authors: There are several approaches of how at least local alternatives could be used
and trained and in doing so the strong assumption that the Markov property constitutes
in a standard pHMM could be relaxed. One possibility are different “branches” in a
single, global model introduced by new learnable transitions between non-adjacent
matches. This could in principle learn an optimal number of sub-models automatically.
Feasibility problems might occur when decoding an alignment from such a model. We
have not done substantial experiments on this matter yet.

Reviewer #2: Q6. Your point about the weakness of the HomFam dataset is interesting
- have any others attempted to correct for this weakness ?

Authors: Not that we know of. But quite the contrary, the recently proposed regressive
strategy [Garriga et al, Nature Biotechnology, 2019] might implicitly exploit it by
choosing the longest sequence as representative of a cluster and consequently

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

aligning the longest sequences in a dataset first. An indicator of this is the lower
relative performance of regressive T-Coffee on BaliFam compared to HomFam in our
experiments.

Reviewer #2: Q7. You note that transformers/etc are complimentary to the learnMSA
approach - could grammar based models be employed as priors to increase
convergence ?

Authors: This is a good idea but probably out of our scope. We plan to incorporate
ideas from Natural Language Processing, which are already explored by others (e.g.
Elnaggar, Ahmed, et al. "ProtTrans: towards cracking the language of Life's code
through self-supervised deep learning and high performance computing." arXiv preprint
arXiv:2007.06225 (2020).)

Reviewer #2: Suggested revisions.
R1. I am not convinced the manuscript supports the abstract's final statement
"statistical counter-intuition that more data leads to lower accuracy", and suggest that
is reworded to better reflect learnMSAs contribution to the field.

Specifically - most modern MSA tools take advantage of the observation that random
sampling leads to a 'good enough' scaffold for constructing an alignment, and
alignment errors introduced during heuristics tend to be reduced through the use of
pHMMs for realignment. I support the authors demonstration that learnMSA provides a
vastly more scalable alternative to 'optimal progressive alignment' (e.g. as
implemented in early approaches such as the AMPS toolchain), but the statement that
'more sequences leads to less accurate MSAs' is in my experience not widely
recognised the main barrier preventing the construction of MSAs for very large sets of
sequences (as opposed to massive datasets in the context of other fields such as
proteomics, where the 'chinese restaurant process' needs taking into consideration
when attempting to statistically assess low abundance signals). Whilst there are
commonalities between individual variation (e.g. species specific insertions, variable
repeat regions, rearranged domains, etc), MSA methods tend to handle these by
excessive gap insertion rather than erroneous alignment. In this regard, I applaud the
authors in their devising of learnMSA's boundary conditions and model surgery
heuristics, which I found to be highly effective in separating alignable fron unalignable
regions.

Authors: We performed an additional experiment and added a new Figure 3 to the
manuscript to support the claim that adding more homologs leads for several popular
aligners to a decrease in accuracy. To clearly state this, the fixed reference set of
sequences on which the MSA is evaluated is thereby unknown to the aligner. This
harmful effect of more data to MSA accuracy has been observed earlier in [Garriga et
al, Nature Biotechnology, 2019] (Figure 2) or in [Sievers et al., Molecular Systems
Biology, 2011] (Figure 3) and is also the main motivation for recent papers such as
[Smirnov, PLoS Computational Biology, 2021]. The new Figure 3 confirms this
counterintuitive loss in accuracy with T-Coffee and MAFFT and demonstrates that
learnMSA apparently does not suffer from it.

Indeed, aligning a sample subset may be an option to avoid a loss of accuracy when
the addition of further sequences decreases the accuracy of the MSA projected to the
subset. However, this does not work in the benchmark setting that we followed.
In addition, we changed the wording in the abstract to: “Our results show that
learnMSA does not share the counter-intuitive drawback of many popular heuristic
aligners which can substantially lose accuracy when many additional homologs are
input.”

Reviewer #2: R2. In the opening paragraph early experiments with training pHMMs
involved 'hand-holding' - this doesn't really mean anything to the general reader so it
should be more fully explained.

Authors: We added an explanation to the manuscript.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Reviewer #2: R3. The authors mention in the introduction that 'common problems are
local optima in the parameter space'. No mention is made specifically of how learnMSA
avoids this ? In the same spirit, it seems a drastic leap to suggest that statistical
learning 'presents itself as a valid approach' in the light of the problems that must be
overcome: instead, perhaps acknowledge that if these could be overcome, statistical
learning offers a route for computing (ultra-)large MSAs.

Authors: We reformulated this part to avoid the misunderstanding that local optima can
be avoided with gradient-based optimization.

Reviewer #2: R4. Method
i. The authors 'Note that pHMM methods can indicate the difference between
conserved residues and insertions explicitly' - whilst useful to communicate this
distinction, it seems to not follow from the previous sentence (discussing the data-
dependent entry- and exit- probabilities) - if there's a clear connection between these
statements it would help to clearly explain here.

Authors: We removed the statement as indeed it was not in the right context.

Reviewer #2: ii. The sentence in the paragraph describing explicitly how sequences
are padded with terminal symbols could be omitted - this seems an implementation
detail (albeit an essential one for the consistency of the system).

Authors: Agreed and deleted.

Reviewer #2: iii. "However, with automatic differentiation learnMSA can make use of
the advancing gradient-based optimization toolbox for machine learning
problems." - this looks like it deserves a reference for automatic differentiation (or a
review of recent advances in gradient based optimisation)

Authors: We now give such a reference.

Reviewer #2: iv. Recommend adding a few sentences at the start of the 'Training'
section to overview the objective of training (multilayer pHMM including ancestral
probabilities), and then introduce the naive approach of maximising log likelihood of a
random batch.

Authors: We changed it accordingly.

Reviewer #2: v. "For each
possible choice of p and  alpha the logarithmic prior densities are
(alpha  - 1) ln p + ( alpha' - 1) ln (1 - p), where we set  alpha' = 1." - is this correct ? if
so, what use is alpha' ?

Authors: The larger alpha, the more does the loss function favor large values of p. In
theory, we could have chosen any differentiable function for regularization, but we
intended not to lose the probabilistic interpretation. Our approach has a theoretical
foundation on Dirichlet priors with densities as given by the formula in your question
with 2 hyperparameters alpha and alpha’ for each p which have to be chosen
appropriately.

Our choice to set alpha’=1 was an ad hoc decision motivated merely by a simplification
of the computation and in order to search only a single parameter alpha instead of two.
This choice worked, but is of course not necessarily the best. In general, the larger
alpha’ the more are large values of (1-p) favored. The sum of both alphas controls the
concentration of the density on a single point.

Reviewer #2: R5.Evaluation
i. Figure 3 - I recommend marking TTK_HUMAN as the reference sequence
(https://www.jalview.org/help/html/calculations/referenceseq.html) and include the
alignment ruler in each MSA visualisation - this may make it easier to find and compare
the columns containing each reference sequence position in the alignments produced
by each method.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Authors: We changed the figure accordingly and agree that it is now easier to interpret.

Reviewer #2: R6. Conclusions
i. "By design, learnMSA can incorporate any type of sequence context encoded into
the HMM alphabet, relaxing the assumption that sites are independent." - for clarity, I
recommend you say 'adjacent sites' here, since the pHMM model only explicitly learns
transition chains along sequences, rather than long-range covariation.

Authors: We improved this paragraph in manuscript.

Reviewer #2: Grammar & Typos [...]

Authors: Thank you. We made the changes.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

GigaScience, 2017, 1–13
doi: xx.xxxx/xxxx
Manuscript in Preparation
Paper

P A P E R

learnMSA: Learning and Aligning Large Protein
Families
Felix Becker1,* and Mario Stanke1,*
1Institute of Mathematics and Computer Science, University of Greifswald, Germany
Correspondence: *felix.becker@uni-greifswald.de; mario.stanke@uni-greifswald.de

Abstract
Background: The alignment of large numbers of protein sequences is a challenging task and its importance grows
rapidly along with the size of biological datasets. State-of-the-art algorithms have a tendency to produce less accurate
alignments with an increasing number of sequences. This is a fundamental problem since many downstream tasks rely
on accurate alignments.
Results: We present learnMSA, a novel statistical learning approach of profile hidden Markov models (pHMMs) based on
batch gradient descent. Fundamentally different from popular aligners, we fit a custom recurrent neural network
architecture for (p)HMMs to potentially millions of sequences with respect to a maximum a posteriori objective and
decode an alignment. We rely on automatic differentiation of the log-likelihood and thus, our approach is different from
existing HMM training algorithms like Baum–Welch. Our method does not involve progressive, regressive or
divide-and-conquer heuristics. We use uniform batch sampling to adapt to large datasets in linear time without the
requirement of a tree. When tested on ultra-large protein families with up to 3.5 million sequences, learnMSA is both
more accurate and faster than state-of-the-art tools. On the established benchmarks HomFam and BaliFam with
smaller sequence sets it matches state-of-the-art performance. All experiments where done on a standard workstation
with a GPU.
Conclusions: Our results show that learnMSA does not share the counter-intuitive drawback of many popular heuristic
aligners which can substantially lose accuracy when many additional homologs are input. LearnMSA is a future-proof
framework for large alignments with many opportunities for further improvements.
Key words: profile hidden Markov model, multiple sequence alignment, machine learning

Background

Profile hidden Markov models (pHMMs) are probabilistic mod-
els for protein families. One of their applications is remote
homology search in large databases [1, 2]. Typically, an exist-
ing multiple sequence alignment (MSA) is turned into a pHMM,
however, pHMMs can also be trained on unaligned sequences
and a MSA can be decoded from the learned model [3, 4, 5]. The
training of pHMMs using the Baum-Welch algorithm was orig-
inally applied ‘with hand-holding’ to selected protein families
[3], which required a human to decide between specific archi-
tectures, e.g. for modeling a domain as opposed to an entire
protein. Advantages of the statistical learning approach over

traditional aligners are a consistent probabilistic background
for position-specific gap penalties and that both training and
decoding are linear in the number of sequences. However, pro-
file HMM training has never been popular as a general-purpose
alignment method since tabula rasa learning is challenging.
Apart from the model architecture being problem dependent,
another common issue is that algorithms may get stuck at lo-
cal optima in the parameter space. Simulated annealing [4] and
particle swarm optimization [6, 7] could further improve upon
Baum-Welch in this regard, but never resulted in applicable
tools comparable to modern state-of-the-art aligners. Gradi-
ent descent methods like the popular Adam algorithm [8] are
an hitherto entirely unexplored class of algorithms for HMM

Compiled on: September 1, 2022.
Draft manuscript prepared by the author.

1

Manuscript Click here to access/download;Manuscript;manuscript.pdf

https://www.editorialmanager.com/giga/download.aspx?id=136819&guid=d430d4cf-6e47-41f3-a302-d29188ecf00a&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=136819&guid=d430d4cf-6e47-41f3-a302-d29188ecf00a&scheme=1

2 | GigaScience, 2017, Vol. 00, No. 0

training with increasing relevance in the advent of automatic
differentiation [9].

Established tools that construct MSAs are either unfit for
large numbers of sequences or their accuracy decreases when
the number of aligned sequences grows large [10, 11]. This ef-
fect is particularly present for progressive algorithms, which
rely on a guide tree that dictates the order of the sequences to
be aligned, by greedily starting with closely related ones. One
drawback of this approach is the inability to revert gaps. Early
errors accumulate when more and more sequences are added.

One way to revert incorrect gaps is iterative refinement,
where intermediate alignments guide the construction of sub-
sequent ones [12]. Although iterative refinement strategies can
improve accuracy on moderate sequence numbers, they are un-
suitable for large numbers of sequences from a computational
perspective. For example, MAFFT G-INS-i produces very accu-
rate alignments, but is slow and memory-hungry due to an
all-to-all pairwise alignment stage. MAFFT-Sparsecore ap-
plies MAFFT G-INS-i to a small set of core sequences and pro-
gressively added the remaining sequences thereafter [13]. This
strategy is suitable to scale up iterative refinement to large se-
quence numbers, but biases in the core sequences have to be
avoided by choosing them as diverse as possible.

Divide-and-conquer strategies like PASTA [14] and MAGUS
[15] first construct subalignments on relatively small subsets
of the sequences and merge them thereafter. MAGUS uses a
Graph Clustering Merger for the latter stage. Recently, MA-
GUS was updated to support recursion for ultra-large datasets
[16]. Another technique with improved accuracy is the regres-
sive method which starts to align sequences containing the
most dissimilar ones first and merges subalignments by using
an overlapping sequence [10]. Divide-and-conquer strategies
have enabled the execution of slow but accurate algorithms like
MAFFT G-INS-i on large datasets and improved accuracy com-
pared to progressive strategies [10, 15]. However, they are still
heuristics that ignore everything but a subset at first and are
prone to errors in their merging steps.

Lastly, UPP [17] is related to our method by the fact that
it also uses a pHMM (or an ensemble of pHMMs) to represent
MSAs. However, UPP does not train a model on unaligned se-
quences. Instead, it first constructs a backbone MSA on a sub-
set of the sequences using tree-guided PASTA in order to esti-
mate the HMM parameters. Afterwards, it adds the remaining
sequences using the HMM. UPP has shown good performance
in the presence of high sequence length heterogeneity.

All mentioned MSA algorithms rely on accurate guide trees
and tree construction often becomes the computational bottle-
neck. Clustal Omega [11] uses the mbed method to construct a
tree. A faster but less accurate alternative is MAFFT-PartTree
[18] and another popular algorithm is FastTree [19]. A slow but
very accurate tree construction algorithm based on all-to-all
pairwise alignments is used in the G-INS-i option of MAFFT
[12]. The bottom line is the constant need to balance quality
and speed when constructing trees.

To date, deep learning is not commonly used for multiple
sequence alignment and if it is, its function is usually supple-
mentary, e.g. by optimizing the order of progressive alignment
with reinforcement learning [20] or employing a decision mak-
ing model to select from different strategies in a MSA pipeline
[21]. While some proof of concepts exist, the respective soft-
ware is not feasible for large numbers of sequences, gener-
ally not optimized (stated by the authors) or not available at
all. For pairwise alignment the traditional dynamic program-
ming framework can be supplemented by reinforcement learn-
ing [22] or deep models inspired by recent advances in natural
language processing improving accuracy on remote homologs
[23]. While deep learning is currently usually not used for their
construction, MSAs are, however, a popular input for end-to-

end machine learning methods that solve downstream tasks
[24, 25, 26, 27].

Our proposed aligner learnMSA is based on automated sta-
tistical learning of a pHMM with gradient descent. It does not
require a tree and has a linear asymptotic runtime in the num-
ber of sequences which is faster than most tree algorithms.
No progressive, regressive or divide-and-conquer heuristic is
used. Therefore, we avoid heuristic-based errors when merg-
ing subalignments or progressively adding sequences. We pro-
vide a more robust framework for (ultra-)large MSAs without
the counter-intuitive drawback of loosing accuracy when many
additional homologs are input.

We begin with the description of the underlying model and
a batch-wise variant of the forward algorithm that plays a cen-
tral role during parameter training. We empirically show the
suitability of learnMSA by testing it on ultra-large protein fam-
ilies from Pfam [28] with up to 3.5 million sequences as well as
the established biological benchmarks HomFam and BaliFam.

Methods

Model

Profile hidden Markov models are well known probabilistic
models of sequence consensus. When used to model a protein
family, the aim is to define a probability distribution over the
space of all possible protein sequences such that member se-
quences of the family have large probabilities. The resulting
statistical model can be used for database searches [1] and MSA
construction [3].

In a pHMM, a linear chain of match states represents the
consensus sequence of the family in question. Insertions
and deletions with respect to the consensus are modeled by
position-specific states and transitions. See Figure 1-A for an
illustration of the pHMM.

In addition to the standard pHMM architecture, we deploy
an augmented model following HMMER’s ‘Plan7’ [29, 30] (or-
ange states and transitions in Figure 1-A). The HMM parame-
ters are learned from unaligned protein sequences. In contrast
to previous approaches, our method also learns the additional
‘Plan7’ parameters jointly with the pHMM core model. Previ-
ously, HMMER used predefined value sets for different align-
ment modes (local or global, unihit or multihit) [30]. Here, we
automatically learn the correct alignment mode jointly with
the core pHMM starting tabula rasa. We have special states for
the left (L) and right (R) flank of the model. Initialization and
regularization of the flanking states differ from ordinary in-
sertion states Ii (see section ‘Training’). Moreover, the aug-
mented model allows multihit alignments, i.e. sequences may
contain repeats of a single domain motif by looping backwards.
The state C models any unannotated region between two do-
main hits and must be visited to jump from the end state E
back to the start state S. The model further handles sequence
length heterogeneity (fragmentary sequences) through entry-
and exit-probabilities from S into the consensus and, respec-
tively, from the consensus to E. Note that since version 2, HM-
MER uses a trick to achieve a uniform distribution over all pos-
sible pairs of entry- and exit points into the core model [30].
Here, we follow the older construction with explicit entry- and
exit-probabilities, however, they are now data-dependent in-
stead of ad hoc.

The set of all transition- and emission parameters is
learned from data with careful initialization and under the use
of Dirichlet priors (see section ‘Training’). In general, we have
one trainable parameter for each possible state transition and
in case of the emissions one parameter per match state and
amino acid. There are exceptions: Insertion- and flanking

F. Becker and M. Stanke | 3

Figure 1. A: LearnMSAs underlying pHMM based on HMMER’s ‘Plan7’ model. For the transition (emission) distributions, unconstrained learnable parameter
matrices θA (θB) are transformed by softmaxes over the outgoing edges of a state or the amino acid alphabet respectively. Squares indicate match states, diamonds
are insertions and circles are silent states (either delete states or the start- and end-state). In contrast to previous approaches, we also learn transition probabilities
augmenting the core model (orange). B: Sketch of a recurrent neural network architecture with a HMM-Cell that implements the forward recursion. The first
layer at the bottom computes ancestral distributions of amino acids for a sequence Si using a rate matrix and an evolutionary time τi that is learned jointly with
the HMM parameters.

states use a fixed background emission distribution that is not
optimized. The self-loop (and respectively exit) probabilities
for the flanking states L,R and C are tied to prevent a bias to-
wards one of the sides. Delete states (as well as the domain
start- and end-states S and E) are silent, i.e. they have no
emission distribution and do not not advance the position in
the observed sequence.

A pHMM can be parameterized by two probability matrices
for transitions and emissions and an initial state distribution.
Let Q be the set of all states and A be the stochastic |Q| × |Q|
matrix of state transitions. Observe that for pHMMs, this ma-
trix is very sparse. We call the number of match states in a
model its length l. Let Q′ := Q \ {D1, . . . ,Dl, S, E} denote the set
of all emitting states. Let B be the |Q′| × 25 emission matrix,
that is constructed by concatenating l learnable emission distri-
butions of the match states with background distributions for
all insertions and the flanks. The second dimension of B cor-
responds to the 20 standard amino acids, plus Selenocysteine,
Pyrrolysine and the ambiguous codes X,B and Z. The termi-
nal symbol (26-th letter) has an implicit probability of 0 at all
states except T.

In order to apply gradient descent, we parameterize the
model by unconstrained kernels θA and θB and enforce the
probabilistic constraints that the rows of A and B sum up to 1
with a softmax-function defined on a real vector: softmax(x)i =
exi∑
j e
xj

.
As seen in Figure 1-A the emission distribution of, for

example, Mi is computed by softmax(θBi), where θBi =
(θBiA ,θBiR ,θBiN ,θBiD , . . .) is the i-th row of θB. The matrix B is
constructed from the kernel θB by using softmaxes to compute
the match distributions over the amino acid alphabet.

The kernel θA is a collection of parameter vectors corre-
sponding to different transition types that share the same
initialization and prior. For example, we have l – 1 param-
eters for the match-to-match transitions. The total num-
ber of allowed transitions in the model as shown in Figure
1-A is linear in l. The probability distribution of transition-
ing from - for example - match Mi to one of the 4 adja-
cent states Mi+1, Ii, Di+1 or E is calculated by constructing

the vector θAMi = (θAMi,Mi+1 ,θAMi,Ii ,θAMi,Di+1 ,θAMi,E) and comput-
ing softmax(θAMi). We store A (or in fact, a matrix closely related
to A as described in section ‘Implicit model’) in sparse matrix
representation where illegal transitions are implicitly zero.

For the initial state distribution P0, we use a simple
parametrization by introducing a scalar θinit that controls the
probability of starting in the left flank. To this end, we define
pinit = σ(θinit) where σ is the sigmoid function. The initial dis-
tribution is P0(L) = pinit and P0(S) = 1 – pinit and P0(q) = 0 for
q 6= L, S.

In the following, let θ = (θinit,θA,θB) denote the complete
set of learnable parameters for the (augmented) pHMM.

Batch-wise forward algorithm

Assume for now that no silent states exist. For the pHMM as
introduced in section ‘Model’, we will describe an equivalent
implicit model without the silent states D1, . . . ,Dl, S and E in
section ‘Implicit model’. Consequently, Q = Q′ for now.

An unaligned protein sequence S can be described by a path
π of hidden states in the pHMM. Under our assumption π =
π0, . . . ,πn–1 and S = s0, . . . , sn–1 have the same length n. The
joint probability of observed and hidden sequence is P(S,π) =
P0(π0)P(s0 |π0)∏i>0 P(πi |πi–1)P(si |πi), where the transition-
and emission probabilities are computed as described in section
‘Model’ above.

The likelihood of a sequence is the sum of the joint probabil-
ities over all possible hidden paths: P(S) = ∑

π P(S,π) which is
related to HMMER’s forward score [30]. Intuitively, it describes
how well a sequence fits to the consensus when considering
all possible alignments. The likelihood can be efficiently com-
puted with dynamic programming using either the forward- or
the backward algorithm [31]. We present a batch-wise variant
of the forward algorithm that plays a central role during pa-
rameter training of learnMSA.

The forward probabilities are α(i)q := P(πi = q, s0, . . . , si).The well-known dynamic programming recursion to compute

4 | GigaScience, 2017, Vol. 00, No. 0

α(1), . . . ,α(n – 1) is
α(i)q = P(si | q) ∑

q′∈Q
P(q | q′)α(i – 1)q′ (1)

with α(0)q = P(s0 | q)P0(q).
Equation (1) lends itself to an efficient implementation for

a batch of sequences of size b. Let the b× 25 matrix S(i) denote
the tuple of all i-th sequence positions in the batch, that is S(i)jis an one-hot representation of the i-th residue of sequence
j. We omit the implementation detail that for variable length
sequences some positions might be terminal symbols here. In
the following, we factor out a partial likelihood term in each
forward step to allow an underflow-safe computation of the
likelihood. The batch-wise forward recursion is:

α′(i) =

S(i)BT ◦ α

′(i – 1)
Z(i – 1) A, i > 0

S(0)BT ◦ P0, i = 0
Z(i) = ∑

q∈Q
α′(i)q

L(i) = lnZ(i).

(2)

where i is a sequence index, α′(i) are b × |Q| batches of
scaled forward variables, ◦ denotes element-wise multiplica-
tion (with shape broadcasting, where required) and the ma-
trix multiplication that involves A uses an efficient implemen-
tation that exploits the sparse representation. Observe that
α(i) = α′(i) ◦∏i–1

i′=0 Z(i′).
The likelihood (for a single sequence) can eventually be

computed as P(S) = ∑
q α(n– 1)q. However, we prevent numer-

ical underflow by equivalently using the partial log-likelihood
values in Equation (2):

ln P(S) = n–1∑
i=0
L(i). (3)

Viterbi decoding

When we decode an alignment, we are interested in the
hidden path of a sequence with maximum probability
i.e. arg maxπ P(S,π). This can be computed efficiently using
the Viterbi algorithm [31] which is closely related to the for-
ward algorithm.

A Viterbi MSA can be constructed by aligning the most likely
hidden sequences of all input sequences [3]. Currently, we
leave insertions unaligned and left-adjusted except for the left
flank which is right-adjusted. Moreover, if domain repeats oc-
cur, the i-th occurrences of the domain in multiple sequences
respectively are currently aligned with each other. With both
simplifications, we accept that we are in a slight disadvan-
tage compared to state-of-the-art aligners which will align all
residues globally.

Implicit model

Conventionally, the forward recursion for pHMMs is imple-
mented in linear time per step by explicitly handling silent
states (the deletes Di, the starting state S and the ending state
E) [32]. This requires a long-winded sequential computation of
the forward variable for the delete states where α(i)Dj depends
on α(i)Dj–1 . Here, we treat all silent states as implicit states,
that is, internally we use an equivalent model that has only
emitting states, by folding all transitions entering and leaving

a silent state. That means all possible partial state paths that
start and end in an emitting state and consist only of silent
states else, are replaced by single transitions that have proba-
bility equal to the probability of the respective partial path. In
detail, each partial path Mi → Di+1 → . . .Dj–1 → Mj for j > i + 1
is replaced by an edge with probability

P(Mj | Mi) = P(Di+1 | Mi)
 j–2∏
i′=i+1

P(Di′+1 | Di′)
 P(Mj | Dj–1).

(4)
This changes the asymptotic runtime of the forward algo-

rithm, because the number of possible transitions from each
match state is not constant anymore. However, we can now im-
plement Equation (2) by taking full advantage of modern (GPU-
accelerated) computing frameworks. We found that given the
typical length of a protein (our benchmarks contain sequences
of length up to 800) the asymptotic downgrade is acceptable
in the light of parallelism: We can compute all values of α(i)
in parallel given α(i– 1). In the batch-wise forward algorithm,
the bottleneck is the matrix multiplication with the transition
matrix which should use an efficient implementation that ex-
ploits sparseness.

Folding all edges adjacent to silent states is referred to as
the implicit model, represented by a transition matrix Aimpl re-
placing A from section ‘Model’. Note that Aimpl is still very
sparse. Transitions over the start state S and the end state E,
i.e. deletions of initial or terminal parts, are handled analo-
gously. Also note that empty, infinite silent loops through the
model are not possible, because the unannotated segment state
C is an insertion that emits at least one amino acid and can not
be skipped.

Training

During training, learnMSA uses a recurrent neural network ar-
chitecture with a pHMM cell that scans a batch of sequences
column-of-residues-wise and successively applies Equation
(2). This architecture is visualized in Figure 1-B with the addi-
tion of ‘Ancestral probabilities’ as described later. Given θ, the
parameters of the model, the log-likelihood of a random batch
of b sequences is

L(θ; S1, . . . , Sb) = b∑
i=1

ln P(Si | θ). (5)

The general goal while successively observing random
batches is to adjust θ such that L increases over time. In prac-
tice, we minimize a loss function related to L that also incor-
porates prior knowledge about proteins.

Existing optimization algorithms like Baum-Welch [3] or
simulated annealing [4] avoid using gradients of L and use the
forward-backward algorithm for parameter updates instead.
An advantage of learnMSA is the possibility to optimize the
HMM jointly with other layers. Currently, we demonstrate this
as described in section ‘Ancestral probabilities’, but a broader
field opens up in this direction as discussed later. Gradient
based optimization can also be applied to objectives that are not
based on likelihood, for instance the discrimination or classi-
fication of (sub)families [33]. Traditional HMM learning algo-
rithms are not used for online learning although such variants
exist [5]. Typically, they require more technical work to include
priors than our gradient based approach. None of the methods
can guarantee globally optimal results. However, learnMSA can
make use of the advancing optimization toolbox for machine
learning problems based on automatic differentiation [9].

F. Becker and M. Stanke | 5

Table 1. Dirichlet parameters for the core pHMM transition distri-butions estimated from Pfam HMMs
α match insert delete
match 40.59 0.96 0.68
insert 26.75 23.32 -
delete 37.79 - 25.15

Maximum a posteriori loss
Models found by maximizing L might generalize weakly. This
is especially true if the number of training sequences m is
low. Our experiments will mainly focus on cases where m is
large (i.e. 10.000 to millions of sequences). However, we can
still have overfitting problems. Domain motifs of subfamilies
might be underrepresented in the sequence set leading to a
skewed model. Moreover, we might end up with a result that
fits the data well but is not biologically plausible (e.g. a model
that allows very long insertions or many gap openings). A max-
imum a posteriori estimate attempts to fit the data while at the
same time penalizing unplausible models [3]. In this sense, we
define our loss function as:

`(θ; S1, . . . , SB) = – 1
bL(θ; S1, . . . , SB) – 1

m ln(ρ(θ)). (6)
The loss ` has a foundation in Bayesian statistics. The first

term is the log-likelihood per sequence averaged over a batch
of sequences. Usually we choose b < m and consequently per-
form stochastic gradient descent. This allows us to rapidly
train models even on millions of homologous sequences. We
use random uniform batch sampling. The second term is the
prior density i.e. ρ is a function that rewards plausible models.
We normalize by 1

m to make the estimate consistent. The effect
of the prior is reduced proportional to the number of training
sequences. This is particularly important because we use a gen-
eral (i.e. family-agnostic) prior that should work over the full
range of dataset sizes. Following conventional standards [3],
we use Dirichlet densities [34, 35] over the different types of
transition distributions and the match emissions.

To reduce the total number of hyperparameters that have
to be set by hand, we salvaged as much general-purpose in-
formation as possible from Pfam HMMs. For the core model
probabilities, we took over 3 million example transition distri-
butions and maximized the likelihoods of 3 Dirichlets: One for
matches, insertions and deletes respectively (see Table 1).

For the emissions, we tested Dirichlet mixtures with differ-
ent component counts (1, 9, 32, 64, 128, 512) which we trained
on the match emission distributions of Pfam HMMs, but found
that for large sequence counts, a single Dirichlet density (i.e.
a mixture with one component) is enough. The expectation of
this Dirichlet distribution is also used to initialize the match
emissions as well as the (fixed) insertion emissions and the
flanks.

As described earlier, we optimize the transition probabili-
ties for flanking states, domain multihits and the entry- and
exit-probabilities jointly with the core model. We found that
these transitions require strict regularization. We defined a
simplified set of hyperparameters αflank, αsingle and αglobal and
(currently only roughly) searched for suitable values based on
the quality of the produced alignments. These hyperparame-
ters have a probabilistic foundation as parameters of Dirichlet
priors over specific Bernoulli distributions that were defined
to favor the probability p = 1 for particular, carefully defined
events. That means the prior can be maximized by maximiz-
ing p, but this choice has to be balanced with the likelihood.
For each possible choice of p and α the logarithmic prior den-
sities are (α – 1) ln p + (α′ – 1) ln (1 – p), where we set α′ = 1 .
The motivation behind this ad hoc choice was to keep the set of

hyperparameters for the method simple while maintaining the
probabilistic interpretation of the regularization term.

In particular, αflank controls the pressure to align to the core
model (rather than using the flanking states), i.e. increasing
αflank will result in longer insertions at the flanks and between
repeated domain segments. The parameter αflank regularizes
the self-loop probabilities of all flanking states, as well as P0(L)
and P(R | E). Furthermore, we introduce αsingle to penalize
core model repeats favoring large values for the probability 1 –
P(C | E) = P(R | E) + P(T | E). Lastly, αglobal penalizes local
alignments that use entry- and exit-transitions other than S→
M1 and Ml → E. The probabilities regularized by αglobal were
chosen such that all choices of starting and end points into
the consensus S → Mi → · · · → Mj → E for 1 ≤ i ≤ j ≤ l,
(i, j) 6= (1, l) are penalized uniformly. More precisely, we favor
large probabilities 1 – P(Mi | S)P(E | Mj) for 1 ≤ i ≤ j ≤ l,
(i, j) 6= (1, l). The values used for this paper are αflank = 7000,
αsingle = 1e9 and αglobal = 1e4.
Initialization
First, we guess an initial model length l by taking the median
of the sequence lengths and scaling it by a constant c. We found
that c = 0.8 works well. It is easier to find a rough initial
consensus if the number of match states is limited which forces
the model to restrict itself to the more relevant parts of the
sequences. The median is more robust against fragmentary
sequences than the average.

The initialization of θ could in principle use prior knowledge
about the protein family at hand. However, we are interested in
tabula rasa training with an universal initial parameter set in-
dependent on the input sequences. We chose an ad hoc position
independent initialization that reflects the prior distributions.
Intuitively, we want the initial model to focus its probability
mass on paths that use all match states. We do this by having
larger probability for the initial match-match transitions. We
took care to initialize the entry probabilities dependent of the
model length such that P(M1 | S) is always roughly 12 . More-
over, we initialize the repeat transition E→ C with a very small
probability and for the flanking states L,R and C we initialize
such that the self-loops are more likely than the exits.
Model surgery
After training, we might observe rarely used match states or
overused insertion states. We can discard or expand those po-
sitions and adapt the model length which is known as model
surgery [3].

Given a trained model, we discard match positions that are
used by less than 50% of the sequences. Likewise, we expand
positions where more than 50% of all sequences have an in-
sertion by a number of new match states equal to the average
insertion length. If a match position is discarded, all incident
edges are removed and new edges with default initialization
are carefully inserted to close the holes (there is a hole for each
consecutive segment of discarded positions). If an insertion is
expanded, edges at the position of interest that connect left and
right model part are removed. Eventually, all edges incident to
a new match state are default initialized. After each surgery
iteration, the flanking states, θinit, the kernel for the transi-
tion distribution of the end state E as well as the evolutionary
times τ of the ancestral probability layer (for details see section
‘Ancestral probabilities’) are reset to default and the model is
trained again. This is repeated at most 4 times which we found
is a good compromise between speed and accuracy. Per default,
we train 5 independent models and optimize them with model
surgery. Eventually, we chose the model with parameters θ
that maximizes 1

m (L(θ; S1, . . . , Sm) + ln(ρ(θ))) to decode the fi-
nal alignment.

6 | GigaScience, 2017, Vol. 00, No. 0

If the number of surgery iterations is > 1, we found it bene-
ficial (both performance and accuracy wise) to restrict training
in all but the last iterations to sequences with lengths above the
q-th quantile while keeping a minimum of k sequences. There-
fore, initial parameter updates are always on sequences that
have roughly full-length. Short fragmentary sequences may
disturb early training epochs. It is easier to incorporate them,
if a rough consensus is established and the matter simplifies
to fine-tuning the entry-, exit- and repeat-probabilities. We
found that q = 50% and k = 10.000 work well. This is in
line with other large scale MSA methods, where a common
denominator is a strong preliminary focus on putative full-
length sequences, i.e. sequences with lengths from the upper
quantiles. For example, MAFFT-Sparsecore only considers se-
quences with lengths above the median for its core alignment
and the regressive strategy favors the longest sequence as re-
spresentatives of subtrees (i.e. longer sequences are aligned
first).

Ancestral probabilities

We naturally assume the existence of a single whole-protein
consensus sequence C that represents the sequence set we wish
to align. Homologous sequences Si may be closely or distantly
related to C, i.e. we assume they have independent expected
mutations per site with respect to the consensus. Model-wise
we introduce evolutionary times τi to estimate the distance of
Si to C. The process is conventionally described by the Gen-
eral Time-Reversible Substitution Model parameterized by a
20× 20 matrix Q of instantaneous substitution rates from one
amino acid to any other [36, 37]. Like the scoring matrices used
by traditional alignment algorithms, Q models prior biological
knowledge on the relative expected frequencies of amino acid
substitutions. From Q, the amino acid mutation probabilities
after time τ given an initial amino acid can be derived as fol-
lows:

P(τ) = exp(τQ), (7)
where exp denotes the matrix exponential. The a-th row

of this matrix, P(τ)a, corresponds to the expected amino acid
distribution after time τ when starting with amino acid a. As
the model is time-reversible, it is also the distribution of amino
acids τ time units ago at a site where amino acid a is observed
now.

We initialize τ with zeros and optimize it under the con-
straints 0 ≤ τS ≤ 2.5 where the maximal value of 2.5 corre-
sponds to the PAM250 matrix and zero is the identity. The
vector τ is learned jointly with the HMM parameters θ. Put dif-
ferently, we learn the branch lengths of a star-like tree jointly
with the sequence model. For each batch of sequences, the cor-
rect subset of τ is gathered. The ancestral probabilities with
the final values τ are also used during Viterbi decoding of the
alignment. More precisely, we replace all likelihoods P(Si |θ)
with P(Si |θ,τi).

The τi are related to sequence weights but they are learned
from data and do not require a tree or any other pairwise se-
quence comparison. Assume that for some suitable distance
metric one sequence Si has a large total distance to all other
sequences. In a sequence weighting scheme Si would typically
have a larger weight than sequences with many close relatives
to account for the underrepresentation. Choosing a large τi can
increase P(Si | θ,τi) by smearing Si towards the consensus. But
this increase is independent of all other sequences and involves
no change of θ.

Technical background

We use TensorFlow [38] to automatically compute the gradi-
ents of ` with respect to θ and τ. We use the Adam optimizer
[8] with a learning rate of 0.1 to minimize `. Note that au-
tomatic differentiation allows low-effort changes to the HMM
architecture and the prior. Moreover, the addition of any type
of preliminary deep learning layer (e.g. ancestral probabilities)
is possible. Using a machine learning back end provides access
to GPU acceleration and other computational benefits out of
the box. Our method does not strictly require a GPU, however,
it is highly recommended to use one to train models beyond
length 100. The training automatically scales to multiple GPUs
by splitting the batches.

Data Description

We tested learnMSA on HomFam [11], BaliFam [39] and the ten
largest Pfam [28] families. The former two are benchmark col-
lections based on reference alignments from HOMSTRAD [40]
and BAliBase [41] respectively. Each reference set is embedded
into a large set of putative homologs gathered from Pfam. Bal-
iFam has 2 variants where the references are embedded into
100 and 10.000 homologs respectively. Low sequence numbers
were not our target of interest, but we included the small Bal-
iFam variant specifically to test the up-scaling ability of our
model. See Table 2 for further details. We did not modify, ex-
tend or reduce HomFam or BaliFam other than the embedding
step as just described.

To test the ability of our method to align under high se-
quence length heterogeneity, we constructed a fragmentary
variant of BaliFam10000 by following the procedure that was
used to test UPP before [17]. We chose BaliFam10000, be-
cause the homologs had lengths comparable to the references
whereas HomFam homologs in many cases appear to be not
full-length. We constructed a high-fragmentation collection
BaliFrag by randomly selecting 40% of the sequences per
dataset in BaliFam10000. For each of these sequences, we sam-
pled a fragment length from a normal distribution with mean
equal to 33% of the mean length of the full-length sequences
and a standard deviation of 15. We sampled uniformly from all
valid starting positions of the fragment in the whole sequence.

Finally, we experimented with ten ultra-large datasets
that were acquired from Pfam by selecting the largest fam-
ilies (based on the number of sequences in the full align-
ments) and downloading the respective UniProt datasets that
were generated by searching the UniProtKB database using
the Pfam family HMM. We also downloaded the corresponding
seed alignments to use them as a reference. For the training
datasets, we added the seed sequences to the UniProt datasets
if not already present and removed all gaps. The families are:
Zinc finger C2H2 type (PF00096), WD domain G-beta repeat
(PF00400), ABC transporter (PF00005), Protein kinase domain
(PF00069), Ankyrin repeats (PF12796), Major Facilitator Super-
family (PF07690), Leucine rich repeat (PF13855), Fibronectin
type III domain (PF00041), Response regulator receiver domain
(PF00072) and Immunoglobulin I-set domain (PF07679). All
have known 3D structure. ABC transporter is the largest dataset
with about 3.5 million sequences. See Table 3 for details.

Analysis

We compared learnMSA to the following aligners: Clustal
Omega (Version 1.2.4), regressive T-Coffee (Version
13.45.0.4846264), MAGUS (git hash f9a3676 from 2022-
01-21), UPP (Version 4.5.2) and MAFFT-Sparsecore (MAFFT

F. Becker and M. Stanke | 7

Table 2. Dataset properties
collection number of families number of sequences sequence length

min max avg min max avg
HomFam (refs.) 94 5 41 8 14 854 215

HomFam (combined) 94 93 93681 8007 12 854 148
BaliFam (refs.) 59 4 142 27 22 471 158

BaliFam100 59 104 242 127 20 764 161
BaliFam10000 36 10004 10142 10031 7 607 175

BaliFrag 36 10004 10142 10031 7 607 129

Table 3. Ultra-large dataset properties
family no. sequences

%id
sequence length

combined seed min max avg
PF00005 3489586 55 26 18 683 146
PF07690 1861106 192 13 37 577 284
PF00096 1783511 159 41 12 34 23
PF00072 1767045 52 25 28 156 110
PF00400 1594257 1465 24 12 101 35
PF00069 1154714 38 21 24 511 227
PF12796 945198 184 24 27 153 78
PF13855 766271 62 28 26 73 57
PF00041 666310 98 20 27 139 81
PF07679 579519 48 21 25 149 83

Sequence identity is based on full alignment. Sequence lengths are given for
the combined dataset.

Version 7.490). There is to the best knowledge of the au-
thors no mature deep learning based tool for large multiple
alignment of proteins available for comparison.

The command lines to align HomFam and BaliFam were (in-
put/output and CPU arguments omitted):

MsaHmm.py
clustalo -t protein --outfmt=fa
mafft-sparsecore.rb
run_upp.py -M -1 -m amino
magus.py -t clustal --recursive false
t_coffee -reg -nseq 100 -tree mbed

-method mafftginsi_msa

and for the ultra-large datasets (commands equal to the
HomFam/BaliFam case omitted):

mafft --parttree
magus.py -t random --recurse True

--recurseguidetree clustal
t_coffee -reg -nseq 1000 -tree parttree

-method mafftfftnsi_msa

We run learnMSA as well as UPP on all datasets (including
ultra-large) in default mode without manual parameter adjust-
ments. We did not attempt to align the ultra-large files with
Clustal Omega, because we already observed a severe drop in
accuracy on sequences in the thousands. MAFFT-Sparsecore
refused to align the ultra-large datasets. We used MAFFT with
the parttree option instead. For MAGUS, we enabled recursion
for the ultra-large datasets, set the guide tree for the high-
est recursion level to ‘random’ due to very long runtimes with
other choices and used clustal trees for all other recursion lev-
els. To use T-Coffee regressive on the ultra-large datasets,
we increased the maximum number of sequences in the sub-
alignments to 1000 in the hope that we could avoid very long
MSAs due to concatenated independent gaps during the merg-
ing steps. For a speedup, we also run T-Coffee with parttree
and MAFFT FFT-NS-i. All parameter changes in order to align
the ultra-large datasets were done reactively after testing the

slower and more accurate settings used for HomFam and Bali-
Fam first.

Our method was run using 8 CPU cores, 100 GB of RAM and
a NVIDIA GeForce RTX 3090 GPU for all datasets including the
ultra-large ones. All other aligners did not utilize a GPU and
were run using 8 CPU cores and 100 GB of RAM for HomFam
and BaliFam and 16 cores and 500 GB of RAM for the ultra-large
datasets. We chose all memory numbers as a safe upper limit
and did no further experiments to evaluate tight requirements.
We used a wall clock limit of 3 days for each individual ultra-
large alignment.

Sum-of-pairs (SP) score and total column (TC) score were
computed by comparing the subalignments induced by the
reference sequences to a structure based alignment (in case
of HomFam and BaliFam) or the Pfam seed alignment (in
case of the ultra-large datasets). We used T-Coffee with the
aln_compare option. The reference sequences are not known to
the aligning method.

On the ultra-large datasets learnMSA is most accurate and
fastest in almost all cases (see Table 4). All other methods ex-
cept UPP required manual adjustment of the default parameters
to get them to work. In the end, not all tested aligners were able
to align all datasets indicating technical limitations of state-of-
the-art tools. In addition to timeout and memory issues, we
observed a tendency of the divide-and-conquer methods (T-
Coffee, MAGUS) to construct MSAs with much larger column
counts than the reference (see the expansion column in Table
4), sometimes to the extent that the output file was too large
for further usage. This is most likely due to their merging of
subalignments in which independent gaps are stacked rather
than aligned. LearnMSAs alignments do not grow in length
with increasing number of sequences. Figure 4 shows repre-
sentatively that ultra-large MSAs computed by learnMSA tend
to be tighter than those of comparable tools and do not suffer
from underalignment. In the case of PF00096, learnMSA has
no clear advantage, however, this family has relatively high se-
quence identity and very short sequences and is therefore easier
to align than the others. Below 1 million sequences, learnMSA
loses its runtime advantage and is about as fast as MAFFT and
T-Coffee, but at the same time much more accurate.

Figure 2 shows the distribution of SP and TC scores for
HomFam and BaliFam. We were able to match state-of-the-
art performance on HomFam. If restricted to the 20 sequence
sets with at least 10.000 sequences, the benefit of using pHMM
based alignment increases. Note that the number of sequences
in the HomFam collection varies significantly (see Table 2).
Likewise, HMM matches state-of-the-art performance on Bal-
iFam10000, but falls behind on BaliFam100.

LearnMSA aligned HomFam and BaliFam10000 in a total of
40 hours (sequential training of 5 independent models on the
same machine). For the same, Clustal Omega took 3.5 hours,
MAFFT-Sparsecore 24 hours, UPP 19 hours, T-Coffee regres-
sive 9 hours and MAGUS 48 hours.

We also evaluated how increasing the number of homologs
that are aligned together with the reference sequences affects
alignment accuracy. To create a biologically realistic test set-

8 | GigaScience, 2017, Vol. 00, No. 0

>= 10000 seq. all

0

20

40

60

80

100

TC
 sc

or
e

n=20 n=94

HomFam

learnMSA
Clustal Omega

MAFFT
UPP

regressive T-Coffee
MAGUS

>= 10000 seq. all

0

20

40

60

80

100

SP
 sc

or
e

n=20 n=94

HomFam

learnMSA
Clustal Omega

MAFFT
UPP

regressive T-Coffee
MAGUS

BaliFam10000 BaliFrag BaliFam100

0

20

40

60

80

100

TC
 sc

or
e

n=36 n=36 n=59

BaliFam

learnMSA
Clustal Omega

MAFFT
UPP

regressive T-Coffee
MAGUS

BaliFam10000 BaliFrag BaliFam100
20

30

40

50

60

70

80

90

100

SP
 sc

or
e

n=36 n=36 n=59

BaliFam

learnMSA
Clustal Omega

MAFFT
UPP

regressive T-Coffee
MAGUS

Figure 2. Total column (TC, left) and sum-of-pairs (SP, right) scores for the HomFam (top) and BaliFam (bottom) collections.

0 100000 200000 300000 400000 500000
number of sequences

30

35

40

45

50

55

60

65

70

75

80

85

SP
 sc

or
e

learnMSA

learnMSA
(ref. only)

100/100 100/100 100/100 100/100 100/100

regressive T-Coffee (fast)

regressive T-Coffee (fast)
(ref. only)

100/100

100/100
90/100

80/100 68/100

regressive T-Coffee (accurate)

regressive T-Coffee (accurate)
(ref. only)

100/100 100/100 100/100 90/100 80/100

MAFFT parttree

MAFFT parttree
(ref. only)

100/100
100/100

100/100
100/100

100/100

MAFFT sparsecore

MAFFT sparsecore
(ref. only)

100/100 100/100 78/100

Figure 3. Alignment accuracy as a function of family size. For evaluation purposes, increasing numbers of further homologs are added to a static set of reference
sequences. The data points are labeled with the fractions of alignment tasks that produced an usable MSA at all. Missing data points indicate that the aligning
method failed for the entirety of the datasets. In case of a failed alignment (due to hardware constraints), we inserted the score of the largest successful alignment
in the respective series of nested sets, in favor of the aligning method. Therefore, the plot shows the behavior of the accuracy of the remaining MSAs under the
(obliging) assumption that the failed MSAs are in theory unaffected by an increase in sequence numbers. Such incomplete data points are colored red. The shaded
area is the standard deviations over the 10 samples, averaged over the families.

F. Becker and M. Stanke | 9

Table 4. Results for the ultra-large datasets
family method SP TC hours expansion

PF00005
learnMSA 74.9 22.2 10.0 1.89

UPP 73.5 10.2 52.5 1.98
MAFFT error
MAGUS timeout

regressive T-Coffee error

PF07690
learnMSA 56.1 0.0 30.2 1.82

UPP 51.6 0.0 35.5 2.48
MAFFT error
MAGUS timeout

regressive T-Coffee error

PF00096
learnMSA 92.9 6.5 0.9 1.16

UPP 86.3 0.0 1.7 2.23
MAFFT 84.1 16.1 0.3 2.74
MAGUS 94.8 3.2 3.6 4.68

regressive T-Coffee 69.9 0.0 0.9 6.55

PF00072
learnMSA 92.4 39.2 2.9 1.1

UPP 91.4 34.6 6.7 1.32
MAFFT 64.9 4.6 7.6 3.69
MAGUS 85.8 33.1 24.8 2.41

regressive T-Coffee output too large

PF00400
learnMSA 18.0 0.0 1.1 1.29

UPP 3.6 0.0 2.0 2.62
MAFFT 0.0 0.0 2.3 7.71
MAGUS 6.9 0.0 12.6 17.32

regressive T-Coffee 0.0 0.0 2.0 51.28

PF00069
learnMSA 83.4 24.9 11.3 1.37

UPP 83.3 20.2 19.5 1.6
MAFFT 54.9 5.4 53.0 3.52
MAGUS 65.4 18.1 29.1 4.77

regressive T-Coffee error

PF12796
learnMSA 72.4 0.0 1.3 0.85

UPP 40.8 0.0 4.3 3.18
MAFFT 40.4 0.4 7.5 6.36
MAGUS 58.9 0.0 67.2 5.62

regressive T-Coffee output too large

PF13855
learnMSA 94.7 26.2 0.8 1.05

UPP 91.0 21.5 2.5 1.71
MAFFT 80.6 3.1 1.2 3.05
MAGUS 94.7 38.5 54.1 1.47

regressive T-Coffee 49.2 0.0 0.8 7.21

PF00041
learnMSA 79.1 16.5 1.0 1.34

UPP 74.9 22.0 2.3 2.18
MAFFT 43.2 0.0 2.0 7.83
MAGUS 72.6 10.1 53.8 6.4

regressive T-Coffee 37.0 0.0 0.8 15.16

PF07679
learnMSA 94.1 50.0 0.9 1.11

UPP 88.7 46.0 2.9 1.43
MAFFT 68.1 13.0 1.1 3.36
MAGUS 84.0 42.0 4.3 2.12

regressive T-Coffee 44.2 2.0 0.6 8.55
Expansion denotes the ratio of the length of the predicted alignment (induced
by the reference sequences) to the reference alignment length. Values greater
than 1 indicate underalignment i.e. the estimated alignment is longer than
the reference. Timeout: The alignment could not be completed by the method
within a wall clock limit of 3 days. Error: The alignment failed with an error (ei-
ther out of memory or another unknown reason). Output too large: The align-
ment was successful, but the output file was impractically large to be properly
post-processed (for example PF12796: T-Coffee 445GB, learnMSA 1.2GB). For
each cell and column, the best value is in bold face.

ting, we took the 10 Pfam datasets from Table 3 and aligned
the combination of the respective seed sequences (called refer-
ences in the following) with random subsets of the remaining
homologs. We started by aligning only the references. Note
that the reference set sizes vary between 38 and 1465 (Table 3).
Homologs were drawn randomly without replacement from the
UniProtKB datasets to fill up the aligned datasets to monoton-
ically increasing sizes, such that the resulting sets are nested
(in a series of MSAs, homologs are only added, never removed).
We repeated this serial sampling procedure 10 times and av-
eraged the results over equal sized alignments. We compared
learnMSA with T-Coffee regressive and MAFFT using the com-
mands above from previous experiments, both the accurate and

fast variants.
As seen in Figure 3, the accurate variant of T-Coffee re-

gressive, MAFFT-Sparsecore and learnMSA are similar in SP
score when only aligning the references. Further, all align-
ment methods lose accuracy after adding homologs at all. How-
ever, the asymptotic accuracy of learnMSA is barely affected
by the number of added homologs, whereas we observe clearly
decreasing trends for the other methods. The relative perfor-
mance of the methods is dataset dependent and indicates that
learnMSA has advantages for the global alignment of protein
families. Starting at 200.000 sequences, we observed that re-
gressive T-Coffee and MAFFT sparsecore failed for some MSA
tasks (we allowed 200 GB of RAM per MSA). The only methods
able to align all datasets were learnMSA and MAFFT with the
partree option. For our evaluation, we decided to replace each
failed MSA with the largest successful alignment in the respec-
tive series of nested sets, assuming, in favor of the aligning
method, that the failed MSA is in theory unaffected by an in-
crease in sequence numbers. Despite that, as seen in Figure
3, typically a further increase in the number of homologs still
leads to a decrease in accuracy of the established algorithmic
aligners.

For the high-fragmentation collection BaliFrag, learnMSA
can compete with MAFFT-Sparsecore, UPP and MAGUS (Fig-
ure 2). All rely on robust ways to exclude putative fragmen-
tary sequences in early alignment stages by restricting initial
backbone alignments to sequences from the upper quantiles
[13, 17, 15]. Clustal Omega and T-Coffee regressive fall behind
in this benchmark. This analysis confirms that learnMSA can
accurately adapt to fragmentary sequences by first training a
pHMM on sequences that are deemed full-length and fitting to
the complete sequence set thereafter. Partial domain hits cor-
rectly use the entry- and exit-transitions as seen in Figure 5.
The difference of learnMSA to the competing methods is that
we do not restrict the initial stages to a constant-sized subset
of the sequences and that the final alignment is, in principle,
able to correct incorrect decisions from earlier iterations. A
suitable number of full-length examples is required to find a
correct initial model length and to build a consensus. However,
UPP teaches us that it is easy to add fragmentary sequences
with pHMMs once a full-length consensus is established [17].

Discussion

We have proposed learnMSA, a novel unsupervised learning
approach for the alignment of large protein families. In con-
trast to state-of-the-art aligners, learnMSA does not require
a tree, which eliminates a crucial performance bottleneck and
makes learnMSA asymptotically fast – linear in the number
of sequences. It is interesting to see that state-of-the-art
performance on large sequence numbers can be reached with-
out a tree by uniform batch sampling. Our method does not
rely on progressive, regressive or divide-and-conquer heuris-
tics. We showed empirically, that learnMSA, when aligning
millions of sequences, is both more accurate and faster (even
though the measured time was for 5 independent, sequentially
trained models). Moreover, when aligning Pfam families, ad-
ditional homologs decrease the accuracy of traditional, heuris-
tic methods (if they are feasible for large sequence numbers at
all), whereas learnMSA is more robust. Whether this statement
also applies to established benchmarks like HomFam remains
an open question that can be answered if more homologs are
gathered for these datasets in the future. A similar scaling ex-
periment, which was done for T-Coffee regressive [10] based on
HomFam, suffers from limited data coverage for large sequence
numbers, i.e. the number of available families decreases when
the MSA depth increases. This is not the case in our study as

10 | GigaScience, 2017, Vol. 00, No. 0

TTK_HUMAN
F7CJC0_CALJA
KPRO_MAIZE
WEE1_HUMAN
CSK21_CHICK
KIN28_YEAST
CTK1_YEAST
ARBK1_BOVIN
PKD1_DICDI
KGP1_DROME

KQ I Y A I K Y V NL E E A DNQ T L - DS Y RNE I A Y L NK L QQ - HS DK I I R L Y DY E I T - DQ Y I Y - - MVME CG N
HGDV A V K I L K V V DP T P EQ F - Q A F RNE V A V L R K T R - - - HV N I L L F MG YMT - - K DNL A - - I V TQWCE
DRHV A V K K L E NV RQG K - - - - E V F Q A E L S V I G R I N - - - HMNL V R I WG F C S E - G S HR L - - L V S E Y V E
G C I Y A I K R S K K P L AG S VDE - Q NA L R E V Y A HA V L G - - Q HS HV V R Y F S AWA E - DDHML - - I Q NE Y CN
NE K V V V K I L K P V K K K K I K R - - - - - - E I K I L E NL R - - GG P N I I T L A D I V K D - P V S R T P A L V F E HV N
G RK I A I K E I K T S E F K DG L D - MS A I R E V K Y L Q EMQ - - - HP NV I E L I D I F MA - Y DNL N - - L V L E F L P
E K L V A L K K L R L QG E R EG F P - I T S I R E I K L L Q S F D - - - HP NV S T I K E I MV E SQ K T V Y - - M I F E Y A D
G KMY AMK C L DK K R I KMKQG E T L A L NE R I ML S L V S TG DC P F I V CMS Y A F HT - P DK L S - - F I L DL MN
G L F F C S K T L R R E T I V HE K HK E HVNNE I N I ML N I S - - - HP Y I V K T Y S T F NT - P T K I H - - F I ME Y AG
VD I F A L K C L K K RH I V DT KQ E E H I F S E RH I ML S S R - - - S P F I C R L Y R T F RD - E K Y V Y - - ML L E A CM

534N 544- 553L 562K 572T 579V

TTK_HUMAN
F7CJC0_CALJA
KPRO_MAIZE
WEE1_HUMAN
CSK21_CHICK
KIN28_YEAST
CTK1_YEAST
ARBK1_BOVIN
PKD1_DICDI
KGP1_DROME

- - - K - Q I Y A I K Y V NL E E A - DNQ T L DS Y RNE I A Y L NK L QQ - - - HS DK I I R L Y DY E I T D - - Q Y I YMVME - CG N
HGDV - A V K I L K V V D - - - P - T P EQ F Q A F RNE V A V L R K T - R - - - H - V N I L L F MG YMT K D - - N - L A I V TQWCE -
- - - D - R HV A V K K L E - - - N - V RQG K E V F Q A E L S V I G R I - N - - - H - MNL V R I WG F C S EG - - S HR L L V S E Y V E -
- - - G - C I Y A I K R S K K P L A - G S V DEQNA L R E V Y A HA V L GQ - - - H - S HV V R Y F S AWA E D - - DHML I Q NE Y CN -
- - - N - E K V V V K I L K P V K - - K K K - - - - I K R E I K I L E NL RG - - - G - P N I I T L A D I V K DP V S R T P A L V F E HV N -
- - - G - R K I A I K E I K T S E F - K DG L DMS A I R E V K Y L Q EM - Q - - - H - P NV I E L I D I F MA Y - - DNL NL V L E F L P -
- - - E - K L V A L K K L R L QG E - R EG F P I T S I R E I K L L Q S F - D - - - H - P NV S T I K E I MV E SQ - K T V YM I F E Y A D -
- - - G - KMY AMK C L DK K R I KMKQG E T L A L NE R I ML S L V - S TG DC - P F I V CMS Y A F HT P - - DK L S F I L DL MN -
- - - G - L F F C S K T L R R E T I V HE K HK E HVNNE I N I ML N I - S - - - H - P Y I V K T Y S T F NT P - - T K I HF I ME Y AG -
- - - - V D I F A L K C L K K RH I V DT KQ E E H I F S E RH I ML S S - R - - - S - P F I C R L Y R T F RDE - - K Y V YML L E A CM -

-1 533V 542T 552Y 559H 569Y 577Y

Reference

MAFFT

learnMSA

TTK_HUMAN
F7CJC0_CALJA
KPRO_MAIZE
WEE1_HUMAN
CSK21_CHICK
KIN28_YEAST
CTK1_YEAST
ARBK1_BOVIN
PKD1_DICDI
KGP1_DROME

TTK_HUMAN
F7CJC0_CALJA
KPRO_MAIZE
WEE1_HUMAN
CSK21_CHICK
KIN28_YEAST
CTK1_YEAST
ARBK1_BOVIN
PKD1_DICDI
KGP1_DROME

- - - - - K - - - - Q - - I Y A I K Y V NL - - - E - - - - - E - - - - - - A - - - - - - - - - - - DN - - - - Q T - - L - - - - - D - - - - - S - - - - Y R - N - - - - - - - E I
- - - - - - - HG D - - - V - A V K - - - - - - - - - - - - - - - - - - - I L - - - - - K - - - - - V V - DP T P EQ F - - - - - Q A - - - - - - - - - - F R - N - - - - - - - E V
- - - D - R - - - - - H - V - A V K - - K L - - E N - - - V RQ - - - - - - G - - - K - E - - - - - V - F Q - A - - - - - - - E L
- - - - G - - - - - - - C I Y A I K R - - - - - - S K K P - - - - - L - - - AG - - - - S - V - - - D - - - - - - - - - - - - - E - Q - - - - - - NA - - L - - R - - - - - - - E V
NE K - - - - - - - - - V V - - V K - I - L - - - K - - P - - - - - - - - - - - - - - V K - - - - - K - - - - - - - - - - - - - K - K - - - - - - - - - - I K - R - - - - - - - E I
- - - G - R K - - - - - - I - A I K - - E I - - - K - - - - - - - - T - - - - - - S - - E - - - - F - - - - - - - - - - - - - - K - - DG L DMS - - A - I - - R - - - - - - - E V
- - - E - K - - - - - L - V - A L K - - K L - - - R - - - - - - - - L Q - - G - - - - - E - - R - - E - G - - - - - - - F P I T S - - - - - - - - - - - - I - - R - - - - - - - E I
- - - G - K - - - - - M - Y - AMK - C - L D - K K - - - - - R - - I - - - K - M - - - K - - QG - E - T L A L NE -
- - - G - L - - - - - F - F - C S K - T - L - - - R - - - - - R E T I - V - - - - - - - HE - K - - H - K E H - V NN - - - - E -
- - - V - D - - - - - - I F - A L K - C - L - K - K - - R - - H - - I - - - - - - - - - - - - - - V DT - - - KQ - - - - - - - E - E - - - - - - - - - H I F - S - - - - - - - E -

- A - Y - L - N - K L - - - - QQ - H - - S DK - I I - R L - - Y - - D - - - - Y - - - - - - - - - - - E - I T D - - - - - - Q Y - - - - - - - I - Y - MVM - - E - - - C - G N
- A - V - L - R - K T - - - - R - - H - - - V N - I L - L - - - F - - - - - - - M - - - - - G YMT K - D - - - - - - N - - L - - - - - - - - - A - - - I V T - - QW - - C E - -
- S - V - I - G - R I - - - - N - - H - M - - N - L V - R I - - - - WG - - - - F - - - C - - - - - S - E - - - - G - S - H - - - R - - - - - - L - - - L V S - - E Y - - V E - -
- Y - A - H - A - V L G - - - Q - - H - - - S H - V V - R Y - - F - - S - - - - AW - - - - A - - - - - E - - D - - - D - - - - - - - - - - - - - - H - ML I Q NE Y - - C N - -
- K - I - L - E - NL R - - - - - - - G - G P N - I I - T L A - - - - D - - I - V - - - - K - - - - - - DP - - - - V S - - - - - R T P A - - - - - - - L V F - - E H - - V N - -
- K - Y - L - Q - EM - - - - Q - - H - - - P N - V I - E L - - - I - D - - I - F - MA - - Y - - - - - D - - - - - - N - - - - - - - - - - - - L - N - L V L - - E F - - L P - -
- K - L - L - Q - S F - - - - D - - H - - - P N - V S - T I - - K - - E - - I - M - - - - - - - - - - V E - - - - - - - S - - - - Q - - K - T - V - Y - M I F - - E Y - - A D - -
- R - I ML S - L - V - S TG D - C - - - - P - F I V C - M - S Y - - - - A - - F - - - - - - - - - - - H - - - - - - T - P - D - K - - - - - - L S F - - I L - - DL - - MN - -
- I N I - M - L - N I - - - - S - - H - - - P - Y I V - K T - - Y - - - S T - - F - - - - - - - - - - - N - - - - - - T - - - - - P - - - - T K I - H - F I M - - E Y - - AG - -
R H - I - M - L - S S - - - - R - - S - - - P - F I C - R L - - Y - - R - - - T F - - - - - - - - - - - R - - - - - - D - - - E - K - - - Y - - V - YML - L - - E - A CM - - -

-1 528Y 536- 538- 539- 541- 544- 546- 549-

553- 557- 563- 568- 570- 571I 575Y 577Y 582-

Figure 4. Vertical MSA slices for the ultra-large family PF00069 with more than a million sequences. The 10 most informative sequences (i.e. the most dissimilar
ones based on the reference MSA) were extracted using T-Coffee. We took a random vertical slice ranging from column 25 to 90 in the reference MSA and
computed vertical slices for the predicted MSAs as induced by the sequence fragments. We used Jalview 2.11.2.2 with clustalx coloring for visualization. For better
comparability, TTK_HUMAN was selected as reference sequence.

1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 0.62 1.00 1.00 1.00 1.00

0
.1

0

0
.0

2

0
.1

0

0
.3

8

0
.5

4

0
.5

4

0
.5

4

0
.5

4

0
.6

1

0
.5

4

0
.5

4

0
.5

4

0
.5

4

0
.5

4

0
.3

7

0
.5

4

0
.1

6

0
.5

4

0
.5

4

0
.5

4

0
.5

4

0
.5

4

0
.5

4

0
.9

1

0
.5

4

0
.5

4

0
.5

4

0
.5

4

0.46 0.46 0.46 0.46 0.39 0.46 0.46 0.46 0.46 0.46 0.63 0.46 0.84 0.46 0.46 0.46 0.46 0.46 0.46 0.09 0.46 0.46 0.46 0.46

0
.1

5

0
.3

7

0
.3

3

0
.3

2

0
.6

3

0
.6

8

0
.6

2

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.5

8

0
.6

0

1.
00

0.63 0.67 0.68 0.37 0.32 0.38 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.42 0.40

0.98

0
.0

2

0.980.02

0.980.02

0.92

0.08

Insertions

Deletions

1
C (0.50)
A (0.41)
E (0.06)
en=0.85
ex=0.00

2
C (0.98)
A (0.00)
L (0.00)
en=0.00
ex=0.00

3
D (0.49)
K (0.39)
N (0.07)
en=0.00
ex=0.00

4
S (0.42)
L (0.08)
T (0.08)
en=0.00
ex=0.00

5
C (0.88)
A (0.06)
T (0.02)
en=0.00
ex=0.00

6
I (0.21)
A (0.20)
V (0.18)
en=0.00
ex=0.00

7
C (0.90)
V (0.05)
A (0.02)
en=0.00
ex=0.00

8
T (0.71)
K (0.12)
A (0.09)
en=0.00
ex=0.00

9
K (0.40)
R (0.28)
L (0.09)
en=0.00
ex=0.00

10
S (0.85)
C (0.10)
M (0.02)
en=0.00
ex=0.00

11
I (0.42)
N (0.12)
V (0.10)
en=0.00
ex=0.00

12
P (0.89)
V (0.09)
A (0.00)
en=0.00
ex=0.00

13
P (0.60)
A (0.25)
G (0.13)
en=0.00
ex=0.00

14
Q (0.47)
K (0.25)
I (0.10)

en=0.00
ex=0.00

15
C (0.76)
F (0.14)
Y (0.05)
en=0.00
ex=0.00

16
R (0.46)
V (0.14)
Q (0.13)
en=0.00
ex=0.00

17
C (0.98)
A (0.00)
L (0.00)
en=0.00
ex=0.00

18
T (0.34)
S (0.16)
L (0.11)
en=0.00
ex=0.00

19
D (0.97)
B (0.01)
A (0.00)
en=0.00
ex=0.00

20
T (0.29)
I (0.28)
V (0.13)
en=0.00
ex=0.00

21
L (0.37)
T (0.13)
N (0.10)
en=0.00
ex=0.00

22
N (0.29)
D (0.26)
G (0.16)
en=0.00
ex=0.00

23
F (0.30)
S (0.30)
M (0.10)
en=0.00
ex=0.00

24
C (0.87)
D (0.05)
Q (0.03)
en=0.00
ex=0.00

25
H (0.35)
Y (0.31)
P (0.14)
en=0.00
ex=1.00

1bbi

B2RGA6_9FABA/56-79

1sbwi

Figure 5. A learned pHMM for the Bowman-Birk serine protease inhibitor family in the HomFam collection with Viterbi paths for three different sequences: A
single domain hit (blue), a multihit (brown) and a partial hit (cyan). Numbers on edges are transition probabilities, numbers on nodes are self-loop probabilities.
For each match states, the top three amino acids and their probabilities are printed, along with the probability of entering and exiting at the respective match.

F. Becker and M. Stanke | 11

aadh

aat

ace

Acetyltransf

adh

aldosered

Ald_Xan_dh_2

annexin

asp

az

biotin_lipoyl

blmb

blm

bowman

cahChtBD

cryst

cyclocys

cyt3

cytbDEATH

DMRL_synthase

egf

flav GEL
ghf10ghf11

ghf13

ghf1ghf22ghf5

glob

gluts

gpdh

hiphla

HLH

HMG_box
hom

hormone_rec

hprhr

icd

il8ins int

KAS

kringle

kunitz

ldh

LIM

ltn

lyase_1

mmp

mofe

msbmyb_DNA-binding

OTCace

oxidored_q6

p450

PDZ

peroxidase

phc

phoslip
profilin

proteasome

Rhodanese rhv

ricin

rnasemam

rrm

rub

rvp

scorptoxinsdr

seatoxin

serpin

slectinsodcu

sodfe

Stap_Strp_toxin

sti

subt
Sulfotransfer

tgfb

timtms
TNF

toxin

trfl

tRNA-synt_2b

uce

zf-CCHH

1 2 3 4 5 6 7
relative reference length

60

40

20

0

20

40

60

sc
o
re

 d
if
fe

re
n
ce

SP score comparison of learnMSA and MAFFT

small (SP=94.96, n=5)

multi domain (SP=53.40, n=10)

alpha plus beta (SP=84.20, n=21)

small disulphide (SP=87.54, n=10)

alpha beta (SP=76.53, n=15)

all beta (SP=81.17, n=14)

alpha beta barrel (SP=85.74, n=5)

all alpha (SP=79.32, n=14) aadh

aat

ace

Acetyltransf

adh

aldosered Ald_Xan_dh_2

annexin

asp
az
biotin_lipoyl

blmb

blm

bowman

cah

ChtBD

cryst

cyclocys

cyt3

cytb

DEATHDMRL_synthase

egf

flav

GEL

ghf10ghf11

ghf13

ghf1ghf22

ghf5

glob

gluts

gpdh

hip

hla

HLHHMG_box

homhormone_rechpr
hr

icdil8ins

int

KAS

kringle

kunitz ldh
LIMltn

lyase_1

mmp

mofe

msb

myb_DNA-binding

OTCace

oxidored_q6

p450

PDZ

peroxidase

phc

phoslip

profilin

proteasome

Rhodanese

rhv

ricin

rnasemam

rrm
rub

rvp

scorptoxin

sdr

seatoxin

serpin

slectin

sodcu

sodfeStap_Strp_toxin

sti

subt

Sulfotransfer

tgfb

tim
tms

TNF

toxin

trfl

tRNA-synt_2b

uce

zf-CCHH

1 2 3 4 5 6 7
relative reference length

20

0

20

40

60

80

sc
o
re

 d
if
fe

re
n
ce

SP score comparison of learnMSA and UPP

>
>

>
le

ar
nM

S
A

 is
 m

or
e

ac
cu

ra
te

>
>

>
le

ar
nM

S
A

 is
 m

or
e

ac
cu

ra
te

multihits

Figure 6. A detailed comparison of the performance of learnMSA relative to MAFFT-Sparsecore (left) and UPP (right) for all 94 HomFam families grouped by
secondary structure. Score difference is defined as SP(learnMSA) – SP(other). Relative reference length is defined as the ratio of the average reference length and the
average length of the combined dataset including the homologs. For example, ‘Ald_Xan_dh_2’ references are on average about 7 times as long as the respective
homologs. The legend contains the average SP score of learnMSA per structure group.

enough homologs were available from the UniProtKB datasets.
LearnMSA generalizes and automatizes earlier pHMM train-

ing approaches for protein families. It does this by taking HM-
MER’s ‘Plan7’ model, but avoids the manual adjustment of the
‘alignment mode’ (local versus glocal or unihit versus multi-
hit). Instead, the extra states and transitions (orange in Figure
1 A) are optimized jointly with the core model starting with
a tabula rasa configuration which greatly reduces the required
hand-holding. This is also beneficial, if a suitable alignment
mode for a dataset is unknown. LearnMSA is designed in a
way that minimizes the assumptions a user has to make. Note
that for all tested datasets, including dramatically varying se-
quence numbers and levels of fragmentation, we used learn-
MSAs default configuration of hyperparameters. It should be
pointed out, that learnMSAs is particularly accurate compared
to other methods when aligning families that contain multi-
hits. This is clearly visible in Figure 6, for example in the
cases of Beta gamma crystallin (‘cryst’, PF00030), Bowman-
Birk protease inhibitor (‘bowman’, PF00228) or Annexin (‘an-
nexin’, PF00191).

On HomFam and BaliFam we match state-of-the-art per-
formance but observe reduced relative accuracy for low se-
quence numbers. This indicates that there is a lower limit
on the sequence numbers below which learnMSAs performance
decreases relatively to other methods, but this is not surprising
for a statistical learning approach and can currently be solved
by falling back to a traditional aligner. There is a slight dis-
advantage of HMM in average scores for HomFam over all 94
datasets compared to only the largest 20. HomFam contains
datasets with a few as 93 sequences. Further evaluation re-
vealed that the disadvantage is not fully explained by low se-
quence numbers alone, however. Instead, we observed prob-
lems if the reference sequences are significantly longer than
the homologs (for instance rhv references are on average five
times as long as the homologs). Figure 6 (left) indicates a neg-
ative correlation between relative reference length with respect

to homologs and score difference. The low-score cases fre-
quently map to ‘multi domain’ secondary structures. In those
cases the references are full-length proteins and the homologs
pruned to a specific domain (i.e. information is cut away). This
effect is present for all comparison tools except UPP which is
shown in Figure 6 on the right. For statistical learning the
choice of homologs in HomFam constitutes a problem. The
number of reference sequences is very low (8 on average for
HomFam) and they can contain information that the homologs
miss, which means that potentially important motifs are un-
derrepresented in the dataset. In such situations it is both
hard to guess a suitable initial model length and train a full-
length model from scratch. Moreover, this reveals a potential
weak spot of the HomFam collection: A method that aligns the
longest sequences in a dataset first, will most likely catch the
references early. The score, which is estimated on the refer-
ences only, might therefore overestimate the true score on the
complete dataset.

Note that in principle, learnMSA could also align DNA/RNA
sequences, but this feature is not implemented yet. Machine
learning methods can likely play out their advantages more for
proteins due to the relative complexity of parameter space and
priors. Further, learnMSA is currently best suited for short or
medium length sequences.

Conclusion

Our proposed approach constitutes a probabilistically grounded
framework for large MSA that has potential for further im-
provements in several directions. Further development might
be straightforward because of the extensible nature of our
method.

A natural extension of the work presented here are ensem-
bles of pHMMs. They are used in UPP where a subset of the se-
quences is aligned and subsequently represented by an ensem-

12 | GigaScience, 2017, Vol. 00, No. 0

ble. Recently, MAGUS combined with an HMM ensemble has
shown improved accuracy as well [42]. On the HomFam collec-
tion, UPPs performance decreased slightly when replacing the
ensemble with a single HMM [17]. The latter is related to our
approach with the difference that for learnMSA, the HMM pa-
rameters depend on all input sequences instead of a randomly
selected backbone set. This might explain why learnMSA aligns
HomFam slightly more accurately than UPP, as seen in Figure
2, even though learnMSA does not currently use an ensemble.

When benchmarking learnMSA, we observed decreasing rel-
ative performance when reducing the number of sequences to
align. The behavior of state-of-the-art tools is usually comple-
mentary: They are more accurate for lower sequence numbers.
Moreover, Figure 6 shows that the relative performance of
learnMSA greatly depends on the particular (reference) dataset.
This suggests the idea of a combined approach to multiple se-
quence alignment, where a prior (e.g. the number of sequences)
or posterior (e.g. the likelihood) criterion is used to decide be-
tween the MSA of either learnMSA or of an established heuristic
aligner.

In contrast to traditional learning algorithms for HMMs,
gradient-based learning can, in principle, be a module of a
larger machine learning model that is trained end-to-end. By
design, learnMSA can incorporate any type of sequence con-
text encoded into the HMM alphabet. For instance, single-
sequence secondary structure predictions can be incorporated.
Secondary structure is more conserved than primary sequence
and this approach has been shown to increase accuracy in
the presence of low sequence identity [43]. There are many
kinds of interactions in proteins that are not easily modeled
by our current approach, for example pairwise correlations be-
tween amino acid distributions in positions that are widely
separated in the primary sequence but close in the three-
dimensional structure. The field of protein language model-
ing where parameter-rich sequence models are learned semi-
supervised [44, 45] based on Attention [46, 47] or LSTMs [48]
is also compatible and complementary to our approach. Cur-
rently, we use very limited prior knowledge about proteins in
the form of parameters as we simply one-hot encode amino
acids and only use a rate matrix to compute ancestral probabil-
ities. Using instead semantically rich [44] residual-level em-
bedding vectors from pre-trained language models may benefit
the predictions.

Availability of source code and requirements

• Project name: learnMSA
• Project home page: https://github.com/Gaius-Augustus/

learnMSA
• Operating system(s): Platform independent
• Programming language: Python3
• Other requirements: Python packages tensorflow, optional

for visualization: networkx, logomaker
• License: MIT
• RRID: SCR_022572
• biotoolsID: learnMSA

Availability of supporting data and materials

The datasets supporting the results of this article are
available in the repository https://github.com/felbecker/
MSA-HMM-Analysis.

List of abbreviations

(p)HMM: (profile) hidden Markov model; MSA: multiple se-
quence alignment

Competing Interests

The authors declare that they have no competing interests.

Author’s Contributions

F.B. designed and implemented learnMSA, prepared the data,
ran all software and wrote the manuscript. M.S. conceived the
idea and designed and implemented an initial version of a re-
current machine learning layer for HMMs and provided proto-
type code for the usage of ancestral probabilities. All authors
approved the final manuscript.

References

1. Eddy SR. Accelerated profile HMM searches. PLoS compu-
tational biology 2011;7(10):e1002195.

2. Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Chal-
lenges in homology search: HMMER3 and convergent
evolution of coiled-coil regions. Nucleic acids research
2013;41(12):e121–e121.

3. Krogh A, Brown M, Mian IS, Sjölander K, Haussler D. Hid-
den Markov models in computational biology: Applica-
tions to protein modeling. Journal of molecular biology
1994;235(5):1501–1531.

4. Eddy SR, et al. Multiple alignment using hidden Markov
models. In: Ismb, vol. 3; 1995. p. 114–120.

5. Baldi P, Chauvin Y, Hunkapiller T, McClure M. Hidden
Markov models in molecular biology: new algorithms and
applications. Advances in Neural Information Processing
Systems 1992;5.

6. Rasmussen TK, Krink T. Improved Hidden Markov Model
training for multiple sequence alignment by a parti-
cle swarm optimization—evolutionary algorithm hybrid.
Biosystems 2003;72(1-2):5–17.

7. Sun J, Wu X, Fang W, Ding Y, Long H, Xu W. Multiple se-
quence alignment using the Hidden Markov Model trained
by an improved quantum-behaved particle swarm opti-
mization. Information Sciences 2012;182(1):93–114.

8. Kingma DP, Ba J. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:14126980 2014;.

9. Baydin AG, Pearlmutter BA, Radul AA, Siskind JM. Auto-
matic differentiation in machine learning: a survey. Jour-
nal of Marchine Learning Research 2018;18:1–43.

10. Garriga E, Di Tommaso P, Magis C, Erb I, Mansouri L,
Baltzis A, et al. Large multiple sequence alignments with
a root-to-leaf regressive method. Nature biotechnology
2019;37(12):1466–1470.

11. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li
W, et al. Fast, scalable generation of high-quality pro-
tein multiple sequence alignments using Clustal Omega.
Molecular systems biology 2011;7(1):539.

12. Katoh K, Standley DM. MAFFT multiple sequence
alignment software version 7: improvements in perfor-
mance and usability. Molecular biology and evolution
2013;30(4):772–780.

13. Yamada KD, Tomii K, Katoh K. Application of
the MAFFT sequence alignment program to large
data—reexamination of the usefulness of chained guide
trees. Bioinformatics 2016;32(21):3246–3251.

14. Mirarab S, Nguyen N, Guo S, Wang LS, Kim J, Warnow T.

https://github.com/Gaius-Augustus/learnMSA
https://github.com/Gaius-Augustus/learnMSA
https://github.com/felbecker/MSA-HMM-Analysis
https://github.com/felbecker/MSA-HMM-Analysis

F. Becker and M. Stanke | 13

PASTA: ultra-large multiple sequence alignment for nu-
cleotide and amino-acid sequences. Journal of Computa-
tional Biology 2015;22(5):377–386.

15. Smirnov V, Warnow T. MAGUS: multiple sequence
alignment using graph clustering. Bioinformatics
2021;37(12):1666–1672.

16. Smirnov V. Recursive MAGUS: scalable and accurate mul-
tiple sequence alignment. PLoS computational biology
2021;17(10):e1008950.

17. Nam-phuong DN, Mirarab S, Kumar K, Warnow T.
Ultra-large alignments using phylogeny-aware profiles.
Genome biology 2015;16(1):1–15.

18. Katoh K, Toh H. PartTree: an algorithm to build an approx-
imate tree from a large number of unaligned sequences.
Bioinformatics 2007;23(3):372–374.

19. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately
maximum-likelihood trees for large alignments. PloS one
2010;5(3):e9490.

20. Jafari R, Javidi MM, Kuchaki Rafsanjani M. Using deep
reinforcement learning approach for solving the multi-
ple sequence alignment problem. SN Applied Sciences
2019;1(6):1–12.

21. Kuang M, Liu Y, Gao L. DLPAlign: A Deep Learning based
Progressive Alignment Method for Multiple Protein Se-
quences. In: CSBio’20: Proceedings of the Eleventh Inter-
national Conference on Computational Systems-Biology
and Bioinformatics; 2020. p. 83–92.

22. Song YJ, Ji DJ, Seo H, Han GB, Cho DH. Pairwise heuris-
tic sequence alignment algorithm based on deep rein-
forcement learning. IEEE open journal of engineering in
medicine and biology 2021;2:36–43.

23. Llinares-López F, Berthet Q, Blondel M, Teboul O, Vert
JP. Deep embedding and alignment of protein sequences.
bioRxiv 2021;.

24. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ron-
neberger O, et al. Highly accurate protein structure pre-
diction with AlphaFold. Nature 2021;596(7873):583–589.

25. Mirabello C, Wallner B. RAWMSA: End-to-end deep learn-
ing using raw multiple sequence alignments. PloS one
2019;14(8):e0220182.

26. Fukuda H, Tomii K. DeepECA: an end-to-end learning
framework for protein contact prediction from a multiple
sequence alignment. BMC bioinformatics 2020;21(1):1–15.

27. Ju F, Zhu J, Shao B, Kong L, Liu TY, Zheng WM, et al. Cop-
ulaNet: Learning residue co-evolution directly from mul-
tiple sequence alignment for protein structure prediction.
Nature communications 2021;12(1):1–9.

28. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar
GA, Sonnhammer EL, et al. Pfam: The protein families
database in 2021. Nucleic acids research 2021;49(D1):D412–
D419.

29. Eddy SR. Profile hidden Markov models. Bioinformatics
(Oxford, England) 1998;14(9):755–763.

30. Eddy SR. A probabilistic model of local sequence alignment
that simplifies statistical significance estimation. PLoS
computational biology 2008;4(5):e1000069.

31. Rabiner L, Juang B. An introduction to hidden Markov
models. ieee assp magazine 1986;3(1):4–16.

32. Durbin R, Eddy SR, Krogh A, Mitchison G. Biological se-
quence analysis: probabilistic models of proteins and nu-
cleic acids. Cambridge university press; 1998.

33. Van der Auwera S, Bulla I, Ziller M, Pohlmann A, Harder T,
Stanke M. ClassyFlu: classification of influenza A viruses
with Discriminatively trained profile-HMMs. PLoS One
2014;9(1):e84558.

34. Brown M, Hughey R, Krogh A, Mian IS, Sjölander K, Haus-
sler D. Using Dirichlet mixture priors to derive hidden
Markov models for protein families. In: Ismb, vol. 1; 1993.

p. 47–55.
35. Sjölander K, Karplus K, Brown M, Hughey R, Krogh A, Mian

IS, et al. Dirichlet mixtures: a method for improved detec-
tion of weak but significant protein sequence homology.
Bioinformatics 1996;12(4):327–345.

36. Dayhoff MO, Eck R, Park C. A model of evolutionary
change in proteins. Atlas of protein sequence and struc-
ture 1972;5(88-99):88–99.

37. Le SQ, Gascuel O. An improved general amino acid
replacement matrix. Molecular biology and evolution
2008;25(7):1307–1320.

38. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al.
TensorFlow: A System for Large-Scale Machine Learning.
In: 12th USENIX symposium on operating systems design
and implementation (OSDI 16); 2016. p. 265–283.

39. Edgar RC. MUSCLE v5 enables improved estimates of
phylogenetic tree confidence by ensemble bootstrapping.
bioRxiv 2021;.

40. Stebbings LA, Mizuguchi K. HOMSTRAD: recent devel-
opments of the homologous protein structure alignment
database. Nucleic acids research 2004;32(suppl_1):D203–
D207.

41. Thompson JD, Koehl P, Ripp R, Poch O. BAliBASE 3.0:
latest developments of the multiple sequence alignment
benchmark. Proteins: Structure, Function, and Bioinfor-
matics 2005;61(1):127–136.

42. Shen C, Zaharias P, Warnow T. MAGUS+ eHMMs: im-
proved multiple sequence alignment accuracy for fragmen-
tary sequences. Bioinformatics 2022;38(4):918–924.

43. Wright ES. DECIPHER: harnessing local sequence context
to improve protein multiple sequence alignment. BMC
bioinformatics 2015;16(1):1–14.

44. Alley EC, Khimulya G, Biswas S, AlQuraishi M, Church
GM. Unified rational protein engineering with sequence-
based deep representation learning. Nature methods
2019;16(12):1315–1322.

45. Rao R, Bhattacharya N, Thomas N, Duan Y, Chen X,
Canny J, et al. Evaluating protein transfer learning with
TAPE. Advances in neural information processing systems
2019;32:9689.

46. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L,
Gomez AN, et al. Attention is all you need. Advances in
neural information processing systems 2017;30.

47. Devlin J, Chang MW, Lee K, Toutanova K. Bert: Pre-
training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:181004805 2018;.

48. Hochreiter S, Schmidhuber J. Long short-term memory.
Neural computation 1997;9(8):1735–1780.

GigaScience, 2017, 1–13
doi: xx.xxxx/xxxx
Manuscript in Preparation
Paper

P A P E R

learnMSA: Learning and Aligning Large Protein
Families
Felix Becker1,* and Mario Stanke1,*
1Institute of Mathematics and Computer Science, University of Greifswald, Germany
Correspondence: *felix.becker@uni-greifswald.de; mario.stanke@uni-greifswald.de

Abstract
Background: The alignment of large numbers of protein sequences is a challenging task and its importance grows
rapidly along with the size of biological datasets. State-of-the-art algorithms have a tendency to produce less accurate
alignments with an increasing number of sequences. This is a fundamental problem since many downstream tasks rely
on accurate alignments.
Results: We present learnMSA, a novel statistical learning approach of profile hidden Markov models (pHMMs) based on
batch gradient descent. Fundamentally different from popular aligners, we fit a custom recurrent neural network
architecture for (p)HMMs to potentially millions of sequences with respect to a maximum a posteriori objective and
decode an alignment. We rely on automatic differentiation of the log-likelihood and thus, our approach is different from
existing HMM training algorithms like Baum–Welch. Our method does not involve progressive, regressive or
divide-and-conquer heuristics. We use uniform batch sampling to adapt to large datasets in linear time without the
requirement of a tree. When tested on ultra-large protein families with up to 3.5 million sequences, learnMSA is both
more accurate and (occasionally multiple times) faster than state-of-the-art tools. On the established benchmarks
HomFam and BaliFam with smaller sequence sets it matches state-of-the-art performance. All experiments where done
on a standard workstation with a GPU.
Conclusions: Our results show that learnMSA does not share the counter-intuitive drawback of many popular heuristic
aligners which can substantially lose accuracy when many additional homologs are input. LearnMSA is a future-proof
framework for large alignments with many opportunities for further improvements.
Key words: profile hidden Markov model, multiple sequence alignment, machine learning

Background

Profile hidden Markov models (pHMMs) are probabilistic mod-
els for protein families. One of their applications is remote
homology search in large databases [1, 2]. Typically, an exist-
ing multiple sequence alignment (MSA) is turned into a pHMM,
however, pHMMs can also be trained on unaligned sequences
and a MSA can be decoded from the learned model [3, 4, 5]. The
training of pHMMs using the Baum-Welch algorithm was orig-
inally applied ‘with hand-holding’ to selected protein families
[3], which required a human to decide between specific archi-
tectures, e.g. for modeling a domain as opposed to an entire
protein. Advantages of the statistical learning approach over

traditional aligners are a consistent probabilistic background
for position-specific gap penalties and that both training and
decoding are linear in the number of sequences. However, pro-
file HMM training has never been popular as a general-purpose
alignment method since tabula rasa learning is challenging.
Apart from the model architecture being problem dependent,
another common issue is that algorithms may get stuck at lo-
cal optima in the parameter space. Simulated annealing [4] and
particle swarm optimization [6, 7] could further improve upon
Baum-Welch in this regard, but never resulted in applicable
tools comparable to modern state-of-the-art aligners. Gradi-
ent descent methods like the popular Adam algorithm [8] are
an hitherto entirely unexplored class of algorithms for HMM

Compiled on: September 1, 2022.
Draft manuscript prepared by the author.

1

Manuscript Click here to access/download;Manuscript;manuscript-
changesred.pdf

https://www.editorialmanager.com/giga/download.aspx?id=136820&guid=48174b8d-2bab-443e-a0dd-1994712a6f12&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=136820&guid=48174b8d-2bab-443e-a0dd-1994712a6f12&scheme=1

2 | GigaScience, 2017, Vol. 00, No. 0

training with increasing relevance in the advent of automatic
differentiation [9].

Established tools that construct MSAs are either unfit for
large numbers of sequences or their accuracy decreases when
the number of aligned sequences grows large [10, 11]. This ef-
fect is particularly present for progressive algorithms, which
rely on a guide tree that dictates the order of the sequences to
be aligned, by greedily starting with closely related ones. One
drawback of this approach is the inability to revert gaps. Early
errors accumulate when more and more sequences are added.

One way to revert incorrect gaps is iterative refinement,
where intermediate alignments guide the construction of sub-
sequent ones [12]. Although iterative refinement strategies can
improve accuracy on moderate sequence numbers, they are un-
suitable for large numbers of sequences from a computational
perspective. For example, MAFFT G-INS-i produces very accu-
rate alignments, but is slow and memory-hungry due to an
all-to-all pairwise alignment stage. MAFFT-Sparsecore ap-
plies MAFFT G-INS-i to a small set of core sequences and pro-
gressively added the remaining sequences thereafter [13]. This
strategy is suitable to scale up iterative refinement to large se-
quence numbers, but biases in the core sequences have to be
avoided by choosing them as diverse as possible.

Divide-and-conquer strategies like PASTA [14] and MAGUS
[15] first construct subalignments on relatively small subsets
of the sequences and merge them thereafter. MAGUS uses a
Graph Clustering Merger for the latter stage. Recently, MA-
GUS was updated to support recursion for ultra-large datasets
[16]. Another technique with improved accuracy is the regres-
sive method which starts to align sequences containing the
most dissimilar ones first and merges subalignments by using
an overlapping sequence [10]. Divide-and-conquer strategies
have enabled the execution of slow but accurate algorithms like
MAFFT G-INS-i on large datasets and improved accuracy com-
pared to progressive strategies [10, 15]. However, they are still
heuristics that ignore everything but a subset at first and are
prone to errors in their merging steps.

Lastly, UPP [17] is related to our method by the fact that
it also uses a pHMM (or an ensemble of pHMMs) to represent
MSAs. However, UPP does not train a model on unaligned se-
quences. Instead, it first constructs a backbone MSA on a sub-
set of the sequences using tree-guided PASTA in order to esti-
mate the HMM parameters. Afterwards, it adds the remaining
sequences using the HMM. UPP has shown good performance
in the presence of high sequence length heterogeneity.

All mentioned MSA algorithms rely on accurate guide trees
and tree construction often becomes the computational bottle-
neck. Clustal Omega [11] uses the mbed method to construct a
tree. A faster but less accurate alternative is MAFFT-PartTree
[18] and another popular algorithm is FastTree [19]. A slow but
very accurate tree construction algorithm based on all-to-all
pairwise alignments is used in the G-INS-i option of MAFFT
[12]. The bottom line is the constant need to balance quality
and speed when constructing trees.

To date, deep learning is not commonly used for multiple
sequence alignment and if it is, its function is usually supple-
mentary, e.g. by optimizing the order of progressive alignment
with reinforcement learning [20] or employing a decision mak-
ing model to select from different strategies in a MSA pipeline
[21]. While some proof of concepts exist, the respective soft-
ware is not feasible for large numbers of sequences, gener-
ally not optimized (stated by the authors) or not available at
all. For pairwise alignment the traditional dynamic program-
ming framework can be supplemented by reinforcement learn-
ing [22] or deep models inspired by recent advances in natural
language processing improving accuracy on remote homologs
[23]. While deep learning is currently usually not used for their
construction, MSAs are, however, a popular input for end-to-

end machine learning methods that solve downstream tasks
[24, 25, 26, 27].

Our proposed aligner learnMSA is based on automated sta-
tistical learning of a pHMM with gradient descent. It does not
require a tree and has a linear asymptotic runtime in the num-
ber of sequences which is faster than most tree algorithms.
No progressive, regressive or divide-and-conquer heuristic is
used. Therefore, we avoid heuristic-based errors when merg-
ing subalignments or progressively adding sequences. We pro-
vide a more robust framework for (ultra-)large MSAs without
the counter-intuitive drawback of loosing accuracy when many
additional homologs are input.

We begin with the description of the underlying model and
a batch-wise variant of the forward algorithm that plays a cen-
tral role during parameter training. We empirically show the
suitability of learnMSA by testing it on ultra-large protein fam-
ilies from Pfam [28] with up to 3.5 million sequences as well as
the established biological benchmarks HomFam and BaliFam.

Methods

Model

Profile hidden Markov models are well known probabilistic
models of sequence consensus. When used to model a protein
family, the aim is to define a probability distribution over the
space of all possible protein sequences such that member se-
quences of the family have large probabilities. The resulting
statistical model can be used for database searches [1] and MSA
construction [3].

In a pHMM, a linear chain of match states represents the
consensus sequence of the family in question. Insertions
and deletions with respect to the consensus are modeled by
position-specific states and transitions. See Figure 1-A for an
illustration of the pHMM.

In addition to the standard pHMM architecture, we deploy
an augmented model following HMMER’s ‘Plan7’ [29, 30] (or-
ange states and transitions in Figure 1-A). The HMM parame-
ters are learned from unaligned protein sequences. In contrast
to previous approaches, our method also learns the additional
‘Plan7’ parameters jointly with the pHMM core model. Previ-
ously, HMMER used predefined value sets for different align-
ment modes (local or global, unihit or multihit) [30]. Here, we
automatically learn the correct alignment mode jointly with
the core pHMM starting tabula rasa. We have special states for
the left (L) and right (R) flank of the model. Initialization and
regularization of the flanking states differ from ordinary in-
sertion states Ii (see section ‘Training’). Moreover, the aug-
mented model allows multihit alignments, i.e. sequences may
contain repeats of a single domain motif by looping backwards.
The state C models any unannotated region between two do-
main hits and must be visited to jump from the end state E
back to the start state S. The model further handles sequence
length heterogeneity (fragmentary sequences) through entry-
and exit-probabilities from S into the consensus and, respec-
tively, from the consensus to E. Note that since version 2, HM-
MER uses a trick to achieve a uniform distribution over all pos-
sible pairs of entry- and exit points into the core model [30].
Here, we follow the older construction with explicit entry- and
exit-probabilities, however, they are now data-dependent in-
stead of ad hoc.

The set of all transition- and emission parameters is
learned from data with careful initialization and under the use
of Dirichlet priors (see section ‘Training’). In general, we have
one trainable parameter for each possible state transition and
in case of the emissions one parameter per match state and
amino acid. There are exceptions: Insertion- and flanking

F. Becker and M. Stanke | 3

Figure 1. A: LearnMSAs underlying pHMM based on HMMER’s ‘Plan7’ model. For the transition (emission) distributions, unconstrained learnable parameter
matrices θA (θB) are transformed by softmaxes over the outgoing edges of a state or the amino acid alphabet respectively. Squares indicate match states, diamonds
are insertions and circles are silent states (either delete states or the start- and end-state). In contrast to previous approaches, we also learn transition probabilities
augmenting the core model (orange). B: Sketch of a recurrent neural network architecture with a HMM-Cell that implements the forward recursion. The first
layer at the bottom computes ancestral distributions of amino acids for a sequence Si using a rate matrix and an evolutionary time τi that is learned jointly with
the HMM parameters.

states use a fixed background emission distribution that is not
optimized. The self-loop (and respectively exit) probabilities
for the flanking states L,R and C are tied to prevent a bias to-
wards one of the sides. Delete states (as well as the domain
start- and end-states S and E) are silent, i.e. they have no
emission distribution and do not not advance the position in
the observed sequence.

A pHMM can be parameterized by two probability matrices
for transitions and emissions and an initial state distribution.
Let Q be the set of all states and A be the stochastic |Q| × |Q|
matrix of state transitions. Observe that for pHMMs, this ma-
trix is very sparse. We call the number of match states in a
model its length l. Let Q′ := Q \ {D1, . . . ,Dl, S, E} denote the set
of all emitting states. Let B be the |Q′| × 25 emission matrix,
that is constructed by concatenating l learnable emission distri-
butions of the match states with background distributions for
all insertions and the flanks. The second dimension of B cor-
responds to the 20 standard amino acids, plus Selenocysteine,
Pyrrolysine and the ambiguous codes X,B and Z. The termi-
nal symbol (26-th letter) has an implicit probability of 0 at all
states except T.

In order to apply gradient descent, we parameterize the
model by unconstrained kernels θA and θB and enforce the
probabilistic constraints that the rows of A and B sum up to 1
with a softmax-function defined on a real vector: softmax(x)i =
exi∑
j e
xj

.
As seen in Figure 1-A the emission distribution of, for

example, Mi is computed by softmax(θBi), where θBi =
(θBiA ,θBiR ,θBiN ,θBiD , . . .) is the i-th row of θB. The matrix B is
constructed from the kernel θB by using softmaxes to compute
the match distributions over the amino acid alphabet.

The kernel θA is a collection of parameter vectors corre-
sponding to different transition types that share the same
initialization and prior. For example, we have l – 1 param-
eters for the match-to-match transitions. The total num-
ber of allowed transitions in the model as shown in Figure
1-A is linear in l. The probability distribution of transition-
ing from - for example - match Mi to one of the 4 adja-
cent states Mi+1, Ii, Di+1 or E is calculated by constructing

the vector θAMi = (θAMi,Mi+1 ,θAMi,Ii ,θAMi,Di+1 ,θAMi,E) and comput-
ing softmax(θAMi). We store A (or in fact, a matrix closely related
to A as described in section ‘Implicit model’) in sparse matrix
representation where illegal transitions are implicitly zero.

For the initial state distribution P0, we use a simple
parametrization by introducing a scalar θinit that controls the
probability of starting in the left flank. To this end, we define
pinit = σ(θinit) where σ is the sigmoid function. The initial dis-
tribution is P0(L) = pinit and P0(S) = 1 – pinit and P0(q) = 0 for
q 6= L, S.

In the following, let θ = (θinit,θA,θB) denote the complete
set of learnable parameters for the (augmented) pHMM.

Batch-wise forward algorithm

Assume for now that no silent states exist. For the pHMM as
introduced in section ‘Model’, we will describe an equivalent
implicit model without the silent states D1, . . . ,Dl, S and E in
section ‘Implicit model’. Consequently, Q = Q′ for now.

An unaligned protein sequence S can be described by a path
π of hidden states in the pHMM. Under our assumption π =
π0, . . . ,πn–1 and S = s0, . . . , sn–1 have the same length n. The
joint probability of observed and hidden sequence is P(S,π) =
P0(π0)P(s0 |π0)∏i>0 P(πi |πi–1)P(si |πi), where the transition-
and emission probabilities are computed as described in section
‘Model’ above.

The likelihood of a sequence is the sum of the joint probabil-
ities over all possible hidden paths: P(S) = ∑

π P(S,π) which is
related to HMMER’s forward score [30]. Intuitively, it describes
how well a sequence fits to the consensus when considering
all possible alignments. The likelihood can be efficiently com-
puted with dynamic programming using either the forward- or
the backward algorithm [31]. We present a batch-wise variant
of the forward algorithm that plays a central role during pa-
rameter training of learnMSA.

The forward probabilities are α(i)q := P(πi = q, s0, . . . , si).The well-known dynamic programming recursion to compute

4 | GigaScience, 2017, Vol. 00, No. 0

α(1), . . . ,α(n – 1) is
α(i)q = P(si | q) ∑

q′∈Q
P(q | q′)α(i – 1)q′ (1)

with α(0)q = P(s0 | q)P0(q).
Equation (1) lends itself to an efficient implementation for

a batch of sequences of size b. Let the b× 25 matrix S(i) denote
the tuple of all i-th sequence positions in the batch, that is S(i)jis an one-hot representation of the i-th residue of sequence
j. We omit the implementation detail that for variable length
sequences some positions might be terminal symbols here. In
the following, we factor out a partial likelihood term in each
forward step to allow an underflow-safe computation of the
likelihood. The batch-wise forward recursion is:

α′(i) =

S(i)BT ◦ α

′(i – 1)
Z(i – 1) A, i > 0

S(0)BT ◦ P0, i = 0
Z(i) = ∑

q∈Q
α′(i)q

L(i) = lnZ(i).

(2)

where i is a sequence index, α′(i) are b × |Q| batches of
scaled forward variables, ◦ denotes element-wise multiplica-
tion (with shape broadcasting, where required) and the ma-
trix multiplication that involves A uses an efficient implemen-
tation that exploits the sparse representation. Observe that
α(i) = α′(i) ◦∏i–1

i′=0 Z(i′).
The likelihood (for a single sequence) can eventually be

computed as P(S) = ∑
q α(n– 1)q. However, we prevent numer-

ical underflow by equivalently using the partial log-likelihood
values in Equation (2):

ln P(S) = n–1∑
i=0
L(i). (3)

Viterbi decoding

When we decode an alignment, we are interested in the
hidden path of a sequence with maximum probability
i.e. arg maxπ P(S,π). This can be computed efficiently using
the Viterbi algorithm [31] which is closely related to the for-
ward algorithm.

A Viterbi MSA can be constructed by aligning the most likely
hidden sequences of all input sequences [3]. Currently, we
leave insertions unaligned and left-adjusted except for the left
flank which is right-adjusted. Moreover, if domain repeats oc-
cur, the i-th occurrences of the domain in multiple sequences
respectively are currently aligned with each other. With both
simplifications, we accept that we are in a slight disadvan-
tage compared to state-of-the-art aligners which will align all
residues globally.

Implicit model

Conventionally, the forward recursion for pHMMs is imple-
mented in linear time per step by explicitly handling silent
states (the deletes Di, the starting state S and the ending state
E) [32]. This requires a long-winded sequential computation of
the forward variable for the delete states where α(i)Dj depends
on α(i)Dj–1 . Here, we treat all silent states as implicit states,
that is, internally we use an equivalent model that has only
emitting states, by folding all transitions entering and leaving

a silent state. That means all possible partial state paths that
start and end in an emitting state and consist only of silent
states else, are replaced by single transitions that have proba-
bility equal to the probability of the respective partial path. In
detail, each partial path Mi → Di+1 → . . .Dj–1 → Mj for j > i + 1
is replaced by an edge with probability

P(Mj | Mi) = P(Di+1 | Mi)
 j–2∏
i′=i+1

P(Di′+1 | Di′)
 P(Mj | Dj–1).

(4)
This changes the asymptotic runtime of the forward algo-

rithm, because the number of possible transitions from each
match state is not constant anymore. However, we can now im-
plement Equation (2) by taking full advantage of modern (GPU-
accelerated) computing frameworks. We found that given the
typical length of a protein (our benchmarks contain sequences
of length up to 800) the asymptotic downgrade is acceptable
in the light of parallelism: We can compute all values of α(i)
in parallel given α(i– 1). In the batch-wise forward algorithm,
the bottleneck is the matrix multiplication with the transition
matrix which should use an efficient implementation that ex-
ploits sparseness.

Folding all edges adjacent to silent states is referred to as
the implicit model, represented by a transition matrix Aimpl re-
placing A from section ‘Model’. Note that Aimpl is still very
sparse. Transitions over the start state S and the end state E,
i.e. deletions of initial or terminal parts, are handled analo-
gously. Also note that empty, infinite silent loops through the
model are not possible, because the unannotated segment state
C is an insertion that emits at least one amino acid and can not
be skipped.

Training

During training, learnMSA uses a recurrent neural network ar-
chitecture with a pHMM cell that scans a batch of sequences
column-of-residues-wise and successively applies Equation
(2). This architecture is visualized in Figure 1-B with the addi-
tion of ‘Ancestral probabilities’ as described later. Given θ, the
parameters of the model, the log-likelihood of a random batch
of b sequences is

L(θ; S1, . . . , Sb) = b∑
i=1

ln P(Si | θ). (5)

The general goal while successively observing random
batches is to adjust θ such that L increases over time. In prac-
tice, we minimize a loss function related to L that also incor-
porates prior knowledge about proteins.

Existing optimization algorithms like Baum-Welch [3] or
simulated annealing [4] avoid using gradients of L and use the
forward-backward algorithm for parameter updates instead.
An advantage of learnMSA is the possibility to optimize the
HMM jointly with other layers. Currently, we demonstrate this
as described in section ‘Ancestral probabilities’, but a broader
field opens up in this direction as discussed later. Gradient
based optimization can also be applied to objectives that are not
based on likelihood, for instance the discrimination or classi-
fication of (sub)families [33]. Traditional HMM learning algo-
rithms are not used for online learning although such variants
exist [5]. Typically, they require more technical work to include
priors than our gradient based approach. None of the methods
can guarantee globally optimal results. However, learnMSA can
make use of the advancing optimization toolbox for machine
learning problems based on automatic differentiation [9].

F. Becker and M. Stanke | 5

Table 1. Dirichlet parameters for the core pHMM transition distri-butions estimated from Pfam HMMs
α match insert delete
match 40.59 0.96 0.68
insert 26.75 23.32 -
delete 37.79 - 25.15

Maximum a posteriori loss
Models found by maximizing L might generalize weakly. This
is especially true if the number of training sequences m is
low. Our experiments will mainly focus on cases where m is
large (i.e. 10.000 to millions of sequences). However, we can
still have overfitting problems. Domain motifs of subfamilies
might be underrepresented in the sequence set leading to a
skewed model. Moreover, we might end up with a result that
fits the data well but is not biologically plausible (e.g. a model
that allows very long insertions or many gap openings). A max-
imum a posteriori estimate attempts to fit the data while at the
same time penalizing unplausible models [3]. In this sense, we
define our loss function as:

`(θ; S1, . . . , SB) = – 1
bL(θ; S1, . . . , SB) – 1

m ln(ρ(θ)). (6)
The loss ` has a foundation in Bayesian statistics. The first

term is the log-likelihood per sequence averaged over a batch
of sequences. Usually we choose b < m and consequently per-
form stochastic gradient descent. This allows us to rapidly
train models even on millions of homologous sequences. We
use random uniform batch sampling. The second term is the
prior density i.e. ρ is a function that rewards plausible models.
We normalize by 1

m to make the estimate consistent. The effect
of the prior is reduced proportional to the number of training
sequences. This is particularly important because we use a gen-
eral (i.e. family-agnostic) prior that should work over the full
range of dataset sizes. Following conventional standards [3],
we use Dirichlet densities [34, 35] over the different types of
transition distributions and the match emissions.

To reduce the total number of hyperparameters that have
to be set by hand, we salvaged as much general-purpose in-
formation as possible from Pfam HMMs. For the core model
probabilities, we took over 3 million example transition distri-
butions and maximized the likelihoods of 3 Dirichlets: One for
matches, insertions and deletes respectively (see Table 1).

For the emissions, we tested Dirichlet mixtures with differ-
ent component counts (1, 9, 32, 64, 128, 512) which we trained
on the match emission distributions of Pfam HMMs, but found
that for large sequence counts, a single Dirichlet density (i.e.
a mixture with one component) is enough. The expectation of
this Dirichlet distribution is also used to initialize the match
emissions as well as the (fixed) insertion emissions and the
flanks.

As described earlier, we optimize the transition probabili-
ties for flanking states, domain multihits and the entry- and
exit-probabilities jointly with the core model. We found that
these transitions require strict regularization. We defined a
simplified set of hyperparameters αflank, αsingle and αglobal and
(currently only roughly) searched for suitable values based on
the quality of the produced alignments. These hyperparame-
ters have a probabilistic foundation as parameters of Dirichlet
priors over specific Bernoulli distributions that were defined
to favor the probability p = 1 for particular, carefully defined
events. That means the prior can be maximized by maximiz-
ing p, but this choice has to be balanced with the likelihood.
For each possible choice of p and α the logarithmic prior den-
sities are (α – 1) ln p + (α′ – 1) ln (1 – p), where we set α′ = 1 .
The motivation behind this ad hoc choice was to keep the set of

hyperparameters for the method simple while maintaining the
probabilistic interpretation of the regularization term.

In particular, αflank controls the pressure to align to the core
model (rather than using the flanking states), i.e. increasing
αflank will result in longer insertions at the flanks and between
repeated domain segments. The parameter αflank regularizes
the self-loop probabilities of all flanking states, as well as P0(L)
and P(R | E). Furthermore, we introduce αsingle to penalize
core model repeats favoring large values for the probability 1 –
P(C | E) = P(R | E) + P(T | E). Lastly, αglobal penalizes local
alignments that use entry- and exit-transitions other than S→
M1 and Ml → E. The probabilities regularized by αglobal were
chosen such that all choices of starting and end points into
the consensus S → Mi → · · · → Mj → E for 1 ≤ i ≤ j ≤ l,
(i, j) 6= (1, l) are penalized uniformly. More precisely, we favor
large probabilities 1 – P(Mi | S)P(E | Mj) for 1 ≤ i ≤ j ≤ l,
(i, j) 6= (1, l). The values used for this paper are αflank = 7000,
αsingle = 1e9 and αglobal = 1e4.
Initialization
First, we guess an initial model length l by taking the median
of the sequence lengths and scaling it by a constant c. We found
that c = 0.8 works well. It is easier to find a rough initial
consensus if the number of match states is limited which forces
the model to restrict itself to the more relevant parts of the
sequences. The median is more robust against fragmentary
sequences than the average.

The initialization of θ could in principle use prior knowledge
about the protein family at hand. However, we are interested in
tabula rasa training with an universal initial parameter set in-
dependent on the input sequences. We chose an ad hoc position
independent initialization that reflects the prior distributions.
Intuitively, we want the initial model to focus its probability
mass on paths that use all match states. We do this by having
larger probability for the initial match-match transitions. We
took care to initialize the entry probabilities dependent of the
model length such that P(M1 | S) is always roughly 12 . More-
over, we initialize the repeat transition E→ C with a very small
probability and for the flanking states L,R and C we initialize
such that the self-loops are more likely than the exits.
Model surgery
After training, we might observe rarely used match states or
overused insertion states. We can discard or expand those po-
sitions and adapt the model length which is known as model
surgery [3].

Given a trained model, we discard match positions that are
used by less than 50% of the sequences. Likewise, we expand
positions where more than 50% of all sequences have an in-
sertion by a number of new match states equal to the average
insertion length. If a match position is discarded, all incident
edges are removed and new edges with default initialization
are carefully inserted to close the holes (there is a hole for each
consecutive segment of discarded positions). If an insertion is
expanded, edges at the position of interest that connect left and
right model part are removed. Eventually, all edges incident to
a new match state are default initialized. After each surgery
iteration, the flanking states, θinit, the kernel for the transi-
tion distribution of the end state E as well as the evolutionary
times τ of the ancestral probability layer (for details see section
‘Ancestral probabilities’) are reset to default and the model is
trained again. This is repeated at most 4 times which we found
is a good compromise between speed and accuracy. Per default,
we train 5 independent models and optimize them with model
surgery. Eventually, we chose the model with parameters θ
that maximizes 1

m (L(θ; S1, . . . , Sm) + ln(ρ(θ))) to decode the fi-
nal alignment.

6 | GigaScience, 2017, Vol. 00, No. 0

If the number of surgery iterations is > 1, we found it bene-
ficial (both performance and accuracy wise) to restrict training
in all but the last iterations to sequences with lengths above the
q-th quantile while keeping a minimum of k sequences. There-
fore, initial parameter updates are always on sequences that
have roughly full-length. Short fragmentary sequences may
disturb early training epochs. It is easier to incorporate them,
if a rough consensus is established and the matter simplifies
to fine-tuning the entry-, exit- and repeat-probabilities. We
found that q = 50% and k = 10.000 work well. This is in
line with other large scale MSA methods, where a common
denominator is a strong preliminary focus on putative full-
length sequences, i.e. sequences with lengths from the upper
quantiles. For example, MAFFT-Sparsecore only considers se-
quences with lengths above the median for its core alignment
and the regressive strategy favors the longest sequence as re-
spresentatives of subtrees (i.e. longer sequences are aligned
first).

Ancestral probabilities

We naturally assume the existence of a single whole-protein
consensus sequence C that represents the sequence set we wish
to align. Homologous sequences Si may be closely or distantly
related to C, i.e. we assume they have independent expected
mutations per site with respect to the consensus. Model-wise
we introduce evolutionary times τi to estimate the distance of
Si to C. The process is conventionally described by the Gen-
eral Time-Reversible Substitution Model parameterized by a
20× 20 matrix Q of instantaneous substitution rates from one
amino acid to any other [36, 37]. Like the scoring matrices used
by traditional alignment algorithms, Q models prior biological
knowledge on the relative expected frequencies of amino acid
substitutions. From Q, the amino acid mutation probabilities
after time τ given an initial amino acid can be derived as fol-
lows:

P(τ) = exp(τQ), (7)
where exp denotes the matrix exponential. The a-th row

of this matrix, P(τ)a, corresponds to the expected amino acid
distribution after time τ when starting with amino acid a. As
the model is time-reversible, it is also the distribution of amino
acids τ time units ago at a site where amino acid a is observed
now.

We initialize τ with zeros and optimize it under the con-
straints 0 ≤ τS ≤ 2.5 where the maximal value of 2.5 corre-
sponds to the PAM250 matrix and zero is the identity. The
vector τ is learned jointly with the HMM parameters θ. Put dif-
ferently, we learn the branch lengths of a star-like tree jointly
with the sequence model. For each batch of sequences, the cor-
rect subset of τ is gathered. The ancestral probabilities with
the final values τ are also used during Viterbi decoding of the
alignment. More precisely, we replace all likelihoods P(Si |θ)
with P(Si |θ,τi).

The τi are related to sequence weights but they are learned
from data and do not require a tree or any other pairwise se-
quence comparison. Assume that for some suitable distance
metric one sequence Si has a large total distance to all other
sequences. In a sequence weighting scheme Si would typically
have a larger weight than sequences with many close relatives
to account for the underrepresentation. Choosing a large τi can
increase P(Si | θ,τi) by smearing Si towards the consensus. But
this increase is independent of all other sequences and involves
no change of θ.

Technical background

We use TensorFlow [38] to automatically compute the gradi-
ents of ` with respect to θ and τ. We use the Adam optimizer
[8] with a learning rate of 0.1 to minimize `. Note that au-
tomatic differentiation allows low-effort changes to the HMM
architecture and the prior. Moreover, the addition of any type
of preliminary deep learning layer (e.g. ancestral probabilities)
is possible. Using a machine learning back end provides access
to GPU acceleration and other computational benefits out of
the box. Our method does not strictly require a GPU, however,
it is highly recommended to use one to train models beyond
length 100. The training automatically scales to multiple GPUs
by splitting the batches.

Data Description

We tested learnMSA on HomFam [11], BaliFam [39] and the ten
largest Pfam [28] families. The former two are benchmark col-
lections based on reference alignments from HOMSTRAD [40]
and BAliBase [41] respectively. Each reference set is embedded
into a large set of putative homologs gathered from Pfam. Bal-
iFam has 2 variants where the references are embedded into
100 and 10.000 homologs respectively. Low sequence numbers
were not our target of interest, but we included the small Bal-
iFam variant specifically to test the up-scaling ability of our
model. See Table 2 for further details. We did not modify, ex-
tend or reduce HomFam or BaliFam other than the embedding
step as just described.

To test the ability of our method to align under high se-
quence length heterogeneity, we constructed a fragmentary
variant of BaliFam10000 by following the procedure that was
used to test UPP before [17]. We chose BaliFam10000, be-
cause the homologs had lengths comparable to the references
whereas HomFam homologs in many cases appear to be not
full-length. We constructed a high-fragmentation collection
BaliFrag by randomly selecting 40% of the sequences per
dataset in BaliFam10000. For each of these sequences, we sam-
pled a fragment length from a normal distribution with mean
equal to 33% of the mean length of the full-length sequences
and a standard deviation of 15. We sampled uniformly from all
valid starting positions of the fragment in the whole sequence.

Finally, we experimented with ten ultra-large datasets
that were acquired from Pfam by selecting the largest fam-
ilies (based on the number of sequences in the full align-
ments) and downloading the respective UniProt datasets that
were generated by searching the UniProtKB database using
the Pfam family HMM. We also downloaded the corresponding
seed alignments to use them as a reference. For the training
datasets, we added the seed sequences to the UniProt datasets
if not already present and removed all gaps. The families are:
Zinc finger C2H2 type (PF00096), WD domain G-beta repeat
(PF00400), ABC transporter (PF00005), Protein kinase domain
(PF00069), Ankyrin repeats (PF12796), Major Facilitator Super-
family (PF07690), Leucine rich repeat (PF13855), Fibronectin
type III domain (PF00041), Response regulator receiver domain
(PF00072) and Immunoglobulin I-set domain (PF07679). All
have known 3D structure. ABC transporter is the largest dataset
with about 3.5 million sequences. See Table 3 for details.

Analysis

We compared learnMSA to the following aligners: Clustal
Omega (Version 1.2.4), regressive T-Coffee (Version
13.45.0.4846264), MAGUS (git hash f9a3676 from 2022-
01-21), UPP (Version 4.5.2) and MAFFT-Sparsecore (MAFFT

F. Becker and M. Stanke | 7

Table 2. Dataset properties
collection number of families number of sequences sequence length

min max avg min max avg
HomFam (refs.) 94 5 41 8 14 854 215

HomFam (combined) 94 93 93681 8007 12 854 148
BaliFam (refs.) 59 4 142 27 22 471 158

BaliFam100 59 104 242 127 20 764 161
BaliFam10000 36 10004 10142 10031 7 607 175

BaliFrag 36 10004 10142 10031 7 607 129

Table 3. Ultra-large dataset properties
family no. sequences

%id
sequence length

combined seed min max avg
PF00005 3489586 55 26 18 683 146
PF07690 1861106 192 13 37 577 284
PF00096 1783511 159 41 12 34 23
PF00072 1767045 52 25 28 156 110
PF00400 1594257 1465 24 12 101 35
PF00069 1154714 38 21 24 511 227
PF12796 945198 184 24 27 153 78
PF13855 766271 62 28 26 73 57
PF00041 666310 98 20 27 139 81
PF07679 579519 48 21 25 149 83

Sequence identity is based on full alignment. Sequence lengths are given for
the combined dataset.

Version 7.490). There is to the best knowledge of the au-
thors no mature deep learning based tool for large multiple
alignment of proteins available for comparison.

The command lines to align HomFam and BaliFam were (in-
put/output and CPU arguments omitted):

MsaHmm.py
clustalo -t protein --outfmt=fa
mafft-sparsecore.rb
run_upp.py -M -1 -m amino
magus.py -t clustal --recursive false
t_coffee -reg -nseq 100 -tree mbed

-method mafftginsi_msa

and for the ultra-large datasets (commands equal to the
HomFam/BaliFam case omitted):

mafft --parttree
magus.py -t random --recurse True

--recurseguidetree clustal
t_coffee -reg -nseq 1000 -tree parttree

-method mafftfftnsi_msa

We run learnMSA as well as UPP on all datasets (including
ultra-large) in default mode without manual parameter adjust-
ments. We did not attempt to align the ultra-large files with
Clustal Omega, because we already observed a severe drop in
accuracy on sequences in the thousands. MAFFT-Sparsecore
refused to align the ultra-large datasets. We used MAFFT with
the parttree option instead. For MAGUS, we enabled recursion
for the ultra-large datasets, set the guide tree for the high-
est recursion level to ‘random’ due to very long runtimes with
other choices and used clustal trees for all other recursion lev-
els. To use T-Coffee regressive on the ultra-large datasets,
we increased the maximum number of sequences in the sub-
alignments to 1000 in the hope that we could avoid very long
MSAs due to concatenated independent gaps during the merg-
ing steps. For a speedup, we also run T-Coffee with parttree
and MAFFT FFT-NS-i. All parameter changes in order to align
the ultra-large datasets were done reactively after testing the

slower and more accurate settings used for HomFam and Bali-
Fam first.

Our method was run using 8 CPU cores, 100 GB of RAM and
a NVIDIA GeForce RTX 3090 GPU for all datasets including the
ultra-large ones. All other aligners did not utilize a GPU and
were run using 8 CPU cores and 100 GB of RAM for HomFam
and BaliFam and 16 cores and 500 GB of RAM for the ultra-large
datasets. We chose all memory numbers as a safe upper limit
and did no further experiments to evaluate tight requirements.
We used a wall clock limit of 3 days for each individual ultra-
large alignment.

Sum-of-pairs (SP) score and total column (TC) score were
computed by comparing the subalignments induced by the
reference sequences to a structure based alignment (in case
of HomFam and BaliFam) or the Pfam seed alignment (in
case of the ultra-large datasets). We used T-Coffee with the
aln_compare option. The reference sequences are not known to
the aligning method.

On the ultra-large datasets learnMSA is most accurate and
fastest in almost all cases (see Table 4). All other methods ex-
cept UPP required manual adjustment of the default parameters
to get them to work. In the end, not all tested aligners were able
to align all datasets indicating technical limitations of state-of-
the-art tools. In addition to timeout and memory issues, we
observed a tendency of the divide-and-conquer methods (T-
Coffee, MAGUS) to construct MSAs with much larger column
counts than the reference (see the expansion column in Table
4), sometimes to the extent that the output file was too large
for further usage. This is most likely due to their merging of
subalignments in which independent gaps are stacked rather
than aligned. LearnMSAs alignments do not grow in length
with increasing number of sequences. Figure 4 shows repre-
sentatively that ultra-large MSAs computed by learnMSA tend
to be tighter than those of comparable tools and do not suffer
from underalignment. In the case of PF00096, learnMSA has
no clear advantage, however, this family has relatively high se-
quence identity and very short sequences and is therefore easier
to align than the others. Below 1 million sequences, learnMSA
loses its runtime advantage and is about as fast as MAFFT and
T-Coffee, but at the same time much more accurate.

Figure 2 shows the distribution of SP and TC scores for
HomFam and BaliFam. We were able to match state-of-the-
art performance on HomFam. If restricted to the 20 sequence
sets with at least 10.000 sequences, the benefit of using pHMM
based alignment increases. Note that the number of sequences
in the HomFam collection varies significantly (see Table 2).
Likewise, HMM matches state-of-the-art performance on Bal-
iFam10000, but falls behind on BaliFam100.

LearnMSA aligned HomFam and BaliFam10000 in a total of
40 hours (sequential training of 5 independent models on the
same machine). For the same, Clustal Omega took 3.5 hours,
MAFFT-Sparsecore 24 hours, UPP 19 hours, T-Coffee regres-
sive 9 hours and MAGUS 48 hours.

We also evaluated how increasing the number of homologs
that are aligned together with the reference sequences affects
alignment accuracy. To create a biologically realistic test set-

8 | GigaScience, 2017, Vol. 00, No. 0

>= 10000 seq. all

0

20

40

60

80

100

TC
 sc

or
e

n=20 n=94

HomFam

learnMSA
Clustal Omega

MAFFT
UPP

regressive T-Coffee
MAGUS

>= 10000 seq. all

0

20

40

60

80

100

SP
 sc

or
e

n=20 n=94

HomFam

learnMSA
Clustal Omega

MAFFT
UPP

regressive T-Coffee
MAGUS

BaliFam10000 BaliFrag BaliFam100

0

20

40

60

80

100

TC
 sc

or
e

n=36 n=36 n=59

BaliFam

learnMSA
Clustal Omega

MAFFT
UPP

regressive T-Coffee
MAGUS

BaliFam10000 BaliFrag BaliFam100
20

30

40

50

60

70

80

90

100

SP
 sc

or
e

n=36 n=36 n=59

BaliFam

learnMSA
Clustal Omega

MAFFT
UPP

regressive T-Coffee
MAGUS

Figure 2. Total column (TC, left) and sum-of-pairs (SP, right) scores for the HomFam (top) and BaliFam (bottom) collections.

0 100000 200000 300000 400000 500000
number of sequences

30

35

40

45

50

55

60

65

70

75

80

85

SP
 sc

or
e

learnMSA

learnMSA
(ref. only)

100/100 100/100 100/100 100/100 100/100

regressive T-Coffee (fast)

regressive T-Coffee (fast)
(ref. only)

100/100

100/100
90/100

80/100 68/100

regressive T-Coffee (accurate)

regressive T-Coffee (accurate)
(ref. only)

100/100 100/100 100/100 90/100 80/100

MAFFT parttree

MAFFT parttree
(ref. only)

100/100
100/100

100/100
100/100

100/100

MAFFT sparsecore

MAFFT sparsecore
(ref. only)

100/100 100/100 78/100

Figure 3. Alignment accuracy as a function of family size. For evaluation purposes, increasing numbers of further homologs are added to a static set of reference
sequences. The data points are labeled with the fractions of alignment tasks that produced an usable MSA at all. Missing data points indicate that the aligning
method failed for the entirety of the datasets. In case of a failed alignment (due to hardware constraints), we inserted the score of the largest successful alignment
in the respective series of nested sets, in favor of the aligning method. Therefore, the plot shows the behavior of the accuracy of the remaining MSAs under the
(obliging) assumption that the failed MSAs are in theory unaffected by an increase in sequence numbers. Such incomplete data points are colored red. The shaded
area is the standard deviations over the 10 samples, averaged over the families.

F. Becker and M. Stanke | 9

Table 4. Results for the ultra-large datasets
family method SP TC hours expansion

PF00005
learnMSA 74.9 22.2 10.0 1.89

UPP 73.5 10.2 52.5 1.98
MAFFT error
MAGUS timeout

regressive T-Coffee error

PF07690
learnMSA 56.1 0.0 30.2 1.82

UPP 51.6 0.0 35.5 2.48
MAFFT error
MAGUS timeout

regressive T-Coffee error

PF00096
learnMSA 92.9 6.5 0.9 1.16

UPP 86.3 0.0 1.7 2.23
MAFFT 84.1 16.1 0.3 2.74
MAGUS 94.8 3.2 3.6 4.68

regressive T-Coffee 69.9 0.0 0.9 6.55

PF00072
learnMSA 92.4 39.2 2.9 1.1

UPP 91.4 34.6 6.7 1.32
MAFFT 64.9 4.6 7.6 3.69
MAGUS 85.8 33.1 24.8 2.41

regressive T-Coffee output too large

PF00400
learnMSA 18.0 0.0 1.1 1.29

UPP 3.6 0.0 2.0 2.62
MAFFT 0.0 0.0 2.3 7.71
MAGUS 6.9 0.0 12.6 17.32

regressive T-Coffee 0.0 0.0 2.0 51.28

PF00069
learnMSA 83.4 24.9 11.3 1.37

UPP 83.3 20.2 19.5 1.6
MAFFT 54.9 5.4 53.0 3.52
MAGUS 65.4 18.1 29.1 4.77

regressive T-Coffee error

PF12796
learnMSA 72.4 0.0 1.3 0.85

UPP 40.8 0.0 4.3 3.18
MAFFT 40.4 0.4 7.5 6.36
MAGUS 58.9 0.0 67.2 5.62

regressive T-Coffee output too large

PF13855
learnMSA 94.7 26.2 0.8 1.05

UPP 91.0 21.5 2.5 1.71
MAFFT 80.6 3.1 1.2 3.05
MAGUS 94.7 38.5 54.1 1.47

regressive T-Coffee 49.2 0.0 0.8 7.21

PF00041
learnMSA 79.1 16.5 1.0 1.34

UPP 74.9 22.0 2.3 2.18
MAFFT 43.2 0.0 2.0 7.83
MAGUS 72.6 10.1 53.8 6.4

regressive T-Coffee 37.0 0.0 0.8 15.16

PF07679
learnMSA 94.1 50.0 0.9 1.11

UPP 88.7 46.0 2.9 1.43
MAFFT 68.1 13.0 1.1 3.36
MAGUS 84.0 42.0 4.3 2.12

regressive T-Coffee 44.2 2.0 0.6 8.55
Expansion denotes the ratio of the length of the predicted alignment (induced
by the reference sequences) to the reference alignment length. Values greater
than 1 indicate underalignment i.e. the estimated alignment is longer than
the reference. Timeout: The alignment could not be completed by the method
within a wall clock limit of 3 days. Error: The alignment failed with an error (ei-
ther out of memory or another unknown reason). Output too large: The align-
ment was successful, but the output file was impractically large to be properly
post-processed (for example PF12796: T-Coffee 445GB, learnMSA 1.2GB). For
each cell and column, the best value is in bold face.

ting, we took the 10 Pfam datasets from Table 3 and aligned
the combination of the respective seed sequences (called refer-
ences in the following) with random subsets of the remaining
homologs. We started by aligning only the references. Note
that the reference set sizes vary between 38 and 1465 (Table 3).
Homologs were drawn randomly without replacement from the
UniProtKB datasets to fill up the aligned datasets to monoton-
ically increasing sizes, such that the resulting sets are nested
(in a series of MSAs, homologs are only added, never removed).
We repeated this serial sampling procedure 10 times and av-
eraged the results over equal sized alignments. We compared
learnMSA with T-Coffee regressive and MAFFT using the com-
mands above from previous experiments, both the accurate and

fast variants.
As seen in Figure 3, the accurate variant of T-Coffee re-

gressive, MAFFT-Sparsecore and learnMSA are similar in SP
score when only aligning the references. Further, all align-
ment methods lose accuracy after adding homologs at all. How-
ever, the asymptotic accuracy of learnMSA is barely affected
by the number of added homologs, whereas we observe clearly
decreasing trends for the other methods. The relative perfor-
mance of the methods is dataset dependent and indicates that
learnMSA has advantages for the global alignment of protein
families. Starting at 200.000 sequences, we observed that re-
gressive T-Coffee and MAFFT sparsecore failed for some MSA
tasks (we allowed 200 GB of RAM per MSA). The only methods
able to align all datasets were learnMSA and MAFFT with the
partree option. For our evaluation, we decided to replace each
failed MSA with the largest successful alignment in the respec-
tive series of nested sets, assuming, in favor of the aligning
method, that the failed MSA is in theory unaffected by an in-
crease in sequence numbers. Despite that, as seen in Figure
3, typically a further increase in the number of homologs still
leads to a decrease in accuracy of the established algorithmic
aligners.

For the high-fragmentation collection BaliFrag, learnMSA
can compete with MAFFT-Sparsecore, UPP and MAGUS (Fig-
ure 2). All rely on robust ways to exclude putative fragmen-
tary sequences in early alignment stages by restricting initial
backbone alignments to sequences from the upper quantiles
[13, 17, 15]. Clustal Omega and T-Coffee regressive fall behind
in this benchmark. This analysis confirms that learnMSA can
accurately adapt to fragmentary sequences by first training a
pHMM on sequences that are deemed full-length and fitting to
the complete sequence set thereafter. Partial domain hits cor-
rectly use the entry- and exit-transitions as seen in Figure 5.
The difference of learnMSA to the competing methods is that
we do not restrict the initial stages to a constant-sized subset
of the sequences and that the final alignment is, in principle,
able to correct incorrect decisions from earlier iterations. A
suitable number of full-length examples is required to find a
correct initial model length and to build a consensus. However,
UPP teaches us that it is easy to add fragmentary sequences
with pHMMs once a full-length consensus is established [17].

Discussion

We have proposed learnMSA, a novel unsupervised learning
approach for the alignment of large protein families. In con-
trast to state-of-the-art aligners, learnMSA does not require
a tree, which eliminates a crucial performance bottleneck and
makes learnMSA asymptotically fast – linear in the number
of sequences. It is interesting to see that state-of-the-art
performance on large sequence numbers can be reached with-
out a tree by uniform batch sampling. Our method does not
rely on progressive, regressive or divide-and-conquer heuris-
tics. We showed empirically, that learnMSA, when aligning
millions of sequences, is both more accurate and faster (even
though the measured time was for 5 independent, sequentially
trained models). Moreover, when aligning Pfam families, ad-
ditional homologs decrease the accuracy of traditional, heuris-
tic methods (if they are feasible for large sequence numbers at
all), whereas learnMSA is more robust. Whether this statement
also applies to established benchmarks like HomFam remains
an open question that can be answered if more homologs are
gathered for these datasets in the future. A similar scaling ex-
periment, which was done for T-Coffee regressive [10] based on
HomFam, suffers from limited data coverage for large sequence
numbers, i.e. the number of available families decreases when
the MSA depth increases. This is not the case in our study as

10 | GigaScience, 2017, Vol. 00, No. 0

TTK_HUMAN
F7CJC0_CALJA
KPRO_MAIZE
WEE1_HUMAN
CSK21_CHICK
KIN28_YEAST
CTK1_YEAST
ARBK1_BOVIN
PKD1_DICDI
KGP1_DROME

KQ I Y A I K Y V NL E E A DNQ T L - DS Y RNE I A Y L NK L QQ - HS DK I I R L Y DY E I T - DQ Y I Y - - MVME CG N
HGDV A V K I L K V V DP T P EQ F - Q A F RNE V A V L R K T R - - - HV N I L L F MG YMT - - K DNL A - - I V TQWCE
DRHV A V K K L E NV RQG K - - - - E V F Q A E L S V I G R I N - - - HMNL V R I WG F C S E - G S HR L - - L V S E Y V E
G C I Y A I K R S K K P L AG S VDE - Q NA L R E V Y A HA V L G - - Q HS HV V R Y F S AWA E - DDHML - - I Q NE Y CN
NE K V V V K I L K P V K K K K I K R - - - - - - E I K I L E NL R - - GG P N I I T L A D I V K D - P V S R T P A L V F E HV N
G RK I A I K E I K T S E F K DG L D - MS A I R E V K Y L Q EMQ - - - HP NV I E L I D I F MA - Y DNL N - - L V L E F L P
E K L V A L K K L R L QG E R EG F P - I T S I R E I K L L Q S F D - - - HP NV S T I K E I MV E SQ K T V Y - - M I F E Y A D
G KMY AMK C L DK K R I KMKQG E T L A L NE R I ML S L V S TG DC P F I V CMS Y A F HT - P DK L S - - F I L DL MN
G L F F C S K T L R R E T I V HE K HK E HVNNE I N I ML N I S - - - HP Y I V K T Y S T F NT - P T K I H - - F I ME Y AG
VD I F A L K C L K K RH I V DT KQ E E H I F S E RH I ML S S R - - - S P F I C R L Y R T F RD - E K Y V Y - - ML L E A CM

534N 544- 553L 562K 572T 579V

TTK_HUMAN
F7CJC0_CALJA
KPRO_MAIZE
WEE1_HUMAN
CSK21_CHICK
KIN28_YEAST
CTK1_YEAST
ARBK1_BOVIN
PKD1_DICDI
KGP1_DROME

- - - K - Q I Y A I K Y V NL E E A - DNQ T L DS Y RNE I A Y L NK L QQ - - - HS DK I I R L Y DY E I T D - - Q Y I YMVME - CG N
HGDV - A V K I L K V V D - - - P - T P EQ F Q A F RNE V A V L R K T - R - - - H - V N I L L F MG YMT K D - - N - L A I V TQWCE -
- - - D - R HV A V K K L E - - - N - V RQG K E V F Q A E L S V I G R I - N - - - H - MNL V R I WG F C S EG - - S HR L L V S E Y V E -
- - - G - C I Y A I K R S K K P L A - G S V DEQNA L R E V Y A HA V L GQ - - - H - S HV V R Y F S AWA E D - - DHML I Q NE Y CN -
- - - N - E K V V V K I L K P V K - - K K K - - - - I K R E I K I L E NL RG - - - G - P N I I T L A D I V K DP V S R T P A L V F E HV N -
- - - G - R K I A I K E I K T S E F - K DG L DMS A I R E V K Y L Q EM - Q - - - H - P NV I E L I D I F MA Y - - DNL NL V L E F L P -
- - - E - K L V A L K K L R L QG E - R EG F P I T S I R E I K L L Q S F - D - - - H - P NV S T I K E I MV E SQ - K T V YM I F E Y A D -
- - - G - KMY AMK C L DK K R I KMKQG E T L A L NE R I ML S L V - S TG DC - P F I V CMS Y A F HT P - - DK L S F I L DL MN -
- - - G - L F F C S K T L R R E T I V HE K HK E HVNNE I N I ML N I - S - - - H - P Y I V K T Y S T F NT P - - T K I HF I ME Y AG -
- - - - V D I F A L K C L K K RH I V DT KQ E E H I F S E RH I ML S S - R - - - S - P F I C R L Y R T F RDE - - K Y V YML L E A CM -

-1 533V 542T 552Y 559H 569Y 577Y

Reference

MAFFT

learnMSA

TTK_HUMAN
F7CJC0_CALJA
KPRO_MAIZE
WEE1_HUMAN
CSK21_CHICK
KIN28_YEAST
CTK1_YEAST
ARBK1_BOVIN
PKD1_DICDI
KGP1_DROME

TTK_HUMAN
F7CJC0_CALJA
KPRO_MAIZE
WEE1_HUMAN
CSK21_CHICK
KIN28_YEAST
CTK1_YEAST
ARBK1_BOVIN
PKD1_DICDI
KGP1_DROME

- - - - - K - - - - Q - - I Y A I K Y V NL - - - E - - - - - E - - - - - - A - - - - - - - - - - - DN - - - - Q T - - L - - - - - D - - - - - S - - - - Y R - N - - - - - - - E I
- - - - - - - HG D - - - V - A V K - - - - - - - - - - - - - - - - - - - I L - - - - - K - - - - - V V - DP T P EQ F - - - - - Q A - - - - - - - - - - F R - N - - - - - - - E V
- - - D - R - - - - - H - V - A V K - - K L - - E N - - - V RQ - - - - - - G - - - K - E - - - - - V - F Q - A - - - - - - - E L
- - - - G - - - - - - - C I Y A I K R - - - - - - S K K P - - - - - L - - - AG - - - - S - V - - - D - - - - - - - - - - - - - E - Q - - - - - - NA - - L - - R - - - - - - - E V
NE K - - - - - - - - - V V - - V K - I - L - - - K - - P - - - - - - - - - - - - - - V K - - - - - K - - - - - - - - - - - - - K - K - - - - - - - - - - I K - R - - - - - - - E I
- - - G - R K - - - - - - I - A I K - - E I - - - K - - - - - - - - T - - - - - - S - - E - - - - F - - - - - - - - - - - - - - K - - DG L DMS - - A - I - - R - - - - - - - E V
- - - E - K - - - - - L - V - A L K - - K L - - - R - - - - - - - - L Q - - G - - - - - E - - R - - E - G - - - - - - - F P I T S - - - - - - - - - - - - I - - R - - - - - - - E I
- - - G - K - - - - - M - Y - AMK - C - L D - K K - - - - - R - - I - - - K - M - - - K - - QG - E - T L A L NE -
- - - G - L - - - - - F - F - C S K - T - L - - - R - - - - - R E T I - V - - - - - - - HE - K - - H - K E H - V NN - - - - E -
- - - V - D - - - - - - I F - A L K - C - L - K - K - - R - - H - - I - - - - - - - - - - - - - - V DT - - - KQ - - - - - - - E - E - - - - - - - - - H I F - S - - - - - - - E -

- A - Y - L - N - K L - - - - QQ - H - - S DK - I I - R L - - Y - - D - - - - Y - - - - - - - - - - - E - I T D - - - - - - Q Y - - - - - - - I - Y - MVM - - E - - - C - G N
- A - V - L - R - K T - - - - R - - H - - - V N - I L - L - - - F - - - - - - - M - - - - - G YMT K - D - - - - - - N - - L - - - - - - - - - A - - - I V T - - QW - - C E - -
- S - V - I - G - R I - - - - N - - H - M - - N - L V - R I - - - - WG - - - - F - - - C - - - - - S - E - - - - G - S - H - - - R - - - - - - L - - - L V S - - E Y - - V E - -
- Y - A - H - A - V L G - - - Q - - H - - - S H - V V - R Y - - F - - S - - - - AW - - - - A - - - - - E - - D - - - D - - - - - - - - - - - - - - H - ML I Q NE Y - - C N - -
- K - I - L - E - NL R - - - - - - - G - G P N - I I - T L A - - - - D - - I - V - - - - K - - - - - - DP - - - - V S - - - - - R T P A - - - - - - - L V F - - E H - - V N - -
- K - Y - L - Q - EM - - - - Q - - H - - - P N - V I - E L - - - I - D - - I - F - MA - - Y - - - - - D - - - - - - N - - - - - - - - - - - - L - N - L V L - - E F - - L P - -
- K - L - L - Q - S F - - - - D - - H - - - P N - V S - T I - - K - - E - - I - M - - - - - - - - - - V E - - - - - - - S - - - - Q - - K - T - V - Y - M I F - - E Y - - A D - -
- R - I ML S - L - V - S TG D - C - - - - P - F I V C - M - S Y - - - - A - - F - - - - - - - - - - - H - - - - - - T - P - D - K - - - - - - L S F - - I L - - DL - - MN - -
- I N I - M - L - N I - - - - S - - H - - - P - Y I V - K T - - Y - - - S T - - F - - - - - - - - - - - N - - - - - - T - - - - - P - - - - T K I - H - F I M - - E Y - - AG - -
R H - I - M - L - S S - - - - R - - S - - - P - F I C - R L - - Y - - R - - - T F - - - - - - - - - - - R - - - - - - D - - - E - K - - - Y - - V - YML - L - - E - A CM - - -

-1 528Y 536- 538- 539- 541- 544- 546- 549-

553- 557- 563- 568- 570- 571I 575Y 577Y 582-

Figure 4. Vertical MSA slices for the ultra-large family PF00069 with more than a million sequences. The 10 most informative sequences (i.e. the most dissimilar
ones based on the reference MSA) were extracted using T-Coffee. We took a random vertical slice ranging from column 25 to 90 in the reference MSA and
computed vertical slices for the predicted MSAs as induced by the sequence fragments. We used Jalview 2.11.2.2 with clustalx coloring for visualization. For better
comparability, TTK_HUMAN was selected as reference sequence.

1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 0.62 1.00 1.00 1.00 1.00

0
.1

0

0
.0

2

0
.1

0

0
.3

8

0
.5

4

0
.5

4

0
.5

4

0
.5

4

0
.6

1

0
.5

4

0
.5

4

0
.5

4

0
.5

4

0
.5

4

0
.3

7

0
.5

4

0
.1

6

0
.5

4

0
.5

4

0
.5

4

0
.5

4

0
.5

4

0
.5

4

0
.9

1

0
.5

4

0
.5

4

0
.5

4

0
.5

4

0.46 0.46 0.46 0.46 0.39 0.46 0.46 0.46 0.46 0.46 0.63 0.46 0.84 0.46 0.46 0.46 0.46 0.46 0.46 0.09 0.46 0.46 0.46 0.46

0
.1

5

0
.3

7

0
.3

3

0
.3

2

0
.6

3

0
.6

8

0
.6

2

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.6

0

0
.5

8

0
.6

0

1.
00

0.63 0.67 0.68 0.37 0.32 0.38 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.42 0.40

0.98

0
.0

2

0.980.02

0.980.02

0.92

0.08

Insertions

Deletions

1
C (0.50)
A (0.41)
E (0.06)
en=0.85
ex=0.00

2
C (0.98)
A (0.00)
L (0.00)
en=0.00
ex=0.00

3
D (0.49)
K (0.39)
N (0.07)
en=0.00
ex=0.00

4
S (0.42)
L (0.08)
T (0.08)
en=0.00
ex=0.00

5
C (0.88)
A (0.06)
T (0.02)
en=0.00
ex=0.00

6
I (0.21)
A (0.20)
V (0.18)
en=0.00
ex=0.00

7
C (0.90)
V (0.05)
A (0.02)
en=0.00
ex=0.00

8
T (0.71)
K (0.12)
A (0.09)
en=0.00
ex=0.00

9
K (0.40)
R (0.28)
L (0.09)
en=0.00
ex=0.00

10
S (0.85)
C (0.10)
M (0.02)
en=0.00
ex=0.00

11
I (0.42)
N (0.12)
V (0.10)
en=0.00
ex=0.00

12
P (0.89)
V (0.09)
A (0.00)
en=0.00
ex=0.00

13
P (0.60)
A (0.25)
G (0.13)
en=0.00
ex=0.00

14
Q (0.47)
K (0.25)
I (0.10)

en=0.00
ex=0.00

15
C (0.76)
F (0.14)
Y (0.05)
en=0.00
ex=0.00

16
R (0.46)
V (0.14)
Q (0.13)
en=0.00
ex=0.00

17
C (0.98)
A (0.00)
L (0.00)
en=0.00
ex=0.00

18
T (0.34)
S (0.16)
L (0.11)
en=0.00
ex=0.00

19
D (0.97)
B (0.01)
A (0.00)
en=0.00
ex=0.00

20
T (0.29)
I (0.28)
V (0.13)
en=0.00
ex=0.00

21
L (0.37)
T (0.13)
N (0.10)
en=0.00
ex=0.00

22
N (0.29)
D (0.26)
G (0.16)
en=0.00
ex=0.00

23
F (0.30)
S (0.30)
M (0.10)
en=0.00
ex=0.00

24
C (0.87)
D (0.05)
Q (0.03)
en=0.00
ex=0.00

25
H (0.35)
Y (0.31)
P (0.14)
en=0.00
ex=1.00

1bbi

B2RGA6_9FABA/56-79

1sbwi

Figure 5. A learned pHMM for the Bowman-Birk serine protease inhibitor family in the HomFam collection with Viterbi paths for three different sequences: A
single domain hit (blue), a multihit (brown) and a partial hit (cyan). Numbers on edges are transition probabilities, numbers on nodes are self-loop probabilities.
For each match states, the top three amino acids and their probabilities are printed, along with the probability of entering and exiting at the respective match.

F. Becker and M. Stanke | 11

aadh

aat

ace

Acetyltransf

adh

aldosered

Ald_Xan_dh_2

annexin

asp

az

biotin_lipoyl

blmb

blm

bowman

cahChtBD

cryst

cyclocys

cyt3

cytbDEATH

DMRL_synthase

egf

flav GEL
ghf10ghf11

ghf13

ghf1ghf22ghf5

glob

gluts

gpdh

hiphla

HLH

HMG_box
hom

hormone_rec

hprhr

icd

il8ins int

KAS

kringle

kunitz

ldh

LIM

ltn

lyase_1

mmp

mofe

msbmyb_DNA-binding

OTCace

oxidored_q6

p450

PDZ

peroxidase

phc

phoslip
profilin

proteasome

Rhodanese rhv

ricin

rnasemam

rrm

rub

rvp

scorptoxinsdr

seatoxin

serpin

slectinsodcu

sodfe

Stap_Strp_toxin

sti

subt
Sulfotransfer

tgfb

timtms
TNF

toxin

trfl

tRNA-synt_2b

uce

zf-CCHH

1 2 3 4 5 6 7
relative reference length

60

40

20

0

20

40

60

sc
o
re

 d
if
fe

re
n
ce

SP score comparison of learnMSA and MAFFT

small (SP=94.96, n=5)

multi domain (SP=53.40, n=10)

alpha plus beta (SP=84.20, n=21)

small disulphide (SP=87.54, n=10)

alpha beta (SP=76.53, n=15)

all beta (SP=81.17, n=14)

alpha beta barrel (SP=85.74, n=5)

all alpha (SP=79.32, n=14) aadh

aat

ace

Acetyltransf

adh

aldosered Ald_Xan_dh_2

annexin

asp
az
biotin_lipoyl

blmb

blm

bowman

cah

ChtBD

cryst

cyclocys

cyt3

cytb

DEATHDMRL_synthase

egf

flav

GEL

ghf10ghf11

ghf13

ghf1ghf22

ghf5

glob

gluts

gpdh

hip

hla

HLHHMG_box

homhormone_rechpr
hr

icdil8ins

int

KAS

kringle

kunitz ldh
LIMltn

lyase_1

mmp

mofe

msb

myb_DNA-binding

OTCace

oxidored_q6

p450

PDZ

peroxidase

phc

phoslip

profilin

proteasome

Rhodanese

rhv

ricin

rnasemam

rrm
rub

rvp

scorptoxin

sdr

seatoxin

serpin

slectin

sodcu

sodfeStap_Strp_toxin

sti

subt

Sulfotransfer

tgfb

tim
tms

TNF

toxin

trfl

tRNA-synt_2b

uce

zf-CCHH

1 2 3 4 5 6 7
relative reference length

20

0

20

40

60

80

sc
o
re

 d
if
fe

re
n
ce

SP score comparison of learnMSA and UPP

>
>

>
le

ar
nM

S
A

 is
 m

or
e

ac
cu

ra
te

>
>

>
le

ar
nM

S
A

 is
 m

or
e

ac
cu

ra
te

multihits

Figure 6. A detailed comparison of the performance of learnMSA relative to MAFFT-Sparsecore (left) and UPP (right) for all 94 HomFam families grouped by
secondary structure. Score difference is defined as SP(learnMSA) – SP(other). Relative reference length is defined as the ratio of the average reference length and the
average length of the combined dataset including the homologs. For example, ‘Ald_Xan_dh_2’ references are on average about 7 times as long as the respective
homologs. The legend contains the average SP score of learnMSA per structure group.

enough homologs were available from the UniProtKB datasets.
LearnMSA generalizes and automatizes earlier pHMM train-

ing approaches for protein families. It does this by taking HM-
MER’s ‘Plan7’ model, but avoids the manual adjustment of the
‘alignment mode’ (local versus glocal or unihit versus multi-
hit). Instead, the extra states and transitions (orange in Figure
1 A) are optimized jointly with the core model starting with
a tabula rasa configuration which greatly reduces the required
hand-holding. This is also beneficial, if a suitable alignment
mode for a dataset is unknown. LearnMSA is designed in a
way that minimizes the assumptions a user has to make. Note
that for all tested datasets, including dramatically varying se-
quence numbers and levels of fragmentation, we used learn-
MSAs default configuration of hyperparameters. It should be
pointed out, that learnMSAs is particularly accurate compared
to other methods when aligning families that contain multi-
hits. This is clearly visible in Figure 6, for example in the
cases of Beta gamma crystallin (‘cryst’, PF00030), Bowman-
Birk protease inhibitor (‘bowman’, PF00228) or Annexin (‘an-
nexin’, PF00191).

On HomFam and BaliFam we match state-of-the-art per-
formance but observe reduced relative accuracy for low se-
quence numbers. This indicates that there is a lower limit
on the sequence numbers below which learnMSAs performance
decreases relatively to other methods, but this is not surprising
for a statistical learning approach and can currently be solved
by falling back to a traditional aligner. There is a slight dis-
advantage of HMM in average scores for HomFam over all 94
datasets compared to only the largest 20. HomFam contains
datasets with a few as 93 sequences. Further evaluation re-
vealed that the disadvantage is not fully explained by low se-
quence numbers alone, however. Instead, we observed prob-
lems if the reference sequences are significantly longer than
the homologs (for instance rhv references are on average five
times as long as the homologs). Figure 6 (left) indicates a neg-

ative correlation between relative reference length with respect
to homologs and score difference. The low-score cases fre-
quently map to ‘multi domain’ secondary structures. In those
cases the references are full-length proteins and the homologs
pruned to a specific domain (i.e. information is cut away). This
effect is present for all comparison tools except UPP which is
shown in Figure 6 on the right. For statistical learning the
choice of homologs in HomFam constitutes a problem. The
number of reference sequences is very low (8 on average for
HomFam) and they can contain information that the homologs
miss, which means that potentially important motifs are un-
derrepresented in the dataset. In such situations it is both
hard to guess a suitable initial model length and train a full-
length model from scratch. Moreover, this reveals a potential
weak spot of the HomFam collection: A method that aligns the
longest sequences in a dataset first, will most likely catch the
references early. The score, which is estimated on the refer-
ences only, might therefore overestimate the true score on the
complete dataset.

Note that in principle, learnMSA could also align DNA/RNA
sequences, but this feature is not implemented yet. Machine
learning methods can likely play out their advantages more for
proteins due to the relative complexity of parameter space and
priors. Further, learnMSA is currently best suited for short or
medium length sequences.

Conclusion

Our proposed approach constitutes a probabilistically grounded
framework for large MSA that has potential for further im-
provements in several directions. Further development might
be straightforward because of the extensible nature of our
method.

A natural extension of the work presented here are ensem-
bles of pHMMs. They are used in UPP where a subset of the se-

12 | GigaScience, 2017, Vol. 00, No. 0

quences is aligned and subsequently represented by an ensem-
ble. Recently, MAGUS combined with an HMM ensemble has
shown improved accuracy as well [42]. On the HomFam collec-
tion, UPPs performance decreased slightly when replacing the
ensemble with a single HMM [17]. The latter is related to our
approach with the difference that for learnMSA, the HMM pa-
rameters depend on all input sequences instead of a randomly
selected backbone set. This might explain why learnMSA aligns
HomFam slightly more accurately than UPP, as seen in Figure
2, even though learnMSA does not currently use an ensemble.

When benchmarking learnMSA, we observed decreasing rel-
ative performance when reducing the number of sequences to
align. The behavior of state-of-the-art tools is usually comple-
mentary: They are more accurate for lower sequence numbers.
Moreover, Figure 6 shows that the relative performance of
learnMSA greatly depends on the particular (reference) dataset.
This suggests the idea of a combined approach to multiple se-
quence alignment, where a prior (e.g. the number of sequences)
or posterior (e.g. the likelihood) criterion is used to decide be-
tween the MSA of either learnMSA or of an established heuristic
aligner.

In contrast to traditional learning algorithms for HMMs,
gradient-based learning can, in principle, be a module of a
larger machine learning model that is trained end-to-end. By
design, learnMSA can incorporate any type of sequence con-
text encoded into the HMM alphabet. For instance, single-
sequence secondary structure predictions can be incorporated.
Secondary structure is more conserved than primary sequence
and this approach has been shown to increase accuracy in
the presence of low sequence identity [43]. There are many
kinds of interactions in proteins that are not easily modeled
by our current approach, for example pairwise correlations be-
tween amino acid distributions in positions that are widely
separated in the primary sequence but close in the three-
dimensional structure. The field of protein language model-
ing where parameter-rich sequence models are learned semi-
supervised [44, 45] based on Attention [46, 47] or LSTMs [48]
is also compatible and complementary to our approach. Cur-
rently, we use very limited prior knowledge about proteins in
the form of parameters as we simply one-hot encode amino
acids and only use a rate matrix to compute ancestral probabil-
ities. Using instead semantically rich [44] residual-level em-
bedding vectors from pre-trained language models may benefit
the predictions.

Availability of source code and requirements

• Project name: learnMSA
• Project home page: https://github.com/Gaius-Augustus/

learnMSA
• Operating system(s): Platform independent
• Programming language: Python3
• Other requirements: Python packages tensorflow, optional

for visualization: networkx, logomaker
• License: MIT
• RRID: SCR_022572
• biotoolsID: learnMSA

Availability of supporting data and materials

The datasets supporting the results of this article are
available in the repository https://github.com/felbecker/
MSA-HMM-Analysis.

List of abbreviations

(p)HMM: (profile) hidden Markov model; MSA: multiple se-
quence alignment

Competing Interests

The authors declare that they have no competing interests.

Author’s Contributions

F.B. designed and implemented learnMSA, prepared the data,
ran all software and wrote the manuscript. M.S. conceived the
idea and designed and implemented an initial version of a re-
current machine learning layer for HMMs and provided proto-
type code for the usage of ancestral probabilities. All authors
approved the final manuscript.

References

1. Eddy SR. Accelerated profile HMM searches. PLoS compu-
tational biology 2011;7(10):e1002195.

2. Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Chal-
lenges in homology search: HMMER3 and convergent
evolution of coiled-coil regions. Nucleic acids research
2013;41(12):e121–e121.

3. Krogh A, Brown M, Mian IS, Sjölander K, Haussler D. Hid-
den Markov models in computational biology: Applica-
tions to protein modeling. Journal of molecular biology
1994;235(5):1501–1531.

4. Eddy SR, et al. Multiple alignment using hidden Markov
models. In: Ismb, vol. 3; 1995. p. 114–120.

5. Baldi P, Chauvin Y, Hunkapiller T, McClure M. Hidden
Markov models in molecular biology: new algorithms and
applications. Advances in Neural Information Processing
Systems 1992;5.

6. Rasmussen TK, Krink T. Improved Hidden Markov Model
training for multiple sequence alignment by a parti-
cle swarm optimization—evolutionary algorithm hybrid.
Biosystems 2003;72(1-2):5–17.

7. Sun J, Wu X, Fang W, Ding Y, Long H, Xu W. Multiple se-
quence alignment using the Hidden Markov Model trained
by an improved quantum-behaved particle swarm opti-
mization. Information Sciences 2012;182(1):93–114.

8. Kingma DP, Ba J. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:14126980 2014;.

9. Baydin AG, Pearlmutter BA, Radul AA, Siskind JM. Auto-
matic differentiation in machine learning: a survey. Jour-
nal of Marchine Learning Research 2018;18:1–43.

10. Garriga E, Di Tommaso P, Magis C, Erb I, Mansouri L,
Baltzis A, et al. Large multiple sequence alignments with
a root-to-leaf regressive method. Nature biotechnology
2019;37(12):1466–1470.

11. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li
W, et al. Fast, scalable generation of high-quality pro-
tein multiple sequence alignments using Clustal Omega.
Molecular systems biology 2011;7(1):539.

12. Katoh K, Standley DM. MAFFT multiple sequence
alignment software version 7: improvements in perfor-
mance and usability. Molecular biology and evolution
2013;30(4):772–780.

13. Yamada KD, Tomii K, Katoh K. Application of
the MAFFT sequence alignment program to large
data—reexamination of the usefulness of chained guide
trees. Bioinformatics 2016;32(21):3246–3251.

14. Mirarab S, Nguyen N, Guo S, Wang LS, Kim J, Warnow T.

https://github.com/Gaius-Augustus/learnMSA
https://github.com/Gaius-Augustus/learnMSA
https://github.com/felbecker/MSA-HMM-Analysis
https://github.com/felbecker/MSA-HMM-Analysis

F. Becker and M. Stanke | 13

PASTA: ultra-large multiple sequence alignment for nu-
cleotide and amino-acid sequences. Journal of Computa-
tional Biology 2015;22(5):377–386.

15. Smirnov V, Warnow T. MAGUS: multiple sequence
alignment using graph clustering. Bioinformatics
2021;37(12):1666–1672.

16. Smirnov V. Recursive MAGUS: scalable and accurate mul-
tiple sequence alignment. PLoS computational biology
2021;17(10):e1008950.

17. Nam-phuong DN, Mirarab S, Kumar K, Warnow T.
Ultra-large alignments using phylogeny-aware profiles.
Genome biology 2015;16(1):1–15.

18. Katoh K, Toh H. PartTree: an algorithm to build an approx-
imate tree from a large number of unaligned sequences.
Bioinformatics 2007;23(3):372–374.

19. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately
maximum-likelihood trees for large alignments. PloS one
2010;5(3):e9490.

20. Jafari R, Javidi MM, Kuchaki Rafsanjani M. Using deep
reinforcement learning approach for solving the multi-
ple sequence alignment problem. SN Applied Sciences
2019;1(6):1–12.

21. Kuang M, Liu Y, Gao L. DLPAlign: A Deep Learning based
Progressive Alignment Method for Multiple Protein Se-
quences. In: CSBio’20: Proceedings of the Eleventh Inter-
national Conference on Computational Systems-Biology
and Bioinformatics; 2020. p. 83–92.

22. Song YJ, Ji DJ, Seo H, Han GB, Cho DH. Pairwise heuris-
tic sequence alignment algorithm based on deep rein-
forcement learning. IEEE open journal of engineering in
medicine and biology 2021;2:36–43.

23. Llinares-López F, Berthet Q, Blondel M, Teboul O, Vert
JP. Deep embedding and alignment of protein sequences.
bioRxiv 2021;.

24. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ron-
neberger O, et al. Highly accurate protein structure pre-
diction with AlphaFold. Nature 2021;596(7873):583–589.

25. Mirabello C, Wallner B. RAWMSA: End-to-end deep learn-
ing using raw multiple sequence alignments. PloS one
2019;14(8):e0220182.

26. Fukuda H, Tomii K. DeepECA: an end-to-end learning
framework for protein contact prediction from a multiple
sequence alignment. BMC bioinformatics 2020;21(1):1–15.

27. Ju F, Zhu J, Shao B, Kong L, Liu TY, Zheng WM, et al. Cop-
ulaNet: Learning residue co-evolution directly from mul-
tiple sequence alignment for protein structure prediction.
Nature communications 2021;12(1):1–9.

28. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar
GA, Sonnhammer EL, et al. Pfam: The protein families
database in 2021. Nucleic acids research 2021;49(D1):D412–
D419.

29. Eddy SR. Profile hidden Markov models. Bioinformatics
(Oxford, England) 1998;14(9):755–763.

30. Eddy SR. A probabilistic model of local sequence alignment
that simplifies statistical significance estimation. PLoS
computational biology 2008;4(5):e1000069.

31. Rabiner L, Juang B. An introduction to hidden Markov
models. ieee assp magazine 1986;3(1):4–16.

32. Durbin R, Eddy SR, Krogh A, Mitchison G. Biological se-
quence analysis: probabilistic models of proteins and nu-
cleic acids. Cambridge university press; 1998.

33. Van der Auwera S, Bulla I, Ziller M, Pohlmann A, Harder T,
Stanke M. ClassyFlu: classification of influenza A viruses
with Discriminatively trained profile-HMMs. PLoS One
2014;9(1):e84558.

34. Brown M, Hughey R, Krogh A, Mian IS, Sjölander K, Haus-
sler D. Using Dirichlet mixture priors to derive hidden
Markov models for protein families. In: Ismb, vol. 1; 1993.

p. 47–55.
35. Sjölander K, Karplus K, Brown M, Hughey R, Krogh A, Mian

IS, et al. Dirichlet mixtures: a method for improved detec-
tion of weak but significant protein sequence homology.
Bioinformatics 1996;12(4):327–345.

36. Dayhoff MO, Eck R, Park C. A model of evolutionary
change in proteins. Atlas of protein sequence and struc-
ture 1972;5(88-99):88–99.

37. Le SQ, Gascuel O. An improved general amino acid
replacement matrix. Molecular biology and evolution
2008;25(7):1307–1320.

38. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al.
TensorFlow: A System for Large-Scale Machine Learning.
In: 12th USENIX symposium on operating systems design
and implementation (OSDI 16); 2016. p. 265–283.

39. Edgar RC. MUSCLE v5 enables improved estimates of
phylogenetic tree confidence by ensemble bootstrapping.
bioRxiv 2021;.

40. Stebbings LA, Mizuguchi K. HOMSTRAD: recent devel-
opments of the homologous protein structure alignment
database. Nucleic acids research 2004;32(suppl_1):D203–
D207.

41. Thompson JD, Koehl P, Ripp R, Poch O. BAliBASE 3.0:
latest developments of the multiple sequence alignment
benchmark. Proteins: Structure, Function, and Bioinfor-
matics 2005;61(1):127–136.

42. Shen C, Zaharias P, Warnow T. MAGUS+ eHMMs: im-
proved multiple sequence alignment accuracy for fragmen-
tary sequences. Bioinformatics 2022;38(4):918–924.

43. Wright ES. DECIPHER: harnessing local sequence context
to improve protein multiple sequence alignment. BMC
bioinformatics 2015;16(1):1–14.

44. Alley EC, Khimulya G, Biswas S, AlQuraishi M, Church
GM. Unified rational protein engineering with sequence-
based deep representation learning. Nature methods
2019;16(12):1315–1322.

45. Rao R, Bhattacharya N, Thomas N, Duan Y, Chen X,
Canny J, et al. Evaluating protein transfer learning with
TAPE. Advances in neural information processing systems
2019;32:9689.

46. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L,
Gomez AN, et al. Attention is all you need. Advances in
neural information processing systems 2017;30.

47. Devlin J, Chang MW, Lee K, Toutanova K. Bert: Pre-
training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:181004805 2018;.

48. Hochreiter S, Schmidhuber J. Long short-term memory.
Neural computation 1997;9(8):1735–1780.

