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Abstract
Background: The alignment of large numbers of protein sequences is a challenging task and its importance grows
rapidly along with the size of biological datasets. State-of-the-art algorithms have a tendency to produce less accurate
alignments with an increasing number of sequences. This is a fundamental problem since many downstream tasks rely
on accurate alignments.
Results: We present learnMSA, a novel statistical learning approach of profile hidden Markov models (pHMMs) based on
batch gradient descent. Fundamentally different from popular aligners, we fit a custom recurrent neural network
architecture for (p)HMMs to potentially millions of sequences with respect to a maximum a posteriori objective and
decode an alignment. We rely on automatic differentiation of the log-likelihood and thus, our approach is different from
existing HMM training algorithms like Baum–Welch. Our method does not involve progressive, regressive or
divide-and-conquer heuristics. We use uniform batch sampling to adapt to large datasets in linear time without the
requirement of a tree. When tested on ultra-large protein families with up to 3.5 million sequences, learnMSA is both
more accurate and faster than state-of-the-art tools. On the established benchmarks HomFam and BaliFam with
smaller sequence sets it matches state-of-the-art performance. All experiments where done on a standard workstation
with a GPU.
Conclusions: Our results show that learnMSA does not share the counter-intuitive drawback of many popular heuristic
aligners which can substantially lose accuracy when many additional homologs are input. LearnMSA is a future-proof
framework for large alignments with many opportunities for further improvements.
Key words: profile hidden Markov model, multiple sequence alignment, machine learning

Background

Profile hidden Markov models (pHMMs) are probabilistic mod-
els for protein families. One of their applications is remote
homology search in large databases [1, 2]. Typically, an exist-
ing multiple sequence alignment (MSA) is turned into a pHMM,
however, pHMMs can also be trained on unaligned sequences
and a MSA can be decoded from the learned model [3, 4, 5]. The
training of pHMMs using the Baum-Welch algorithm was orig-
inally applied ‘with hand-holding’ to selected protein families
[3], which required a human to decide between specific archi-
tectures, e.g. for modeling a domain as opposed to an entire
protein. Advantages of the statistical learning approach over

traditional aligners are a consistent probabilistic background
for position-specific gap penalties and that both training and
decoding are linear in the number of sequences. However, pro-
file HMM training has never been popular as a general-purpose
alignment method since tabula rasa learning is challenging.
Apart from the model architecture being problem dependent,
another common issue is that algorithms may get stuck at lo-
cal optima in the parameter space. Simulated annealing [4] and
particle swarm optimization [6, 7] could further improve upon
Baum-Welch in this regard, but never resulted in applicable
tools comparable to modern state-of-the-art aligners. Gradi-
ent descent methods like the popular Adam algorithm [8] are
an hitherto entirely unexplored class of algorithms for HMM
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training with increasing relevance in the advent of automatic
differentiation [9].

Established tools that construct MSAs are either unfit for
large numbers of sequences or their accuracy decreases when
the number of aligned sequences grows large [10, 11]. This ef-
fect is particularly present for progressive algorithms, which
rely on a guide tree that dictates the order of the sequences to
be aligned, by greedily starting with closely related ones. One
drawback of this approach is the inability to revert gaps. Early
errors accumulate when more and more sequences are added.

One way to revert incorrect gaps is iterative refinement,
where intermediate alignments guide the construction of sub-
sequent ones [12]. Although iterative refinement strategies can
improve accuracy on moderate sequence numbers, they are un-
suitable for large numbers of sequences from a computational
perspective. For example, MAFFT G-INS-i produces very accu-
rate alignments, but is slow and memory-hungry due to an
all-to-all pairwise alignment stage. MAFFT-Sparsecore ap-
plies MAFFT G-INS-i to a small set of core sequences and pro-
gressively added the remaining sequences thereafter [13]. This
strategy is suitable to scale up iterative refinement to large se-
quence numbers, but biases in the core sequences have to be
avoided by choosing them as diverse as possible.

Divide-and-conquer strategies like PASTA [14] and MAGUS
[15] first construct subalignments on relatively small subsets
of the sequences and merge them thereafter. MAGUS uses a
Graph Clustering Merger for the latter stage. Recently, MA-
GUS was updated to support recursion for ultra-large datasets
[16]. Another technique with improved accuracy is the regres-
sive method which starts to align sequences containing the
most dissimilar ones first and merges subalignments by using
an overlapping sequence [10]. Divide-and-conquer strategies
have enabled the execution of slow but accurate algorithms like
MAFFT G-INS-i on large datasets and improved accuracy com-
pared to progressive strategies [10, 15]. However, they are still
heuristics that ignore everything but a subset at first and are
prone to errors in their merging steps.

Lastly, UPP [17] is related to our method by the fact that
it also uses a pHMM (or an ensemble of pHMMs) to represent
MSAs. However, UPP does not train a model on unaligned se-
quences. Instead, it first constructs a backbone MSA on a sub-
set of the sequences using tree-guided PASTA in order to esti-
mate the HMM parameters. Afterwards, it adds the remaining
sequences using the HMM. UPP has shown good performance
in the presence of high sequence length heterogeneity.

All mentioned MSA algorithms rely on accurate guide trees
and tree construction often becomes the computational bottle-
neck. Clustal Omega [11] uses the mbed method to construct a
tree. A faster but less accurate alternative is MAFFT-PartTree
[18] and another popular algorithm is FastTree [19]. A slow but
very accurate tree construction algorithm based on all-to-all
pairwise alignments is used in the G-INS-i option of MAFFT
[12]. The bottom line is the constant need to balance quality
and speed when constructing trees.

To date, deep learning is not commonly used for multiple
sequence alignment and if it is, its function is usually supple-
mentary, e.g. by optimizing the order of progressive alignment
with reinforcement learning [20] or employing a decision mak-
ing model to select from different strategies in a MSA pipeline
[21]. While some proof of concepts exist, the respective soft-
ware is not feasible for large numbers of sequences, gener-
ally not optimized (stated by the authors) or not available at
all. For pairwise alignment the traditional dynamic program-
ming framework can be supplemented by reinforcement learn-
ing [22] or deep models inspired by recent advances in natural
language processing improving accuracy on remote homologs
[23]. While deep learning is currently usually not used for their
construction, MSAs are, however, a popular input for end-to-

end machine learning methods that solve downstream tasks
[24, 25, 26, 27].

Our proposed aligner learnMSA is based on automated sta-
tistical learning of a pHMM with gradient descent. It does not
require a tree and has a linear asymptotic runtime in the num-
ber of sequences which is faster than most tree algorithms.
No progressive, regressive or divide-and-conquer heuristic is
used. Therefore, we avoid heuristic-based errors when merg-
ing subalignments or progressively adding sequences. We pro-
vide a more robust framework for (ultra-)large MSAs without
the counter-intuitive drawback of loosing accuracy when many
additional homologs are input.

We begin with the description of the underlying model and
a batch-wise variant of the forward algorithm that plays a cen-
tral role during parameter training. We empirically show the
suitability of learnMSA by testing it on ultra-large protein fam-
ilies from Pfam [28] with up to 3.5 million sequences as well as
the established biological benchmarks HomFam and BaliFam.

Methods

Model

Profile hidden Markov models are well known probabilistic
models of sequence consensus. When used to model a protein
family, the aim is to define a probability distribution over the
space of all possible protein sequences such that member se-
quences of the family have large probabilities. The resulting
statistical model can be used for database searches [1] and MSA
construction [3].

In a pHMM, a linear chain of match states represents the
consensus sequence of the family in question. Insertions
and deletions with respect to the consensus are modeled by
position-specific states and transitions. See Figure 1-A for an
illustration of the pHMM.

In addition to the standard pHMM architecture, we deploy
an augmented model following HMMER’s ‘Plan7’ [29, 30] (or-
ange states and transitions in Figure 1-A). The HMM parame-
ters are learned from unaligned protein sequences. In contrast
to previous approaches, our method also learns the additional
‘Plan7’ parameters jointly with the pHMM core model. Previ-
ously, HMMER used predefined value sets for different align-
ment modes (local or global, unihit or multihit) [30]. Here, we
automatically learn the correct alignment mode jointly with
the core pHMM starting tabula rasa. We have special states for
the left (L) and right (R) flank of the model. Initialization and
regularization of the flanking states differ from ordinary in-
sertion states Ii (see section ‘Training’). Moreover, the aug-
mented model allows multihit alignments, i.e. sequences may
contain repeats of a single domain motif by looping backwards.
The state C models any unannotated region between two do-
main hits and must be visited to jump from the end state E
back to the start state S. The model further handles sequence
length heterogeneity (fragmentary sequences) through entry-
and exit-probabilities from S into the consensus and, respec-
tively, from the consensus to E. Note that since version 2, HM-
MER uses a trick to achieve a uniform distribution over all pos-
sible pairs of entry- and exit points into the core model [30].
Here, we follow the older construction with explicit entry- and
exit-probabilities, however, they are now data-dependent in-
stead of ad hoc.

The set of all transition- and emission parameters is
learned from data with careful initialization and under the use
of Dirichlet priors (see section ‘Training’). In general, we have
one trainable parameter for each possible state transition and
in case of the emissions one parameter per match state and
amino acid. There are exceptions: Insertion- and flanking



F. Becker and M. Stanke | 3

Figure 1. A: LearnMSAs underlying pHMM based on HMMER’s ‘Plan7’ model. For the transition (emission) distributions, unconstrained learnable parameter
matrices θA (θB) are transformed by softmaxes over the outgoing edges of a state or the amino acid alphabet respectively. Squares indicate match states, diamonds
are insertions and circles are silent states (either delete states or the start- and end-state). In contrast to previous approaches, we also learn transition probabilities
augmenting the core model (orange). B: Sketch of a recurrent neural network architecture with a HMM-Cell that implements the forward recursion. The first
layer at the bottom computes ancestral distributions of amino acids for a sequence Si using a rate matrix and an evolutionary time τi that is learned jointly with
the HMM parameters.

states use a fixed background emission distribution that is not
optimized. The self-loop (and respectively exit) probabilities
for the flanking states L,R and C are tied to prevent a bias to-
wards one of the sides. Delete states (as well as the domain
start- and end-states S and E) are silent, i.e. they have no
emission distribution and do not not advance the position in
the observed sequence.

A pHMM can be parameterized by two probability matrices
for transitions and emissions and an initial state distribution.
Let Q be the set of all states and A be the stochastic |Q| × |Q|
matrix of state transitions. Observe that for pHMMs, this ma-
trix is very sparse. We call the number of match states in a
model its length l. Let Q′ := Q \ {D1, . . . ,Dl, S, E} denote the set
of all emitting states. Let B be the |Q′| × 25 emission matrix,
that is constructed by concatenating l learnable emission distri-
butions of the match states with background distributions for
all insertions and the flanks. The second dimension of B cor-
responds to the 20 standard amino acids, plus Selenocysteine,
Pyrrolysine and the ambiguous codes X,B and Z. The termi-
nal symbol (26-th letter) has an implicit probability of 0 at all
states except T.

In order to apply gradient descent, we parameterize the
model by unconstrained kernels θA and θB and enforce the
probabilistic constraints that the rows of A and B sum up to 1
with a softmax-function defined on a real vector: softmax(x)i =
exi∑
j e
xj

.
As seen in Figure 1-A the emission distribution of, for

example, Mi is computed by softmax(θBi ), where θBi =
(θBiA ,θBiR ,θBiN ,θBiD , . . . ) is the i-th row of θB. The matrix B is
constructed from the kernel θB by using softmaxes to compute
the match distributions over the amino acid alphabet.

The kernel θA is a collection of parameter vectors corre-
sponding to different transition types that share the same
initialization and prior. For example, we have l – 1 param-
eters for the match-to-match transitions. The total num-
ber of allowed transitions in the model as shown in Figure
1-A is linear in l. The probability distribution of transition-
ing from - for example - match Mi to one of the 4 adja-
cent states Mi+1, Ii, Di+1 or E is calculated by constructing

the vector θAMi = (θAMi,Mi+1 ,θAMi,Ii ,θAMi,Di+1 ,θAMi,E) and comput-
ing softmax(θAMi ). We store A (or in fact, a matrix closely related
to A as described in section ‘Implicit model’) in sparse matrix
representation where illegal transitions are implicitly zero.

For the initial state distribution P0, we use a simple
parametrization by introducing a scalar θinit that controls the
probability of starting in the left flank. To this end, we define
pinit = σ(θinit) where σ is the sigmoid function. The initial dis-
tribution is P0(L) = pinit and P0(S) = 1 – pinit and P0(q) = 0 for
q 6= L, S.

In the following, let θ = (θinit,θA,θB) denote the complete
set of learnable parameters for the (augmented) pHMM.

Batch-wise forward algorithm

Assume for now that no silent states exist. For the pHMM as
introduced in section ‘Model’, we will describe an equivalent
implicit model without the silent states D1, . . . ,Dl, S and E in
section ‘Implicit model’. Consequently, Q = Q′ for now.

An unaligned protein sequence S can be described by a path
π of hidden states in the pHMM. Under our assumption π =
π0, . . . ,πn–1 and S = s0, . . . , sn–1 have the same length n. The
joint probability of observed and hidden sequence is P(S,π) =
P0(π0)P(s0 |π0)∏i>0 P(πi |πi–1)P(si |πi), where the transition-
and emission probabilities are computed as described in section
‘Model’ above.

The likelihood of a sequence is the sum of the joint probabil-
ities over all possible hidden paths: P(S) = ∑

π P(S,π) which is
related to HMMER’s forward score [30]. Intuitively, it describes
how well a sequence fits to the consensus when considering
all possible alignments. The likelihood can be efficiently com-
puted with dynamic programming using either the forward- or
the backward algorithm [31]. We present a batch-wise variant
of the forward algorithm that plays a central role during pa-
rameter training of learnMSA.

The forward probabilities are α(i)q := P(πi = q, s0, . . . , si).The well-known dynamic programming recursion to compute
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α(1), . . . ,α(n – 1) is
α(i)q = P(si | q) ∑

q′∈Q
P(q | q′)α(i – 1)q′ (1)

with α(0)q = P(s0 | q)P0(q).
Equation (1) lends itself to an efficient implementation for

a batch of sequences of size b. Let the b× 25 matrix S(i) denote
the tuple of all i-th sequence positions in the batch, that is S(i)jis an one-hot representation of the i-th residue of sequence
j. We omit the implementation detail that for variable length
sequences some positions might be terminal symbols here. In
the following, we factor out a partial likelihood term in each
forward step to allow an underflow-safe computation of the
likelihood. The batch-wise forward recursion is:

α′(i) =

S(i)BT ◦ α

′(i – 1)
Z(i – 1) A, i > 0

S(0)BT ◦ P0, i = 0
Z(i) = ∑

q∈Q
α′(i)q

L(i) = lnZ(i).

(2)

where i is a sequence index, α′(i) are b × |Q| batches of
scaled forward variables, ◦ denotes element-wise multiplica-
tion (with shape broadcasting, where required) and the ma-
trix multiplication that involves A uses an efficient implemen-
tation that exploits the sparse representation. Observe that
α(i) = α′(i) ◦∏i–1

i′=0 Z(i′).
The likelihood (for a single sequence) can eventually be

computed as P(S) = ∑
q α(n– 1)q. However, we prevent numer-

ical underflow by equivalently using the partial log-likelihood
values in Equation (2):

ln P(S) = n–1∑
i=0
L(i). (3)

Viterbi decoding

When we decode an alignment, we are interested in the
hidden path of a sequence with maximum probability
i.e. arg maxπ P(S,π). This can be computed efficiently using
the Viterbi algorithm [31] which is closely related to the for-
ward algorithm.

A Viterbi MSA can be constructed by aligning the most likely
hidden sequences of all input sequences [3]. Currently, we
leave insertions unaligned and left-adjusted except for the left
flank which is right-adjusted. Moreover, if domain repeats oc-
cur, the i-th occurrences of the domain in multiple sequences
respectively are currently aligned with each other. With both
simplifications, we accept that we are in a slight disadvan-
tage compared to state-of-the-art aligners which will align all
residues globally.

Implicit model

Conventionally, the forward recursion for pHMMs is imple-
mented in linear time per step by explicitly handling silent
states (the deletes Di, the starting state S and the ending state
E) [32]. This requires a long-winded sequential computation of
the forward variable for the delete states where α(i)Dj depends
on α(i)Dj–1 . Here, we treat all silent states as implicit states,
that is, internally we use an equivalent model that has only
emitting states, by folding all transitions entering and leaving

a silent state. That means all possible partial state paths that
start and end in an emitting state and consist only of silent
states else, are replaced by single transitions that have proba-
bility equal to the probability of the respective partial path. In
detail, each partial path Mi → Di+1 → . . .Dj–1 → Mj for j > i + 1
is replaced by an edge with probability

P(Mj | Mi) = P(Di+1 | Mi)
 j–2∏
i′=i+1

P(Di′+1 | Di′ )
 P(Mj | Dj–1).

(4)
This changes the asymptotic runtime of the forward algo-

rithm, because the number of possible transitions from each
match state is not constant anymore. However, we can now im-
plement Equation (2) by taking full advantage of modern (GPU-
accelerated) computing frameworks. We found that given the
typical length of a protein (our benchmarks contain sequences
of length up to 800) the asymptotic downgrade is acceptable
in the light of parallelism: We can compute all values of α(i)
in parallel given α(i– 1). In the batch-wise forward algorithm,
the bottleneck is the matrix multiplication with the transition
matrix which should use an efficient implementation that ex-
ploits sparseness.

Folding all edges adjacent to silent states is referred to as
the implicit model, represented by a transition matrix Aimpl re-
placing A from section ‘Model’. Note that Aimpl is still very
sparse. Transitions over the start state S and the end state E,
i.e. deletions of initial or terminal parts, are handled analo-
gously. Also note that empty, infinite silent loops through the
model are not possible, because the unannotated segment state
C is an insertion that emits at least one amino acid and can not
be skipped.

Training

During training, learnMSA uses a recurrent neural network ar-
chitecture with a pHMM cell that scans a batch of sequences
column-of-residues-wise and successively applies Equation
(2). This architecture is visualized in Figure 1-B with the addi-
tion of ‘Ancestral probabilities’ as described later. Given θ, the
parameters of the model, the log-likelihood of a random batch
of b sequences is

L(θ; S1, . . . , Sb) = b∑
i=1

ln P(Si | θ). (5)

The general goal while successively observing random
batches is to adjust θ such that L increases over time. In prac-
tice, we minimize a loss function related to L that also incor-
porates prior knowledge about proteins.

Existing optimization algorithms like Baum-Welch [3] or
simulated annealing [4] avoid using gradients of L and use the
forward-backward algorithm for parameter updates instead.
An advantage of learnMSA is the possibility to optimize the
HMM jointly with other layers. Currently, we demonstrate this
as described in section ‘Ancestral probabilities’, but a broader
field opens up in this direction as discussed later. Gradient
based optimization can also be applied to objectives that are not
based on likelihood, for instance the discrimination or classi-
fication of (sub)families [33]. Traditional HMM learning algo-
rithms are not used for online learning although such variants
exist [5]. Typically, they require more technical work to include
priors than our gradient based approach. None of the methods
can guarantee globally optimal results. However, learnMSA can
make use of the advancing optimization toolbox for machine
learning problems based on automatic differentiation [9].
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Table 1. Dirichlet parameters for the core pHMM transition distri-butions estimated from Pfam HMMs
α match insert delete
match 40.59 0.96 0.68
insert 26.75 23.32 -
delete 37.79 - 25.15

Maximum a posteriori loss
Models found by maximizing L might generalize weakly. This
is especially true if the number of training sequences m is
low. Our experiments will mainly focus on cases where m is
large (i.e. 10.000 to millions of sequences). However, we can
still have overfitting problems. Domain motifs of subfamilies
might be underrepresented in the sequence set leading to a
skewed model. Moreover, we might end up with a result that
fits the data well but is not biologically plausible (e.g. a model
that allows very long insertions or many gap openings). A max-
imum a posteriori estimate attempts to fit the data while at the
same time penalizing unplausible models [3]. In this sense, we
define our loss function as:

`(θ; S1, . . . , SB) = – 1
bL(θ; S1, . . . , SB) – 1

m ln(ρ(θ)). (6)
The loss ` has a foundation in Bayesian statistics. The first

term is the log-likelihood per sequence averaged over a batch
of sequences. Usually we choose b < m and consequently per-
form stochastic gradient descent. This allows us to rapidly
train models even on millions of homologous sequences. We
use random uniform batch sampling. The second term is the
prior density i.e. ρ is a function that rewards plausible models.
We normalize by 1

m to make the estimate consistent. The effect
of the prior is reduced proportional to the number of training
sequences. This is particularly important because we use a gen-
eral (i.e. family-agnostic) prior that should work over the full
range of dataset sizes. Following conventional standards [3],
we use Dirichlet densities [34, 35] over the different types of
transition distributions and the match emissions.

To reduce the total number of hyperparameters that have
to be set by hand, we salvaged as much general-purpose in-
formation as possible from Pfam HMMs. For the core model
probabilities, we took over 3 million example transition distri-
butions and maximized the likelihoods of 3 Dirichlets: One for
matches, insertions and deletes respectively (see Table 1).

For the emissions, we tested Dirichlet mixtures with differ-
ent component counts (1, 9, 32, 64, 128, 512) which we trained
on the match emission distributions of Pfam HMMs, but found
that for large sequence counts, a single Dirichlet density (i.e.
a mixture with one component) is enough. The expectation of
this Dirichlet distribution is also used to initialize the match
emissions as well as the (fixed) insertion emissions and the
flanks.

As described earlier, we optimize the transition probabili-
ties for flanking states, domain multihits and the entry- and
exit-probabilities jointly with the core model. We found that
these transitions require strict regularization. We defined a
simplified set of hyperparameters αflank, αsingle and αglobal and
(currently only roughly) searched for suitable values based on
the quality of the produced alignments. These hyperparame-
ters have a probabilistic foundation as parameters of Dirichlet
priors over specific Bernoulli distributions that were defined
to favor the probability p = 1 for particular, carefully defined
events. That means the prior can be maximized by maximiz-
ing p, but this choice has to be balanced with the likelihood.
For each possible choice of p and α the logarithmic prior den-
sities are (α – 1) ln p + (α′ – 1) ln (1 – p), where we set α′ = 1 .
The motivation behind this ad hoc choice was to keep the set of

hyperparameters for the method simple while maintaining the
probabilistic interpretation of the regularization term.

In particular, αflank controls the pressure to align to the core
model (rather than using the flanking states), i.e. increasing
αflank will result in longer insertions at the flanks and between
repeated domain segments. The parameter αflank regularizes
the self-loop probabilities of all flanking states, as well as P0(L)
and P(R | E). Furthermore, we introduce αsingle to penalize
core model repeats favoring large values for the probability 1 –
P(C | E) = P(R | E) + P(T | E). Lastly, αglobal penalizes local
alignments that use entry- and exit-transitions other than S→
M1 and Ml → E. The probabilities regularized by αglobal were
chosen such that all choices of starting and end points into
the consensus S → Mi → · · · → Mj → E for 1 ≤ i ≤ j ≤ l,
(i, j) 6= (1, l) are penalized uniformly. More precisely, we favor
large probabilities 1 – P(Mi | S)P(E | Mj) for 1 ≤ i ≤ j ≤ l,
(i, j) 6= (1, l). The values used for this paper are αflank = 7000,
αsingle = 1e9 and αglobal = 1e4.
Initialization
First, we guess an initial model length l by taking the median
of the sequence lengths and scaling it by a constant c. We found
that c = 0.8 works well. It is easier to find a rough initial
consensus if the number of match states is limited which forces
the model to restrict itself to the more relevant parts of the
sequences. The median is more robust against fragmentary
sequences than the average.

The initialization of θ could in principle use prior knowledge
about the protein family at hand. However, we are interested in
tabula rasa training with an universal initial parameter set in-
dependent on the input sequences. We chose an ad hoc position
independent initialization that reflects the prior distributions.
Intuitively, we want the initial model to focus its probability
mass on paths that use all match states. We do this by having
larger probability for the initial match-match transitions. We
took care to initialize the entry probabilities dependent of the
model length such that P(M1 | S) is always roughly 12 . More-
over, we initialize the repeat transition E→ C with a very small
probability and for the flanking states L,R and C we initialize
such that the self-loops are more likely than the exits.
Model surgery
After training, we might observe rarely used match states or
overused insertion states. We can discard or expand those po-
sitions and adapt the model length which is known as model
surgery [3].

Given a trained model, we discard match positions that are
used by less than 50% of the sequences. Likewise, we expand
positions where more than 50% of all sequences have an in-
sertion by a number of new match states equal to the average
insertion length. If a match position is discarded, all incident
edges are removed and new edges with default initialization
are carefully inserted to close the holes (there is a hole for each
consecutive segment of discarded positions). If an insertion is
expanded, edges at the position of interest that connect left and
right model part are removed. Eventually, all edges incident to
a new match state are default initialized. After each surgery
iteration, the flanking states, θinit, the kernel for the transi-
tion distribution of the end state E as well as the evolutionary
times τ of the ancestral probability layer (for details see section
‘Ancestral probabilities’) are reset to default and the model is
trained again. This is repeated at most 4 times which we found
is a good compromise between speed and accuracy. Per default,
we train 5 independent models and optimize them with model
surgery. Eventually, we chose the model with parameters θ
that maximizes 1

m (L(θ; S1, . . . , Sm) + ln(ρ(θ))) to decode the fi-
nal alignment.
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If the number of surgery iterations is > 1, we found it bene-
ficial (both performance and accuracy wise) to restrict training
in all but the last iterations to sequences with lengths above the
q-th quantile while keeping a minimum of k sequences. There-
fore, initial parameter updates are always on sequences that
have roughly full-length. Short fragmentary sequences may
disturb early training epochs. It is easier to incorporate them,
if a rough consensus is established and the matter simplifies
to fine-tuning the entry-, exit- and repeat-probabilities. We
found that q = 50% and k = 10.000 work well. This is in
line with other large scale MSA methods, where a common
denominator is a strong preliminary focus on putative full-
length sequences, i.e. sequences with lengths from the upper
quantiles. For example, MAFFT-Sparsecore only considers se-
quences with lengths above the median for its core alignment
and the regressive strategy favors the longest sequence as re-
spresentatives of subtrees (i.e. longer sequences are aligned
first).

Ancestral probabilities

We naturally assume the existence of a single whole-protein
consensus sequence C that represents the sequence set we wish
to align. Homologous sequences Si may be closely or distantly
related to C, i.e. we assume they have independent expected
mutations per site with respect to the consensus. Model-wise
we introduce evolutionary times τi to estimate the distance of
Si to C. The process is conventionally described by the Gen-
eral Time-Reversible Substitution Model parameterized by a
20× 20 matrix Q of instantaneous substitution rates from one
amino acid to any other [36, 37]. Like the scoring matrices used
by traditional alignment algorithms, Q models prior biological
knowledge on the relative expected frequencies of amino acid
substitutions. From Q, the amino acid mutation probabilities
after time τ given an initial amino acid can be derived as fol-
lows:

P(τ) = exp(τQ), (7)
where exp denotes the matrix exponential. The a-th row

of this matrix, P(τ)a, corresponds to the expected amino acid
distribution after time τ when starting with amino acid a. As
the model is time-reversible, it is also the distribution of amino
acids τ time units ago at a site where amino acid a is observed
now.

We initialize τ with zeros and optimize it under the con-
straints 0 ≤ τS ≤ 2.5 where the maximal value of 2.5 corre-
sponds to the PAM250 matrix and zero is the identity. The
vector τ is learned jointly with the HMM parameters θ. Put dif-
ferently, we learn the branch lengths of a star-like tree jointly
with the sequence model. For each batch of sequences, the cor-
rect subset of τ is gathered. The ancestral probabilities with
the final values τ are also used during Viterbi decoding of the
alignment. More precisely, we replace all likelihoods P(Si |θ)
with P(Si |θ,τi).

The τi are related to sequence weights but they are learned
from data and do not require a tree or any other pairwise se-
quence comparison. Assume that for some suitable distance
metric one sequence Si has a large total distance to all other
sequences. In a sequence weighting scheme Si would typically
have a larger weight than sequences with many close relatives
to account for the underrepresentation. Choosing a large τi can
increase P(Si | θ,τi) by smearing Si towards the consensus. But
this increase is independent of all other sequences and involves
no change of θ.

Technical background

We use TensorFlow [38] to automatically compute the gradi-
ents of ` with respect to θ and τ. We use the Adam optimizer
[8] with a learning rate of 0.1 to minimize `. Note that au-
tomatic differentiation allows low-effort changes to the HMM
architecture and the prior. Moreover, the addition of any type
of preliminary deep learning layer (e.g. ancestral probabilities)
is possible. Using a machine learning back end provides access
to GPU acceleration and other computational benefits out of
the box. Our method does not strictly require a GPU, however,
it is highly recommended to use one to train models beyond
length 100. The training automatically scales to multiple GPUs
by splitting the batches.

Data Description

We tested learnMSA on HomFam [11], BaliFam [39] and the ten
largest Pfam [28] families. The former two are benchmark col-
lections based on reference alignments from HOMSTRAD [40]
and BAliBase [41] respectively. Each reference set is embedded
into a large set of putative homologs gathered from Pfam. Bal-
iFam has 2 variants where the references are embedded into
100 and 10.000 homologs respectively. Low sequence numbers
were not our target of interest, but we included the small Bal-
iFam variant specifically to test the up-scaling ability of our
model. See Table 2 for further details. We did not modify, ex-
tend or reduce HomFam or BaliFam other than the embedding
step as just described.

To test the ability of our method to align under high se-
quence length heterogeneity, we constructed a fragmentary
variant of BaliFam10000 by following the procedure that was
used to test UPP before [17]. We chose BaliFam10000, be-
cause the homologs had lengths comparable to the references
whereas HomFam homologs in many cases appear to be not
full-length. We constructed a high-fragmentation collection
BaliFrag by randomly selecting 40% of the sequences per
dataset in BaliFam10000. For each of these sequences, we sam-
pled a fragment length from a normal distribution with mean
equal to 33% of the mean length of the full-length sequences
and a standard deviation of 15. We sampled uniformly from all
valid starting positions of the fragment in the whole sequence.

Finally, we experimented with ten ultra-large datasets
that were acquired from Pfam by selecting the largest fam-
ilies (based on the number of sequences in the full align-
ments) and downloading the respective UniProt datasets that
were generated by searching the UniProtKB database using
the Pfam family HMM. We also downloaded the corresponding
seed alignments to use them as a reference. For the training
datasets, we added the seed sequences to the UniProt datasets
if not already present and removed all gaps. The families are:
Zinc finger C2H2 type (PF00096), WD domain G-beta repeat
(PF00400), ABC transporter (PF00005), Protein kinase domain
(PF00069), Ankyrin repeats (PF12796), Major Facilitator Super-
family (PF07690), Leucine rich repeat (PF13855), Fibronectin
type III domain (PF00041), Response regulator receiver domain
(PF00072) and Immunoglobulin I-set domain (PF07679). All
have known 3D structure. ABC transporter is the largest dataset
with about 3.5 million sequences. See Table 3 for details.

Analysis

We compared learnMSA to the following aligners: Clustal
Omega (Version 1.2.4), regressive T-Coffee (Version
13.45.0.4846264), MAGUS (git hash f9a3676 from 2022-
01-21), UPP (Version 4.5.2) and MAFFT-Sparsecore (MAFFT
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Table 2. Dataset properties
collection number of families number of sequences sequence length

min max avg min max avg
HomFam (refs.) 94 5 41 8 14 854 215

HomFam (combined) 94 93 93681 8007 12 854 148
BaliFam (refs.) 59 4 142 27 22 471 158

BaliFam100 59 104 242 127 20 764 161
BaliFam10000 36 10004 10142 10031 7 607 175

BaliFrag 36 10004 10142 10031 7 607 129

Table 3. Ultra-large dataset properties
family no. sequences

%id
sequence length

combined seed min max avg
PF00005 3489586 55 26 18 683 146
PF07690 1861106 192 13 37 577 284
PF00096 1783511 159 41 12 34 23
PF00072 1767045 52 25 28 156 110
PF00400 1594257 1465 24 12 101 35
PF00069 1154714 38 21 24 511 227
PF12796 945198 184 24 27 153 78
PF13855 766271 62 28 26 73 57
PF00041 666310 98 20 27 139 81
PF07679 579519 48 21 25 149 83

Sequence identity is based on full alignment. Sequence lengths are given for
the combined dataset.

Version 7.490). There is to the best knowledge of the au-
thors no mature deep learning based tool for large multiple
alignment of proteins available for comparison.

The command lines to align HomFam and BaliFam were (in-
put/output and CPU arguments omitted):

MsaHmm.py
clustalo -t protein --outfmt=fa
mafft-sparsecore.rb
run_upp.py -M -1 -m amino
magus.py -t clustal --recursive false
t_coffee -reg -nseq 100 -tree mbed

-method mafftginsi_msa

and for the ultra-large datasets (commands equal to the
HomFam/BaliFam case omitted):

mafft --parttree
magus.py -t random --recurse True

--recurseguidetree clustal
t_coffee -reg -nseq 1000 -tree parttree

-method mafftfftnsi_msa

We run learnMSA as well as UPP on all datasets (including
ultra-large) in default mode without manual parameter adjust-
ments. We did not attempt to align the ultra-large files with
Clustal Omega, because we already observed a severe drop in
accuracy on sequences in the thousands. MAFFT-Sparsecore
refused to align the ultra-large datasets. We used MAFFT with
the parttree option instead. For MAGUS, we enabled recursion
for the ultra-large datasets, set the guide tree for the high-
est recursion level to ‘random’ due to very long runtimes with
other choices and used clustal trees for all other recursion lev-
els. To use T-Coffee regressive on the ultra-large datasets,
we increased the maximum number of sequences in the sub-
alignments to 1000 in the hope that we could avoid very long
MSAs due to concatenated independent gaps during the merg-
ing steps. For a speedup, we also run T-Coffee with parttree
and MAFFT FFT-NS-i. All parameter changes in order to align
the ultra-large datasets were done reactively after testing the

slower and more accurate settings used for HomFam and Bali-
Fam first.

Our method was run using 8 CPU cores, 100 GB of RAM and
a NVIDIA GeForce RTX 3090 GPU for all datasets including the
ultra-large ones. All other aligners did not utilize a GPU and
were run using 8 CPU cores and 100 GB of RAM for HomFam
and BaliFam and 16 cores and 500 GB of RAM for the ultra-large
datasets. We chose all memory numbers as a safe upper limit
and did no further experiments to evaluate tight requirements.
We used a wall clock limit of 3 days for each individual ultra-
large alignment.

Sum-of-pairs (SP) score and total column (TC) score were
computed by comparing the subalignments induced by the
reference sequences to a structure based alignment (in case
of HomFam and BaliFam) or the Pfam seed alignment (in
case of the ultra-large datasets). We used T-Coffee with the
aln_compare option. The reference sequences are not known to
the aligning method.

On the ultra-large datasets learnMSA is most accurate and
fastest in almost all cases (see Table 4). All other methods ex-
cept UPP required manual adjustment of the default parameters
to get them to work. In the end, not all tested aligners were able
to align all datasets indicating technical limitations of state-of-
the-art tools. In addition to timeout and memory issues, we
observed a tendency of the divide-and-conquer methods (T-
Coffee, MAGUS) to construct MSAs with much larger column
counts than the reference (see the expansion column in Table
4), sometimes to the extent that the output file was too large
for further usage. This is most likely due to their merging of
subalignments in which independent gaps are stacked rather
than aligned. LearnMSAs alignments do not grow in length
with increasing number of sequences. Figure 4 shows repre-
sentatively that ultra-large MSAs computed by learnMSA tend
to be tighter than those of comparable tools and do not suffer
from underalignment. In the case of PF00096, learnMSA has
no clear advantage, however, this family has relatively high se-
quence identity and very short sequences and is therefore easier
to align than the others. Below 1 million sequences, learnMSA
loses its runtime advantage and is about as fast as MAFFT and
T-Coffee, but at the same time much more accurate.

Figure 2 shows the distribution of SP and TC scores for
HomFam and BaliFam. We were able to match state-of-the-
art performance on HomFam. If restricted to the 20 sequence
sets with at least 10.000 sequences, the benefit of using pHMM
based alignment increases. Note that the number of sequences
in the HomFam collection varies significantly (see Table 2).
Likewise, HMM matches state-of-the-art performance on Bal-
iFam10000, but falls behind on BaliFam100.

LearnMSA aligned HomFam and BaliFam10000 in a total of
40 hours (sequential training of 5 independent models on the
same machine). For the same, Clustal Omega took 3.5 hours,
MAFFT-Sparsecore 24 hours, UPP 19 hours, T-Coffee regres-
sive 9 hours and MAGUS 48 hours.

We also evaluated how increasing the number of homologs
that are aligned together with the reference sequences affects
alignment accuracy. To create a biologically realistic test set-
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Figure 2. Total column (TC, left) and sum-of-pairs (SP, right) scores for the HomFam (top) and BaliFam (bottom) collections.
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Figure 3. Alignment accuracy as a function of family size. For evaluation purposes, increasing numbers of further homologs are added to a static set of reference
sequences. The data points are labeled with the fractions of alignment tasks that produced an usable MSA at all. Missing data points indicate that the aligning
method failed for the entirety of the datasets. In case of a failed alignment (due to hardware constraints), we inserted the score of the largest successful alignment
in the respective series of nested sets, in favor of the aligning method. Therefore, the plot shows the behavior of the accuracy of the remaining MSAs under the
(obliging) assumption that the failed MSAs are in theory unaffected by an increase in sequence numbers. Such incomplete data points are colored red. The shaded
area is the standard deviations over the 10 samples, averaged over the families.
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Table 4. Results for the ultra-large datasets
family method SP TC hours expansion

PF00005
learnMSA 74.9 22.2 10.0 1.89

UPP 73.5 10.2 52.5 1.98
MAFFT error
MAGUS timeout

regressive T-Coffee error

PF07690
learnMSA 56.1 0.0 30.2 1.82

UPP 51.6 0.0 35.5 2.48
MAFFT error
MAGUS timeout

regressive T-Coffee error

PF00096
learnMSA 92.9 6.5 0.9 1.16

UPP 86.3 0.0 1.7 2.23
MAFFT 84.1 16.1 0.3 2.74
MAGUS 94.8 3.2 3.6 4.68

regressive T-Coffee 69.9 0.0 0.9 6.55

PF00072
learnMSA 92.4 39.2 2.9 1.1

UPP 91.4 34.6 6.7 1.32
MAFFT 64.9 4.6 7.6 3.69
MAGUS 85.8 33.1 24.8 2.41

regressive T-Coffee output too large

PF00400
learnMSA 18.0 0.0 1.1 1.29

UPP 3.6 0.0 2.0 2.62
MAFFT 0.0 0.0 2.3 7.71
MAGUS 6.9 0.0 12.6 17.32

regressive T-Coffee 0.0 0.0 2.0 51.28

PF00069
learnMSA 83.4 24.9 11.3 1.37

UPP 83.3 20.2 19.5 1.6
MAFFT 54.9 5.4 53.0 3.52
MAGUS 65.4 18.1 29.1 4.77

regressive T-Coffee error

PF12796
learnMSA 72.4 0.0 1.3 0.85

UPP 40.8 0.0 4.3 3.18
MAFFT 40.4 0.4 7.5 6.36
MAGUS 58.9 0.0 67.2 5.62

regressive T-Coffee output too large

PF13855
learnMSA 94.7 26.2 0.8 1.05

UPP 91.0 21.5 2.5 1.71
MAFFT 80.6 3.1 1.2 3.05
MAGUS 94.7 38.5 54.1 1.47

regressive T-Coffee 49.2 0.0 0.8 7.21

PF00041
learnMSA 79.1 16.5 1.0 1.34

UPP 74.9 22.0 2.3 2.18
MAFFT 43.2 0.0 2.0 7.83
MAGUS 72.6 10.1 53.8 6.4

regressive T-Coffee 37.0 0.0 0.8 15.16

PF07679
learnMSA 94.1 50.0 0.9 1.11

UPP 88.7 46.0 2.9 1.43
MAFFT 68.1 13.0 1.1 3.36
MAGUS 84.0 42.0 4.3 2.12

regressive T-Coffee 44.2 2.0 0.6 8.55
Expansion denotes the ratio of the length of the predicted alignment (induced
by the reference sequences) to the reference alignment length. Values greater
than 1 indicate underalignment i.e. the estimated alignment is longer than
the reference. Timeout: The alignment could not be completed by the method
within a wall clock limit of 3 days. Error: The alignment failed with an error (ei-
ther out of memory or another unknown reason). Output too large: The align-
ment was successful, but the output file was impractically large to be properly
post-processed (for example PF12796: T-Coffee 445GB, learnMSA 1.2GB). For
each cell and column, the best value is in bold face.

ting, we took the 10 Pfam datasets from Table 3 and aligned
the combination of the respective seed sequences (called refer-
ences in the following) with random subsets of the remaining
homologs. We started by aligning only the references. Note
that the reference set sizes vary between 38 and 1465 (Table 3).
Homologs were drawn randomly without replacement from the
UniProtKB datasets to fill up the aligned datasets to monoton-
ically increasing sizes, such that the resulting sets are nested
(in a series of MSAs, homologs are only added, never removed).
We repeated this serial sampling procedure 10 times and av-
eraged the results over equal sized alignments. We compared
learnMSA with T-Coffee regressive and MAFFT using the com-
mands above from previous experiments, both the accurate and

fast variants.
As seen in Figure 3, the accurate variant of T-Coffee re-

gressive, MAFFT-Sparsecore and learnMSA are similar in SP
score when only aligning the references. Further, all align-
ment methods lose accuracy after adding homologs at all. How-
ever, the asymptotic accuracy of learnMSA is barely affected
by the number of added homologs, whereas we observe clearly
decreasing trends for the other methods. The relative perfor-
mance of the methods is dataset dependent and indicates that
learnMSA has advantages for the global alignment of protein
families. Starting at 200.000 sequences, we observed that re-
gressive T-Coffee and MAFFT sparsecore failed for some MSA
tasks (we allowed 200 GB of RAM per MSA). The only methods
able to align all datasets were learnMSA and MAFFT with the
partree option. For our evaluation, we decided to replace each
failed MSA with the largest successful alignment in the respec-
tive series of nested sets, assuming, in favor of the aligning
method, that the failed MSA is in theory unaffected by an in-
crease in sequence numbers. Despite that, as seen in Figure
3, typically a further increase in the number of homologs still
leads to a decrease in accuracy of the established algorithmic
aligners.

For the high-fragmentation collection BaliFrag, learnMSA
can compete with MAFFT-Sparsecore, UPP and MAGUS (Fig-
ure 2). All rely on robust ways to exclude putative fragmen-
tary sequences in early alignment stages by restricting initial
backbone alignments to sequences from the upper quantiles
[13, 17, 15]. Clustal Omega and T-Coffee regressive fall behind
in this benchmark. This analysis confirms that learnMSA can
accurately adapt to fragmentary sequences by first training a
pHMM on sequences that are deemed full-length and fitting to
the complete sequence set thereafter. Partial domain hits cor-
rectly use the entry- and exit-transitions as seen in Figure 5.
The difference of learnMSA to the competing methods is that
we do not restrict the initial stages to a constant-sized subset
of the sequences and that the final alignment is, in principle,
able to correct incorrect decisions from earlier iterations. A
suitable number of full-length examples is required to find a
correct initial model length and to build a consensus. However,
UPP teaches us that it is easy to add fragmentary sequences
with pHMMs once a full-length consensus is established [17].

Discussion

We have proposed learnMSA, a novel unsupervised learning
approach for the alignment of large protein families. In con-
trast to state-of-the-art aligners, learnMSA does not require
a tree, which eliminates a crucial performance bottleneck and
makes learnMSA asymptotically fast – linear in the number
of sequences. It is interesting to see that state-of-the-art
performance on large sequence numbers can be reached with-
out a tree by uniform batch sampling. Our method does not
rely on progressive, regressive or divide-and-conquer heuris-
tics. We showed empirically, that learnMSA, when aligning
millions of sequences, is both more accurate and faster (even
though the measured time was for 5 independent, sequentially
trained models). Moreover, when aligning Pfam families, ad-
ditional homologs decrease the accuracy of traditional, heuris-
tic methods (if they are feasible for large sequence numbers at
all), whereas learnMSA is more robust. Whether this statement
also applies to established benchmarks like HomFam remains
an open question that can be answered if more homologs are
gathered for these datasets in the future. A similar scaling ex-
periment, which was done for T-Coffee regressive [10] based on
HomFam, suffers from limited data coverage for large sequence
numbers, i.e. the number of available families decreases when
the MSA depth increases. This is not the case in our study as
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Figure 4. Vertical MSA slices for the ultra-large family PF00069 with more than a million sequences. The 10 most informative sequences (i.e. the most dissimilar
ones based on the reference MSA) were extracted using T-Coffee. We took a random vertical slice ranging from column 25 to 90 in the reference MSA and
computed vertical slices for the predicted MSAs as induced by the sequence fragments. We used Jalview 2.11.2.2 with clustalx coloring for visualization. For better
comparability, TTK_HUMAN was selected as reference sequence.
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Figure 5. A learned pHMM for the Bowman-Birk serine protease inhibitor family in the HomFam collection with Viterbi paths for three different sequences: A
single domain hit (blue), a multihit (brown) and a partial hit (cyan). Numbers on edges are transition probabilities, numbers on nodes are self-loop probabilities.
For each match states, the top three amino acids and their probabilities are printed, along with the probability of entering and exiting at the respective match.
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Figure 6. A detailed comparison of the performance of learnMSA relative to MAFFT-Sparsecore (left) and UPP (right) for all 94 HomFam families grouped by
secondary structure. Score difference is defined as SP(learnMSA) – SP(other). Relative reference length is defined as the ratio of the average reference length and the
average length of the combined dataset including the homologs. For example, ‘Ald_Xan_dh_2’ references are on average about 7 times as long as the respective
homologs. The legend contains the average SP score of learnMSA per structure group.

enough homologs were available from the UniProtKB datasets.
LearnMSA generalizes and automatizes earlier pHMM train-

ing approaches for protein families. It does this by taking HM-
MER’s ‘Plan7’ model, but avoids the manual adjustment of the
‘alignment mode’ (local versus glocal or unihit versus multi-
hit). Instead, the extra states and transitions (orange in Figure
1 A) are optimized jointly with the core model starting with
a tabula rasa configuration which greatly reduces the required
hand-holding. This is also beneficial, if a suitable alignment
mode for a dataset is unknown. LearnMSA is designed in a
way that minimizes the assumptions a user has to make. Note
that for all tested datasets, including dramatically varying se-
quence numbers and levels of fragmentation, we used learn-
MSAs default configuration of hyperparameters. It should be
pointed out, that learnMSAs is particularly accurate compared
to other methods when aligning families that contain multi-
hits. This is clearly visible in Figure 6, for example in the
cases of Beta gamma crystallin (‘cryst’, PF00030), Bowman-
Birk protease inhibitor (‘bowman’, PF00228) or Annexin (‘an-
nexin’, PF00191).

On HomFam and BaliFam we match state-of-the-art per-
formance but observe reduced relative accuracy for low se-
quence numbers. This indicates that there is a lower limit
on the sequence numbers below which learnMSAs performance
decreases relatively to other methods, but this is not surprising
for a statistical learning approach and can currently be solved
by falling back to a traditional aligner. There is a slight dis-
advantage of HMM in average scores for HomFam over all 94
datasets compared to only the largest 20. HomFam contains
datasets with a few as 93 sequences. Further evaluation re-
vealed that the disadvantage is not fully explained by low se-
quence numbers alone, however. Instead, we observed prob-
lems if the reference sequences are significantly longer than
the homologs (for instance rhv references are on average five
times as long as the homologs). Figure 6 (left) indicates a neg-
ative correlation between relative reference length with respect

to homologs and score difference. The low-score cases fre-
quently map to ‘multi domain’ secondary structures. In those
cases the references are full-length proteins and the homologs
pruned to a specific domain (i.e. information is cut away). This
effect is present for all comparison tools except UPP which is
shown in Figure 6 on the right. For statistical learning the
choice of homologs in HomFam constitutes a problem. The
number of reference sequences is very low (8 on average for
HomFam) and they can contain information that the homologs
miss, which means that potentially important motifs are un-
derrepresented in the dataset. In such situations it is both
hard to guess a suitable initial model length and train a full-
length model from scratch. Moreover, this reveals a potential
weak spot of the HomFam collection: A method that aligns the
longest sequences in a dataset first, will most likely catch the
references early. The score, which is estimated on the refer-
ences only, might therefore overestimate the true score on the
complete dataset.

Note that in principle, learnMSA could also align DNA/RNA
sequences, but this feature is not implemented yet. Machine
learning methods can likely play out their advantages more for
proteins due to the relative complexity of parameter space and
priors. Further, learnMSA is currently best suited for short or
medium length sequences.

Conclusion

Our proposed approach constitutes a probabilistically grounded
framework for large MSA that has potential for further im-
provements in several directions. Further development might
be straightforward because of the extensible nature of our
method.

A natural extension of the work presented here are ensem-
bles of pHMMs. They are used in UPP where a subset of the se-
quences is aligned and subsequently represented by an ensem-
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ble. Recently, MAGUS combined with an HMM ensemble has
shown improved accuracy as well [42]. On the HomFam collec-
tion, UPPs performance decreased slightly when replacing the
ensemble with a single HMM [17]. The latter is related to our
approach with the difference that for learnMSA, the HMM pa-
rameters depend on all input sequences instead of a randomly
selected backbone set. This might explain why learnMSA aligns
HomFam slightly more accurately than UPP, as seen in Figure
2, even though learnMSA does not currently use an ensemble.

When benchmarking learnMSA, we observed decreasing rel-
ative performance when reducing the number of sequences to
align. The behavior of state-of-the-art tools is usually comple-
mentary: They are more accurate for lower sequence numbers.
Moreover, Figure 6 shows that the relative performance of
learnMSA greatly depends on the particular (reference) dataset.
This suggests the idea of a combined approach to multiple se-
quence alignment, where a prior (e.g. the number of sequences)
or posterior (e.g. the likelihood) criterion is used to decide be-
tween the MSA of either learnMSA or of an established heuristic
aligner.

In contrast to traditional learning algorithms for HMMs,
gradient-based learning can, in principle, be a module of a
larger machine learning model that is trained end-to-end. By
design, learnMSA can incorporate any type of sequence con-
text encoded into the HMM alphabet. For instance, single-
sequence secondary structure predictions can be incorporated.
Secondary structure is more conserved than primary sequence
and this approach has been shown to increase accuracy in
the presence of low sequence identity [43]. There are many
kinds of interactions in proteins that are not easily modeled
by our current approach, for example pairwise correlations be-
tween amino acid distributions in positions that are widely
separated in the primary sequence but close in the three-
dimensional structure. The field of protein language model-
ing where parameter-rich sequence models are learned semi-
supervised [44, 45] based on Attention [46, 47] or LSTMs [48]
is also compatible and complementary to our approach. Cur-
rently, we use very limited prior knowledge about proteins in
the form of parameters as we simply one-hot encode amino
acids and only use a rate matrix to compute ancestral probabil-
ities. Using instead semantically rich [44] residual-level em-
bedding vectors from pre-trained language models may benefit
the predictions.

Availability of source code and requirements

• Project name: learnMSA
• Project home page: https://github.com/Gaius-Augustus/

learnMSA
• Operating system(s): Platform independent
• Programming language: Python3
• Other requirements: Python packages tensorflow, optional

for visualization: networkx, logomaker
• License: MIT
• RRID: SCR_022572
• biotoolsID: learnMSA

Availability of supporting data and materials

The datasets supporting the results of this article are
available in the repository https://github.com/felbecker/
MSA-HMM-Analysis. An archival copy of code and data is also
available via the GigaScience database GigaDB [49].
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