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Supplementary Methods and Materials  
 
Microfluidic device fabrication. The PDMS-based pillar-lattice-arrays were designed by using 
software (AutoCAD) and cast from SU8 mold.(1) The distance of two adjacent cylindrical pillars is 
spaced identically to 35 μm, which would allow for the unrestricted motility of T cells. Cuboid pillars, 
which are about 220 μm in diameter, make it easier to peel off the solidified PDMS compared to all the 
same cylindrical pillars. Standard photolithography techniques were used to fabricate the SU8 mold of 
the pillar lattices. Briefly, the photoresist (SU8-2100) was evenly coated onto a silicon wafer at a 150-
μm thickness (10s at 100 rpm, and 30s at 1800 rpm), followed by processes of the soft bake, UV-light 
exposure, post-exposure bake, develop and hard bake. The mold was exposed to chlorotrimethylsilane 
(Sigma, USA) for 5min to facilitate the peeling of the PDMS pillars. Subsequently, the PDMS mixture 
was poured onto the wafer (Sylgard 184, USA, weight ratio A/B = 10:1) and coated upon SU8 mold by 
using a spinning coating machine (10s at 100 rpm, 30s at 500 rpm). A thin PDMS layer was obtained 
and degassed in a vacuum desiccator for 15 minutes. The wafer with the PDMS layer was baked in a 
conventional oven at 80 oC for 1 hour. After curing, the thin PDMS layer was carefully peeled off and 
tailored to fit the standard 96-well plate. Finally, PDMS-based pillar-lattice-arrays were autoclaved and 
placed in an imaging 96-well plate (MatTek). The pillars were then soaked in 1% (w/v) Pluronic 108 
solution overnight, sterilized with 70% ethanol for 15 minutes, and washed twice with DMEM culture 
medium. 
 
Cell isolation and culture.  
Cancer cell culture: The mouse melanoma cell line B16F10 was purchased from ATCC. The mouse 
pancreatic tumor cell line UN-KC6141 was a kind gift from Dr. Surinder K. Batra (University of 
Nebraska).(2) Both tumor cell lines were cultured in DMEM supplemented with 10% fetal bovine 
serum (FBS) (Gibco, USA) and penicillin-streptomycin (100 U/mL) (Gibco, USA). Cells were 
maintained in a 5% CO2 supplemented, 37°C humidified incubator, and passaged at 70% confluency 
by trypsin-EDTA (Gibco, USA).  
Primary CAF culture. Cancer-associated fibroblasts (CAFs) were isolated from orthotopic tumors. 
Briefly, 200,000 UN-KC6141 or B16F10 tumor cells in 30% (v/v) Matrigel (BD, USA) were injected 
into the pancreas and subcutaneously (s.c.), respectively, into 4-6 weeks old C57BL6 mice. All 
procedures were approved by the Indiana University Institutional Animal Care and Use Committee 
(IACUC). Tumors were allowed to grow for 3 weeks in vivo. After 3 weeks, mice were euthanized to 
collect xenograft tumor tissue. Tumor tissue was digested by a mouse tumor dissociation kit (Miltenyi, 
Germany) using a gentleMACS dissociator. Dissociated tumor single-cell suspensions were filtered 
using a 70 µm cell strainer, resuspended in fibroblast growth medium-2 (FGM-2) (Lonza, USA), and 
the immediately cultured adherently in a 5% CO2 supplemented, 37°C humidified incubator for 3 weeks 
to allow for fibroblasts outgrowth. The CAF cells were validated using FAP/alpha-SMA 
immunofluorescence staining to confirm their identity.  



CD8+ T cell isolation and culture. OT-I mice [C57BL/6-Tg(TcraTcrb)1100Mjb/J] were purchased 
from the Jackson Laboratory (JAX) and bred in house. All procedures were approved by the Indiana 
University Institutional Animal Care and Use Committee (IACUC). The OT-I mice contain Tcra-V2 
and Tcrb-V5 transgenes and produce MHC class I-restricted, ovalbumin-specific, CD8+ T cells (OT-I 
cells). Newborn offspring were genotyped for OT-I T cell receptor (TCR) expression according to 
protocols provided by JAX. Genotyped newborns of 4-10 weeks old were euthanized to collect spleen. 
Spleen was grinded using a 30 µm cell strainer. Cells passed through the strainer were then treated with 
ACK lysis buffer (Gibco) to lyse red blood cells. Then the CD8+ T cells were isolated using a naive 
CD8a T Cell isolation kit (Miltenyi, Germany). The isolated CD8+ T cells were cultured in DMEM 
medium supplemented with 10% FBS, 30U/mL rIL-2 (Peprotech, USA) and penicillin-streptomycin 
(100 U/mL). Dynabeads CD3/CD28 were added to T cell culture at a bead-to-cell ratio of 1:1 to 
stimulate T cell expansion in vitro.    
 
On-chip investigation of T cell-tumor infiltration.  
Hybrid tumor-stroma spheroid formation. To form hybrid tumor-CAF spheroids, 0.4 million tumor 
cells (UN-KC6141-OVA or B16F10-OVA) were labeled with membrane DiO dye (Green) (Invitrogen, 
USA) and seeded on the pillar-lattice-arrays in each well of 96 well imaging plate (MatTek, USA). 
After 24 h, tumor cells spontaneously aggregated into tumor spheroids. Next, 0.6 million CAF cells 
were labeled with Dil dye (red) (Invitrogen, USA) and seeded on the pillar-lattice-arrays. The newly 
seeded CAF cells spontaneously assembled on top of the tumor spheroids to form a tumor core 
surrounded by a shell of CAF cells, enclosing the tumor core in 12 h (Fig.S1).  
T cell track analysis. To analyze T cell infiltration tracks, raw images captured on the confocal 
microscopes were exported as TIFF image stacks in ImageJ. The image stacks were imported into 
Imaris 9.0 software (Bitplane, Switzerland) for T cell track detection and analysis. T cells were detected 
by analyzing the blue CMAC tracker channel with a spot radius of 10 μm with background subtraction. 
Tracking was performed using the Brownian motion model with a maximum displacement of 50 μm 
and a maximum gap of 1 frame. Tumor spheroids were detected by a surface with a radius of 300 μm. 
The detected tumor spheroid was analyzed by distance transformation (Matlab plugin) to calculate the 
distance inside and outside the spheroid surface. The final infiltration depth (Id) was calculated by 
deducting the “outside distance” from the “inside distance”. We filtered out T cells that interacted with 
the spheroid by thresholding the maximum T cell track distance of the Id at 0.1 μm. T cell cytotoxicity 
was analyzed as described previously,(3, 4) briefly dead tumor cells were detected by the staining of 
SYTOX deep red dye at 0.2 µM, detected in the deep red channel with a spot radius of 10 μm. T cell 
and dead cell colocalization were detected using a distance threshold of 10 μm.   
 
Deep-learning-based TIL score analyzer.  
Data and TIL maps. Whole-slide images and clinical follow-up data were obtained from TCGA 
(https://gdc.cancer.gov/) Skin Cutaneous Melanoma (SKCM) projects. The TIL localization inside 
tumors were extracted from the images of diagnostic H&E-stained sections from the Skin Cutaneous 
Melanoma as previously report.(5) The TIL map were colored in red and blue representing TILs (or T 
cells) and tumor. A total of 411 whole-slide images from 397 unique patients were processed to generate 

https://gdc.cancer.gov/


TIL maps for analysis. The TIL maps were sampled with 128 x 128 pixels and resized to 256 x 256 
pixels.  
Network architecture and training procedures. The TIL scoring deep learning system was developed 
to score TIL infiltration based on clinical pathology data and patient survival data. The TIL scoring 
algorithm combines elements of the 18-layer residual neural network (Resnet18)(6) with a discrete-
time hazards model to predict time-to-event data from images.(7, 8) Image feature extraction is 
achieved by five groups of convolutional layers arranged in residual blocks. The extracted features are 
output to a sequence of two fully connected layers containing 1,000, 20 nodes, respectively. The 
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the discrete time-point 𝜏𝜏𝑗𝑗 associated with the image, where 𝜙𝜙(𝑥𝑥) ∈ 𝑅𝑅𝑚𝑚 represents the output of the 
network to 𝑚𝑚 (20 in our case) discrete-time point, 𝑥𝑥 is the input of network corresponding to each 
image sample. The loss function for backpropagation is the modified cross-entropy function to account 
for the censored data. The full loss function can be written as follows:(9, 10)  
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where 𝑘𝑘(𝑡𝑡𝑖𝑖) denotes the duration index of individual 𝑖𝑖’s event time. As the hazard function was trained, 
a 3-year survival classification was used to give TIL score.  
Training sampling. To establish the scoring algorithm that scores TIL pattern based on patient survival 
time, our deep learning algorithm was fine-tuned on pre-trained Resnet18 for 30 epochs. The stochastic 
gradient descent (SGD) optimizer was used to minimize the negative log-likelihood via 
backpropagation to optimize model weights of fully connected layers.(11) Model weights of modified 
fully connected layers were initialized using the variance scaling method, and a weight decay was 
applied to the fully connected layers during training (decay rate = 0.1). Models were trained for 30 
epochs (1 epoch is one complete cycle through all training samples) using mini-batches consisting of 
16 image samples each. Minibatch samples were random assigned at the beginning of each epoch for 
robustness. During training, a single area was sampled from each slide, and these sampled areas were 
treated as semi-independent training samples. Each sample was labeled with the corresponding patient 
survival time for training, duplicating survival time for patients that preserved multiple slides. The areas 
were sampled randomly at the beginning of each training epoch and regarded as an entirely new set of 
samples. These sample areas were randomly transformed to improve the robustness to account for tissue 
orientation, color variations, and anisotropy. The contrast[0.5], brightness[0.5], saturation[0.5] and 
hue[0.5] of the samples were also randomly transformed using the "colorJitter” PyTorch operations. 
These sampling and transformation procedures have the effect of augmenting the effective size of the 
limited clinical labeled training data. Similar augmentation approaches have been widely adapted and 
shown considerable improvements in neural network performance in a variety of imaging 
applications.(12) 
Prediction sampling and averaging. Sampling was also performed to increase the robustness and 
stability of predictions. (i) Nine areas are first sampled from slides corresponding to each patient. (ii) 
The survival time expectation (Se) of each sample for each patient is then predicted using the trained 



deep learning system. (iii) The median Se of nine predictions from samples is calculated as the final 
survival time prediction for the patient.  
Validation procedures. To train and evaluate model performance, patients were randomly assigned to 
non-overlapping training (80%) and test (20%) sets. If a patient was assigned to one set, then all H&E 
slides corresponding to that patient were assigned to the corresponding set. This ensured that no slices 
from a single patient were assigned to both training and testing sets to avoid overfitting and ensure 
validation accuracy. The randomized assignment of patient datasets was performed 15 times and each 
of these training/testing sets was employed to train and evaluate a model. Prediction accuracy was 
measured using a time-dependent concordance index (c index) to measure the concordance between 
predicted survival and actual survival for testing samples.(12) A c index of 1 indicates perfect 
concordance between predicted risk and overall survival, and a c index of 0.5 corresponds to random 
concordance. The following 3-year classification outcomes were also validated by cross validation, and 
roc curves from the cross validation were drawn to evaluate the classification performance. 
 
Screening of epigenetic drugs. 
Epigenetic drug library screening. To screen effective epigenetic drugs that promote T cell infiltration, 
tumor-stroma spheroids at day 3 (24 hours post CAF cell addition) were treated with 5 μM of chemicals 
of an epigenetic drug library (Cayman Chemicals, USA, Epigenetics Screening Library, Catalog# 
11076) for 24 hours. Post epigenetic drug treatment, culture medium was refreshed, and OT-I T cells, 
labeled with blue CMAC tracker dye (Invitrogen, USA), were added at 50,000 cells per well. 
Additionally, anti-mouse-PD-1 antibody (clone RMP1-14, Bioxcell, USA) was added at a concentration 
of 3.5 μg/mL together with OT-I T cells. SYTOX deep red nucleic acid stain was loaded at a final 
concentration of 0.2 μM to visualize cell death as it stains newly killed cells’ nuclei once the cell 
membrane integrity is compromised. The plate was then set up for time-lapse imaging on a Leica SP8 
confocal microscope or Olympus OSR spinning disk confocal microscope for 12 h in a 5% CO2 
supplemented, 37°C humidified incubation chamber. Confocal images were taken every 15 min with 4 
channels.  
Drug screening result TIL scoring. The final images of T cell distributions in tumor-stroma spheroids 
after 24 hours of screening were analyzed for TIL scores by our deep learning algorithm. For each 
treatment, ten spheroids’ images were collected and used for TIL scoring. Each screening result images 
was given a TIL Scorei  of “0” when the TIL infiltration pattern was classified as “hazard”; or a TIL 
Scorei of “1” when it was classified as “non-hazard”. The final infiltration score for each drug, 
calculated by averaging the Scorei from 10 screening results from the same drug treatment condition. 
 
Validation of selected drug candidates. 
In vivo validation of GSK-LSD1. To validate the effect of the anti-tumor activity of GSK-LSD1 in vivo, 
200,000 B16F10 cells were injected subcutaneously (s.c.) into 40 C57BL6 mice of 5 weeks age 
(Envigo). On day 7, mice were randomized into 4 groups to have similar starting average tumor size 
(p>0.05), with 10 mice per group. Each animal was injected intraperitoneal (i.p.) with 200 μg anti-PD-
1 (clone RMP1-14, Bioxcell, USA) and/or GSK-LSD1 (20mg/kg) every other day from day 8 to day 
17. Tumor size was measured every other day and calculated as tumor volume = (length*width2)/2.  
 



Spheroid and tumor immunofluorescence staining. To visualize infiltrated T cells, the spheroid and 
tumor immunofluorescence staining were conducted using our previously developed protocols.(13-16) 
Tumor spheroids or tumor tissues were fixed with 4% PBS buffered formalin (Sigma, USA) overnight 
then transferred to 70% ethanol for dehydration. The dehydrated spheroid/tissues were then embedded 
in paraffin and sectioned at 30 μm thickness and mounted onto slides. The mounted tissue sections were 
then treated for antigen retrieval by heat-mediated antigen retrieval and stained with Alexa 594 labelled 
anti-CD8 antibody (Cat# 100758, Biolegend, USA) to identify infiltrating T cells. Stained slides were 
visualized using an Olympus epi-fluorescence microscope.   
 
Statistical analyses. The c indices generated by Monte Carlo cross-validation were performed using 
the Wilcoxon signed-rank test. This paired test was chosen because each method was evaluated using 
identical training/testing sets. Statistical analysis of Kaplan–Meier plots was performed using the 
Mantel-Cox log-rank test. Other statistical analysis comparing 2 groups was performed using the 
student's t-tests, comparing 3 or more groups was performed using one-way ANOVA. P-value was 
denoted as following: *p<0.05, **p<0.01, ***p<0.005, ****p<0.001.  
 
 
Supplementary Discussion 
 
Discussion. S1 Impact of CAF layer and tumor antigen on T cell infiltration and killing. Tumor 
stroma was reported to prohibit T cell infiltration via physical ECM barrier and secretory factors (e.g., 
chemokines, cytokines, and microRNA), and tumor with thicker stroma such as pancreatic cancer tends 
to permit less immune infiltration.(17) However, it has been not systematically studied how tumor 
stromal components affect T cell penetration quantitatively. Thus, using our microfluidic platform, we 
fabricated tumor spheroids with stromal “shell” with tunable thickness by tuning tumor cell to CAF 
ratio. We found that CAF can effectively prohibit T cell infiltration and killing (Fig. 2b), Moreover, 
higher CAF composition resulted in less T cell infiltration, as well as reduced T cell killing. Interestingly, 
although fewer T cells can enter the spheroid in the higher CAF ratio conditions, the ones that did 
successfully enter the spheroid did not halt their infiltration until they reached the tumor core/CAF shell 
boundary, which still could perform killing (Fig. S2), suggesting the physical barrier created by CAF 
has the limited effect to prohibit T cell infiltration, which is consistent to that observed in patient tumor 
sections(18). Another key factor to impact T cell infiltration is the tumor antigen presentation, as 
acquired ICI resistance can be partially attributed to antigen loss/downregulation of antigen presentation 
molecules as seen from patients’ pathology slides.(19) To study this phenomenon, we also tuned 
antigen-positive tumor cell ratio in our model to observe its impact on T cell infiltration. We mixed 
OVA+ UN-KC6141 cells and OVA- wild type UN-KC6141 cells at a ratio of 0, 25, 50, and 100%. We 
observed that T cell has minimum infiltration inside the 0 and 25% low OVA+ cell ratio spheroids, 
whereas T cell infiltration number and depth significantly increased in the 50% and 100% OVA+ group, 
indicating tumor antigen presentation is another key factor in T cell infiltration (Fig. S3). Surprisingly, 
the 50% OVA+ spheroids permit a slightly higher number and deeper T cell infiltration as compared 
with 100% OVA+ spheroids, despite more killing are seen with 100% OVA+ spheroids. This is likely 
due to the frequent pauses of T cells at the surface of 100% OVA+ spheroids to perform killing, limiting 



its penetration (Fig. S3). This observation also highlights the importance of studying T cell infiltration 
as an independent event, as it does not always correlate positively with antigen presentation or T cells’ 
capacity to kill.   
 
Discussion. S2 Development of the deep-learning-based TIL score analyzer. We trained the deep-
learning-based TIL score analyzer using clinical data of pathology H&E images and survival data from 
411 slides, 397 cases from The Cancer Genome Atlas (TCGA) Skin Cutaneous Melanoma (SKCM) 
projects.(20) The TIL score is to best assign higher TIL scores to patients with better survival. Although  
cancer patient survival can be attributed to many factors such as treatment history and molecular status 
of the tumors in addition to TIL infiltration, abundant evidence have shown that patients’ survival 
correlate well with TIL scores(21-23). Thus, we attempted to develop the analyzer that projects TIL 
maps (e.g., TIL number, the relative depth, distribution, and clusters of TILs within tumors) to the 
patient survival. The core element of the deep learning algorithm consisted of convolutional neural 
network (CNN) modules, image sampling, and risk filtering to improve prediction accuracy and 
stability (Fig.S4). The TILs and tumor were first extracted from H&E-stained tissue sections to digitized 
images colored in red (TILs) and blue (tumor).(5) These digitized images of TIL/tumor distribution 
were then used to train a deep convolutional network integrated with a discrete-time hazards model for 
predicting outcomes. The network consisted of interconnected residual blocks and nonlinear functions 
to transfer the images to highly predictive prognostic features. Fully connected layers perform 
additional transformations on these image-derived features, and a discrete-time hazard layer generates 
a prediction of the survival likelihood distribution,(8) and then a SoftMax layer outputs the 
classification of 3-year survival potential. To improve the deep learning performance, a sampling and 
risk filtering technique was adapted to address intra-tumoral heterogeneity and limited clinical samples. 
In the training, new samples were randomly sampled from each slide image at the start of each training 
iteration, providing the CNN with a fresh look at each patient’s TIL distribution and capturing 
heterogeneity within the slides. Each sample is preprocessed using data augmentation techniques that 
randomly transform the images to reinforce network robustness to tumor orientation and variations.(24) 
For prospective prediction, we first took multiple samples within each slide to generate a representative 
batch of fields for each patient, and then, risk output from these samples were sorted and filtered to 
predict a more robust patient-level risk that reflects the aggressiveness of their disease. These sampling 
and filtering procedures were described in detail in Methods. The prognostic accuracy of our deep 
learning algorithm was assessed using Monte Carlo cross-validation. We randomly split our cohort into 
paired training (80%) and testing (20%) sets to generate 15 training/testing set pairs. We trained the 
model using each training set and then, evaluated the prognostic accuracy of these models on the paired 
testing sets, generating a total of 15 accuracy measurements. Using the sampling and filtering 
techniques, our deep learning system reached a median c index(25) of 0.674 to predict the survival 
probability distribution. To access the performance of the classifier, we employed 10 times cross-
validation to test the sensitivity and specificity. And the 3-year survival classification obtained from the 
survival probability to score the TIL patterns reached a median AUC of 0.8051 (Fig.4Sc), where AUC 
evaluates the performance of the classifier globally, an AUC of 0.8-0.9 means a good classification.  
Compared with current methods, there are two main improvements we’ve made: (1) Whereas the 
previous reference (27 in main text) calculated “Banfield Raftery” index (“count of TIL clusters”) or 



“Ball Hall” index (“cluster extend”) from the extracted TIL map and analyzed the correlation of these 
2 indexes with patient survival, we further developed this by directly inputting these TIL maps into a 
deep convolutional neural network and trained it to associate the TIL patterns with discrete patient 
survival time to generate a TIL score. This TIL score correlated better with patient survival as compared 
to any single parameter in the previous study including the “Banfield Raftery” index or “Ball Hall” 
index alone (Fig.S5). (2) This scoring algorithm in combination with our microfluidic platform allowed 
us to apply this to evaluate our in vitro screening TIL pattern images to find epigenetic drugs that 
resulted in better TIL infiltration patterns. Thus, with minimal pre-processing, we could directly input 
our TIL pattern images into the trained convolutional neural network and obtain the corresponding TIL 
scores. 
 
Discussion. S3 Throughput of our system. Our platform can fabricate 80 spheroids per well in a 96-
well plate format. In a typical drug screening experiment using 20 plates, we could achieve a throughput 
of 153,600 spheroids per screen in combination with a high-content imager. For T cell infiltration 
analysis, the throughput is limited by an additional factor: the limitation of high-speed imaging. In this 
study, our strategy was to perform an initial T-cell infiltration screening using a fast-scanning Olympus 
OSR spinning disk microscope allowing for 2-color (T cells: Green and tumor-CAF spheroids: Yellow) 
imaging of 100 positions with a 15-minutes imaging interval for 12 hours. This enabled high-
dimensional time-series data recording of single T cell infiltration dynamics. Top candidates were then 
selected and validated with detailed interrogation of T cell infiltration and killing dynamics in detail 
using the 4-color (T-cell, CAF shell, tumor core, cell death indicator dye) Leica SP8 confocal 
microscope. Due to the limited scanning speed of our Leica SP8 confocal microscope set-up, we were 
only able to perform a detailed validation of 30 spheroids at a time with a 15-minutes imaging interval. 
Moreover, we only used the 12-hour end-point T cell infiltration position map for drug scoring in our 
experiments. In the future, the deep-learning-guided system can be developed to eliminate the 
prolonged time-lapse recording, and scan all 7,680 spheroids at the end, allowing for screening of 768 
agents with 10 spheroids per drug or 1,536 agents with 5 spheroids per drug, greatly expand the 
screening throughput. 
  



Supplementary Figures 

 
Fig. S1 Microfluidic fabrication of “core/tumor-shell/stroma” spheroid array. a. Formation of 
"core/tumor-shell/stroma" spheroids by sequential addition of tumor and CAF cells. b. Tumor spheroids’ 
viability over the prolonged culture period. b. Tunable CAF layer by changing tumor cell UN-KC6141 
and CAF ratio. c. Tunable tumor/CAF ratio resulted in variable stromal thickness in "core/tumor-
shell/stroma" spheroids. d. Controlled initial seeding of ~9,000 cells per spheroid with pure 9,000 UN-
KC6141 cells or 3,000 UN-KC6141 cells + 6,000 CAF cells resulted in differential spheroid growth. e. 
Distinct speed and track straightness was observed in killing and non-killing T cells. Speed and track 
straightness was calculated in Imaris software based on the Euclidean distance between T cell position 
displacement in consecutive imaging frames. Scale bar: 200 µm. 



 
Fig. S2 Impact of the tunable stromal layer of tumor spheroids on T cell tumor infiltration and 
killing behavior. a. The "core/tumor-shell/stroma"  spheroids with tunable CAF layer thickness were 
subjected to T cell infiltration (tumor cells: green, CAF cells: yellow). b. Tunable stromal layer 
thickness in the various tumor: CAF ratio conditions.  c. T cell infiltration depth over time in 
heterotypic spheroids with 1:1.5, 1:3, and 1:5 tumor to CAF ratio. d. Total infiltrated T cell number and 
infiltration depth distribution in all 3 types of spheroids with various CAF ratios. e. Total killing events 
and killing depth distribution in all 3 types of tumor spheroids with various CAF ratios. Swarm plot 
width is scaled by event numbers. Scale bar: 50 µm. 
 



 
 
Fig. S3 Impact of tumor antigen presentation on T cell tumor infiltration and killing behavior. a. 
Tuning OVA+ versus OVA- cell ratio in "core/tumor-shell/stroma" spheroids to makeup OVA+ cell 
ratio as 0%, 25%, 50%, and 100%. b. T cell infiltration depth over time inside all four different types 
of spheroids with various OVA+ cell ratio. c. Total infiltrated T cell number and infiltration depth 
distribution in all 4 types of spheroids. 100% OVA+ spheroids have less infiltrating T cells likely due 
to the frequent pausing and killing of T cells during the 12-hour imaging period. d. Total killing events 
and killing depth distribution in all 4 types of spheroids. 100% OVA+ spheroids have less infiltrated T 
and infiltration depth yet more killing events as compared with 50% OVA+ group.  Swarm plot width 
is scaled by event numbers. Scale bar: 30 µm. 
  



 
 
Fig. S4 The deep-learning-based TIL scoring system. a. Detailed diagram of the architecture. The 
architecture is a variation of the Resnet18 network with modified output layers. b. Representative 
training curves of training loss and validation loss. c. The cross-validated time-dependent ROC curve 
was generated by the classifier for 3-year survival predictions with an AUC of 0.8051. d. Predicted TIL  
score of different drugs (n=10).   
  



 
 
Fig. S5 Deep learning TIL scoring method is better than other methods based on single TIL 
parameter. a. Spearman’s rank correlation coefficient of deep-learning-based TIL scores and other 
single T cell infiltration parameters with patients’ overall survival (OS). b. Comparison of deep learning 
TIL scores spearman’s rank correlation coefficient with other T cell single-parameter based readouts 
from TCGA skin cancer pathology slides to predict patients’ overall survival.  
 
 



 

 
Fig. S6 Cytotoxicity screening of epigenetic drugs. UN-KC6141 spheroids and B16F10 spheroids 
were treated with epigenetic drug at 5 µM for 24 hours and cytotoxicity was measured by CCK-8 assay. 
Drugs without cytotoxicity (cell viability>80% and p-value>0.05) highlighted by green were chosen 
for T cell infiltration screening. 
 
 



 

 
Fig. S7 Drug cores of epigenetic drug library in "core/tumor-shell/stroma" spheroids (B16F10 
and UN-KC6141). Negative control refers to a score of OVA negative cell spheroids against T cells 
(OVA-specific CD8+ T cells). No treatment control refers to OVA positive cell spheroids against T 
cells (OVA-specific CD8+ T cells). 



 
Fig. S8 Flow cytometry gating strategy for quantification of tumor infiltrating CD8+ T cells. The 
total tumor cell population was first gated for FSC-H and FSC-A for single cells, then CD45+ cells 
were selected and further gated into CD4+ and CD8+ T cells.  
 
 
  



Supplementary Movies 
 

 
Movie. S1 Tracking of simultaneous T cell infiltration and killing. An individual T cell’s killing of 
two tumor cells is recorded as the T cell (green) infiltrates into "core/tumor-shell/stroma" spheroids 
(yellow surface) and kills (red). Track color scale: timestamped. 
 

 

Movie. S2 Effect of treatments on T cell infiltration. T cell infiltration and killing of tumor cells 
inside the "core/tumor(cyan)-shell/stroma(yellow)" spheroids. Videos show different T cell behaviors 
under control (no treatment), anti-PD1 treatment, GSK-LSD1 treatment, and combo (anti-PD1+ GSK-
LSD1) treatments. Track color scale: timestamped. 
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