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Web URLs 

Software, database resources, and custom algorithms central to the research in this study are 

publicly available as follows:  

denovo-db: http://denovo-db.gs.washington.edu/ 

SPARK: https://sparkforautism.org 

Ensembl VEP (GRCh37): http://grch37.ensembl.org/Homo_sapiens/Tools/VEP/ 

CADD score: https://cadd.gs.washington.edu/ 

FreeBayes: https://github.com/ekg/freebayes  

CH model: https://github.com/tianyunwang/CH-model 

denovolyzeR: https://github.com/jamesware/denovolyzeR 

DeNovoWEST: https://github.com/queenjobo/DeNovoWEST 

quminorm: https://github.com/willtownes/quminorm 

SCTransform: https://github.com/ChristophH/sctransform 

UCSC Cell Browser: https://cells.ucsc.edu 

TSEA tool: http://genetics.wustl.edu/jdlab/tsea/ 

CSEA tool: http://genetics.wustl.edu/jdlab/csea-tool-2/ 

RVIS score: http://genic-intolerance.org/ 

STRING: https://string-db.org/ 

Cytoscape: https://cytoscape.org/ 

cytoHubba: http://apps.cytoscape.org/apps/cytohubba 

ProteinPaint: https://proteinpaint.stjude.org/ 

DDG2P: https://www.ebi.ac.uk/gene2phenotype 

SFARI Gene: https://gene.sfari.org/ 

SFARI Base: http://base.sfari.org 

EGA: https://ega-archive.org/ 

OMIM: https://omim.org 

gnomAD: https://gnomad.broadinstitute.org/ 
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Abbreviations 

DNV: de novo variant 

NDD: Neurodevelopmental disorder 

ASD: Autism spectrum disorder 

DD: Developmental disorder 

ID: Intellectual disability 

CCDG: Centers for Common Disease Genomics 

SFARI: Simons Foundation Autism Research Initiative 

SPARK: Simons Foundation Powering Autism Research for Knowledge 

SSC: Simons Simplex Collection 

ASC: Autism Sequencing Consortium 

DDD: Deciphering Developmental Disorders 

RUMC: Radboud University Medical Center 

CADD score: combined annotation dependent depletion score 

LGD: likely gene-disruptive 

dnLGD: de novo LGD variant 

dnSYN: de novo synonymous variant 

dnMIS: de novo missense variant 

dnMIS30: de novo missense variant with CADD score greater than 30 

FDR: False discovery rate 

FWER: Family-wise error rate 

PPI: Protein-protein interaction 

CSEA: Cell-type-specific expression analysis 

TSEA: Tissue-specific expression analysis 

DDG2P: Development Disorder Genotype - Phenotype Database 

OMIM: Online Mendelian Inheritance in Man 

LC615 genes: The most comprehensive set of 615 genes with lowest confidence based on the 

union FDR 5% significance by one or more of three models, which includes the MC237 and 

HC138 genes. 
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MC237 genes: 237 genes with moderate confidence based on the intersection FDR 5% 

significance by all three models—it is a subset of the LC615 genes, but includes all HC138 genes. 

HC138 genes: The most stringent of 138 genes with the highest confidence based on the 

intersection FWER 5% significance by all three models—it is a subset of the HC237 and LC615 

genes.  
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Supplementary Methods 

Cohorts and samples. This study was approved by the University of Washington Institutional 

Review Board #STUDY00000383, Genetics Consortium Repository. Informed consent was 

obtained from all subjects by each of the corresponding study cohort. We collected eight exome 

and three genome parent–child cohorts (>100 trios of each), which include over 44,800 families 

(Table S1). We preferentially retain genome over exome data for cohorts that have both types of 

data available. We only included the Centers for Common Disease Genomics (CCDG) genomes 

for Simons Simplex Collection (SSC) samples. For cohorts with continuous publications, like for 

the Autism Sequencing Consortium (ASC), Deciphering Developmental Disorders (DDD), and 

Radboud University Medical Center (RUMC) samples, we only included the final samples from 

their latest study with potential sample duplicates removed. We also excluded any potential 

overlaps in the literature; for example, we excluded all SSC samples used in the ASC paper1 for 

potential redundancy with the CCDG SSC genomes. After all those control measures, we also 

ran KING2 (v1.4) for samples with the underlying sequencing data available for further detection 

of potential sample overlap. KING uses identical by state (IBS) to estimate pairwise relatedness 

between samples; any samples with a kinship value >0.35 were considered as potential sample 

duplicates. We first checked if the potential duplicates were known as monozygotic twin pairs or 

known duplicates within a cohort (some individuals had both blood and cell line DNA sequenced 

for QC purposes). Only one sample was retained from each duplicate pair in downstream 

analyses—blood DNA was preferred if both blood and cell line sequencing data were available. 

 

DNV discovery and integration. DNVs were identified by analyzing/reanalyzing the underlying 

sequencing data wherever available for the five cohorts using the same pipeline. Specifically, 

DNVs were harmonized by reanalyzing 70,172 samples (46.5%), including 24,520 families within 

two categories. First, for ASD cohorts with genome sequencing data from the CCDG study, 

including SSC and the Study of Autism Genetics Exploration (SAGE), raw single-nucleotide 

variant/insertion or deletion (SNV/indel) variants were called (on hg38) independently using four 

different callers: GATK3, FreeBayes4, Platypus5, and Strelka26. Downstream DNV discovery was 

based on genotype, which is required only if the offspring has the alternative allele (with genotype 

as 0/1 or 1/1) but is not observed in either of the parents (with genotype as 0/0). Candidate DNVs 
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needed to have the support of at least two of the four callers; and then variants from Platypus with 

a filter of LowGQX or NoPassedVariantGTs were removed, and Strelka2 variants had to have the 

filter field equal to PASS. For variants on the X chromosome, we separately considered variants 

in the pseudoautosomal regions (chrX:10000-2781479, chrX:155701382-156030895, hg38) and 

the X/Y duplicative transposed region (chrX:89201803-93120510, hg38). Candidate DNVs were 

then converted to hg19 for downstream integration. Second, for part of other exome cohorts, 

including SPARK_pilot, SPARK_WES_1, and DDD, raw SNV/indel variants were called (on hg19) 

independently using GATK and FreeBayes. Downstream DNV discovery was based on genotype 

as applied in genome cohorts. Candidate DNVs needed to have the support from both callers, 

which is the intersection set by GATK and FreeBayes. Beyond the above measures, we also 

applied the following variant-level filters: allele balance (AB = 0 in both parents, and AB > 0.25 in 

the child), read depth (DP > 9 for all family members), child genotype quality (GQ > 20 by both 

GATK and FreeBayes). For the rest cohorts included in studies with no underlying sequencing 

data available, DNVs were collected from each corresponding publication. DNVs on hg38 were 

first converted to hg19; the final integrated DNVs were all on hg19. To combine DNVs between 

exome and genome datasets, we restricted DNVs to a well-covered coding region7 (average DP > 

20X) generated by accessing the exome data from the SSC, SPARK, and DDD cohorts. We also 

removed all DNVs in the segmental duplication regions, recent repeat and low-complexity regions, 

or centromeric and telomeric regions8 (Table S17). We excluded variants in a homopolymer A or 

T of length 10 or greater, and the variants with a reference or alternative allele with greater than 

10 bp, to remove potential sequencing errors. Beyond all the above filtering and sample duplicate 

exclusions, we further excluded samples with more than 10 coding DNVs as outliers and removed 

specific DNVs that were observed in more than five different unrelated individuals for frequency 

control. All of the above strict measures yielded a total of 46,612 nonredundant NDD cases with 

a primary diagnosis of ASD (n = 15,560) or DD (n = 31,052), and also unaffected siblings (n = 

5,241) in the integrated de novo enrichment analysis (Table S1). To ensure uniformity, the same 

versions of CADD score (v1.3) and VEP annotation (Ensembl GRCh37 release 94) were applied, 

and the analysis was restricted to the canonical transcript with the most deleterious annotation. 
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Statistical analyses. De novo enrichment analyses were performed independently for ASD, DD, 

and combined NDD samples by using three statistical models: the CH model, denovolyzeR, and 

DeNovoWEST. All three methods apply their own underlying variant rate estimates (denovolyzeR 

and DeNovoWEST use the same rate while the CH model is different) to generate the prior 

probabilities for observing a specific number and class of mutations for a given gene. Briefly, the 

CH model estimates the number of expected DNVs by incorporating locus-specific transition, 

transversion, and indel rates and chimpanzee–human coding sequence divergence and the gene 

length; while denovolyzeR estimates mutation rates based on trinucleotide context and 

incorporates exome depth, mutational biases such as CpG hotspots, and divergence adjustments 

based on macaque–human comparisons. DeNovoWEST scores all classes of coding variants on 

a unified severity scale based on the empirically estimated positive predictive value of being 

pathogenic and incorporates a gene-based weighting derived from the deficit of protein-truncating 

variants in the general population, further combining missense enrichment by a clustering test. 

Default parameters were used for all three methods with some minor adjustments, such as in the 

process of weight creation in DeNovoWEST, fewer numbers of CADD bins for missense and 

nonsense variants were used for ASD samples (three bins), versus in the DD and combined NDD 

group where seven bins were used for both, due to the sample size differences as suggested6. 

The expected mutation rate of 1.8 DNVs per exome was set to the CH model as an upper bound 

baseline. Siblings were also analyzed similarly using the CH model and denovolyzeR, but not run 

for DeNovoWEST due to the small sample size. We applied two metrics of significance with the 

union and intersection of three models: first is the FDR significance, the significance threshold (q 

< 0.05) was corrected exome-wide using the Benjamini–Hochberg method by accounting for the 

total number of genes in each model (18,946 genes in CH model, 19,618 genes in denovolyzeR, 

and 18,762 genes in DeNovoWEST); the second metric is a more stringent FWER significance, 

for which we applied exome-wide Bonferroni multiple-testing correction considering both the 

largest number of genes among three models (n = 19,618) and the total of tests per gene across 

the three models. For probands, FWER 5% significance threshold (p < 3.64e-07) was corrected 

by the Bonferroni method for 19,618 genes and seven tests in the analysis (dnLGD, dnMIS, and 

dnMIS30 variants in the CH model, dnLGD and dnMIS variants in denovolyzeR, and dnLGD and 

dnMIS variants in DeNovoWEST). For siblings, FWER 5% significance threshold (p < 5.09e-07) 
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was corrected for 19,618 genes but only five tests in the CH model and denovolyzeR. We 

excluded genes that show any significance in the siblings from the counting of significant genes 

in probands (ASD, DD, and NDD). For each variant category, we required each gene to have 

more than two DNVs to be considered as significant. De novo enrichment analyses in the males 

and females, and the recalled and no-recall subsets, were performed in the similar way. For the 

de novo enrichment and mutational burden analyses comparing males and females, chromosome 

X was considered as one copy in males and two copies in females.  

As for the case–control analysis for the LC615 genes, we identified ultra-rare (MAF < 

0.01%) LGD variants from two independent autism cohorts: SPARK_WES_2 (10,876 families, 

16,604 samples, and 11,912 cases) and SPARK_WES_3 (9,941 families, 16,779 samples, and 

9,288 cases), compared to the ExAC non-psych subset (n = 45,376). Variants from SPARK 

exomes were first filtered based on read depth (>10X) and genotype quality (GQ > 20). We 

restricted the variants to be within the intersected region of both the SPARK exome capture and 

ExAC reliably called regions. Variants were only considered if they could be called in >90% of 

samples with >10X read depth in ExAC samples to control for coverage balance. A one-sided 

Fisher’s exact test was used to test for case–control mutational burden analysis between SPARK 

exomes (WES2 and WES3, n = 21,200) and the ExAC non-psych subset (n = 45,376). Multiple 

test correction FDR was performed by the Benjamini–Hochberg method. Statistics were 

calculated using R (version 3.6.2). 

 

Enrichment analyses in recalled and no-recall subsets. We also performed same enrichment 

analyses using the three models in parallel for those two subsets. We identified 323 FDR (132 

FWER) significant genes in the recalled subset and 389 FDR (174 FWER) significant genes in 

the no-recall subset (Tables S15-S16). For those FDR-significant genes, of which 87.3% (282/323) 

in the recalled subset and 90.0% (350/389) in the no-recall subset overlap with the LC615 genes 

in combined NDD group (Figure S13), suggests consistent results in both subsets after data 

harmonization. However, there are 12 exclusively significant genes in the no-recall subset and 

one exclusively significant gene (PABPC1) in the recalled subset among the HC138 genes in 

combined NDD group. A closer look found those 12 genes were also reported as significant genes 

in a recent study9, and the significant signal was driven by DNVs almost exclusively from GeneDx, 
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for which the raw data is not available for recalling. For example, all DNVs in three genes (ZEB2, 

PDHA1, and SLC2A1) are from GeneDx probands (n = 18,783) and none among the other five 

cohorts (n = 8,454) in the no-recall subset (Figure S13). This is consistent with the original study 

where the majority of the DNVs are from GeneDx cohort, with very few from the DDD and RUMC 

samples. This draws attention to the significance of such genes, where the significance signal is 

mostly driven by DNVs from a single cohort and no underlying data is available for further QC 

reanalyzing. 

 

PPI analyses and hub genes. The PPI network was assessed by searching Multiple Proteins by 

Names using the online STRING database with default settings. The interaction result was 

exported as a TSV file and then imported into Cytoscape software for downstream analysis. We 

used cytoHubba to identify top hub genes (most interacted genes); cytoHubba provides the 

analyzed results computed by 12 methods, including Degree, clustering coefficient, Edge 

Percolated Component (EPC), Maximum Neighborhood Component (MNC), Density of Maximum 

Neighborhood Component (DMNC), Maximal Clique Centrality (MCC), and centralities based on 

shortest paths, such as Bottleneck (BN), EcCentricity, Closeness, Radiality, Betweenness, and 

Stress, as previously described10. The top 20 genes were supported by the most, and at least half, 

of the models as top hub genes. The PPI clusters were identified by the Markov Cluster Algorithm 

(MCL, https://micans.org/mcl/). The top three GO functions were selected from rank order of the 

functional enrichment from STRING database with default settings.  

 

GTEx brain expression evaluation for LC615 genes. The gene and transcript expression in 

GTEx are shown in transcripts per million (TPM). The median gene-level TPM by tissue dataset 

GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz 

(https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2017-06-

05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz) was downloaded from the GTEx website 

(https://gtexportal.org/home/datasets). The average TPM of brain was calculated from TPM 

values of 13 brain tissues (amygdala, anterior cingulate cortex, caudate, cerebellar hemisphere, 

cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, nucleus accumbens, putamen, 

spinal cord, substantia nigra), which was provided in Table S8. The baseline expression levels 
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are defined with the following cutoff: TPM ≥ 1000, high expression; 1000 > TPM ≥ 10, medium 

expression; 10 > TPM ≥ 0.5, low expression; TPM < 0.5, no expression or below cutoff. 

 

Single-nucleus RNA expression analysis. The dataset includes single-nucleus transcriptomes 

from 49,495 nuclei across multiple human cortical areas. Individual cortex layers were dissected 

from tissues covering the middle temporal gyrus (MTG), anterior cingulate cortex (ACC; also 

known as the ventral division of medial prefrontal cortex, A24), primary visual cortex (V1C), 

primary motor cortex (M1C), primary somatosensory cortex (S1C), and primary auditory cortex 

(A1C) derived from human brain. Nuclei were dissociated and sorted using the neuronal marker 

NeuN. Nuclei were sampled from postmortem and neurosurgical (MTG only) donor brains and 

expression was profiled with SMART-Seq v4 RNA-seq. The data are available from the Allen 

Institute for Brain Science website for analysis (https://celltypes.brain-

map.org/rnaseq/human_ctx_smart-seq) and download (https://portal.brain-map.org/atlases-and-

data/rnaseq/human-multiple-cortical-areas-smart-seq). Unsupervised clustering with Seurat 

identified 120 distinct transcriptomic clusters, including 54 GABAergic (inhibitory) neuronal, 56 

glutamatergic (excitatory) neuronal, and 10 non-neuronal cell types. Heatmaps were constructed 

of log-normalized trimmed mean expression (excluding the 25% lowest and 25% highest 

expression values), log2(CPM + 1), of NDD and control gene sets across cell types. Genes were 

ordered by the number of cell types with trimmed mean expression > 1. For each cell class 

(GABAergic and glutamatergic neurons and non-neuronal cells), the number of cell types with 

trimmed mean expression > 1 for NDD risk genes and control genes were quantified and 

visualized as empirical cumulative distributions (Figure S8). A Kolmogorov–Smirnov test was 

used to reject the null hypothesis that the cell type count distributions were the same between 

each gene set and the control DNV gene set. P-values were Bonferroni-corrected for multiple 

testing. Similarly, for each cell subclass (e.g., SST interneurons or L6b excitatory neurons), the 

trimmed mean expression levels of NDD risk genes and control genes were quantified and 

visualized as empirical cumulative distributions (Figure S7). A Kolmogorov–Smirnov test was 

used to reject the null hypothesis that the expression distributions were the same between each 

gene set and the control DNV gene set. P-values were Bonferroni corrected for multiple testing 

and -log10-transformed and visualized as a heatmap with columns corresponding to cell 
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subclasses ordered by Ward’s clustering and rows corresponding to gene sets. Full names and 

detailed descriptions of each cell subtype in the heatmap (Figure 6) are: GABAergic interneuron 

(LAMP5: LAMP5 expressing GABAergic neuron, PAX6: PAX6 expressing GABAergic neuron, 

PVALB: PVALB expressing GABAergic neuron, SST: SST expressing GABAergic neuron; VIP: 

VIP expressing GABAergic neuron); Glutamatergic neuron (IT: intratelencephalic neuron, L4 IT: 

Layer 4 intratelencephalic neuron, L5 ET: Layer 5 extratelencephalic neuron, L5/6 IT Car3: Layer 

5/6 intratelencephalic neuron that selectively expresses Car3, L5/6 NP: Layer 5-6 Near-projecting 

neuron, L6 CT: Layer 6 corticothalamic neuron, L6b: Layer 6b neuron); and non-neuronal cell 

(astrocyte, microglia, oligodendrocyte, OPC: oligodendrocyte progenitor cell). 

 

Tissue and cell-type-specific expression of significant genes. scRNA-seq data were pulled 

from UCSC Cell Browser (http://cells.ucsc.edu/?ds=cortex-dev) and CPM counts were quasi 

normalized unto unique molecular identifies (UMI) using quminorm 

(https://github.com/willtownes/quminorm). Cells were then regrouped by their broad parent cell 

types with unknown cell types filtered out. SCTransform 

(https://github.com/ChristophH/sctransform) was used to normalize the UMI counts from 

quminorm. The corrected counts from SCTransform were used as input into expression weighted 

cell-type enrichment (EWCE) following the default parameters with two levels of annotations 

based on clusters and clusters split by sex. Bootstrapping parameters in EWCE: 10000 repetitions 

with the LC615 genes as background in the unconditional enrichment and HC138 for the 

controlled experiments. Cluster-specific analysis within the most stringent gene set and top sex 

specific genes (10 for female and 10 for male) used the HC138 genes as background. Online 

TSEA and CSEA tools were used to determine the enrichment of expression across brain regions 

and cell types11. The expression among these tissues was compared using Fisher’s exact tests 

and followed by Benjamini–Hochberg correction. The significance is calculated from the bootstrap 

cell-type enrichment test. The test takes a gene list and scRNA-seq data and determines the 

probability of enrichment and fold changes for each cell type. The proportion of expression in 

each cell type is calculated as a matrix for each gene, then summed to get the total expression in 

each cell type across the whole gene list. Thus, for a gene list indexed by X, we calculate the 

average expression in the cell type. This calculation is repeated for randomly generated gene lists 
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sampled without replacement from background genes controlled for gene length as the target 

gene list. The probability of cellular enrichment is then calculated based on the number of 

bootstrapped gene lists with higher cell-type-specific expression than the target list. Where 

probabilities are stated for gene list enrichments, all p-values stated are adjusted for multiple 

testing. The signature score was calculated using the AddModuleScore in Seurat 

(https://satijalab.org/seurat/), the function takes in a list of gene groups, which corresponds here 

to HC138 genes, with the background of all genes in the scRNA-seq data but not including the 

HC138 genes. The exact calculation followed by taking average expression levels of each 

program (cluster) on a single-cell level, subtracted by the aggregated expression of control feature 

sets. All analyzed features are binned based on averaged expression, and the control features 

are randomly selected from each bin. 

 

Assessment of gene intolerance scores. To assess a gene’s intolerance to variation, we 

applied the ExAC-based residual variance to intolerance score (RVIS) and missense constraint 

scores (mis_Z scores), as well as the gnomAD-based “loss-of-function observed/expected upper 

bound fraction” (LOEUF). The LOEUF score is a conservative estimate of the observed/expected 

ratio based on the upper bound of a Poisson-derived confidence interval around the ratio. It 

ranges from 0 to 2, with lower LOEUF scores indicating stronger selection against predicted loss-

of-function variation in a given gene, and a cut-off value is suggested as 0.35. The mis_Z score 

indicates a gene’s intolerance to missense variants, positive scores indicate more constraint, and 

negative scores indicate less constraint. A greater Z-score indicates more intolerance to the class 

of variation. RVIS was based on ExAC v2 release 2.0 (accessed: March 15th, 2017). As of this 

release, we used CCDS release 20 and Ensembl release 87 annotations. The score was 

converted into percentile by ranking all genes from most intolerant to least. For example, 

percentile of 1% means the gene is amongst the top 1% of the most intolerant genes. A Wilcoxon 

two-sample test was performed in R (versions 3.6.2) with the wilcox.test function. 
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Table S1. DNV cohorts in this study.  

Group Cohort Samples Proband Male Female Sibling Male Female NGS Individual 
Sex info 

Study 

ASD 

SPARK_WES_1 27,256 6,557 5,229 1,328 3,034 1,551 1,483 WES Known 
This study, 

Zhou202212, and 
Fu202213 

SSC 8,757 2,299 1,989 310 1,860 879 981 WGS Known CCDG_SSC14 

SAGE 547 202 161 41 - - - WGS Known CCDG_SAGE15 

SPARK_pilot 1,379 465 377 88 - - - WES Known Feliciano201916 

MSSNG 4,174 1,613 1,268 345 - - - WGS Known Yuen201717 

ASC 12,123 4,046 3,263 783 347 171 176 WES Known Satterstrom20201 

JASD 786 262 191 71 - - - WES NA Takata201818 

ACE 348 116 98 18 - - - WES NA Chen201719 

 Sub-total 55,370 15,560 12,576 2,984 5,241 2,601 2,640    

            

DD 

DDD13K 32,233 9,852 5,655 4,197 - - - WES Known Kaplanis20209 

GeneDx 56,367 18,783 10,385 8,398 - - - WES Known Kaplanis20209 

RUMC 7,254 2,417 1,377 1,040 - - - WES Known Kaplanis20209 

 Sub-total 95,854 31,052 17,417 13,635 - - -    

            

NDD Total 151,224 46,612 29,993 16,619 5,241 2,601 2,640    

 
Cohorts are organized into three groups based on primary phenotype (ASD, DD, and NDD). The number 
of samples in each cohort are total parent–child samples pre data harmonization. The affected (proband) 
and unaffected (sibling) counts are samples used in the meta-analysis after data QC and harmonization.  
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Table S2. DNV rate across cohorts.  
Subset Phenotype Cohort Probands dnLGD rate dnMIS rate dnSYN rate DNV rate 

recalled 

ASD SPARK_WES_1 6,557 658 0.10 4,160 0.63 1,891 0.28 6,709 1.02 

ASD SSC 2,299 261 0.11 1,273 0.55 442 0.19 1,976 0.86 

ASD SAGE 202 17 0.08 104 0.51 27 0.13 148 0.73 

ASD SPARK_pilot 465 58 0.12 280 0.60 113 0.24 451 0.97 

DD DDD13K 9,852 1,624 0.16 6,571 0.67 2,296 0.23 10,491 1.06 

  Sub-total 19,375 2,618 0.14 12,388 0.64 4,769 0.24 19,775 1.02 

            

no-recall 

ASD ASC 4,046 451 0.11 2,349 0.58 814 0.20 3,614 0.89 

ASD MSSNG 1,613 160 0.10 822 0.51 318 0.20 1,300 0.81 

ASD JASD 262 44 0.17 133 0.51 36 0.14 213 0.81 

ASD ACE 116 12 0.10 66 0.57 11 0.09 89 0.77 

DD GeneDx 18,783 2,903 0.15 12,575 0.67 3,961 0.21 19,439 1.03 

DD RUMC 2,417 404 0.17 1,442 0.60 507 0.21 2,353 0.97 

  Sub-total 27,237 3,974 0.14 17,387 0.64 5,647 0.21 27,008 0.99 

            

All ASD+DD Total 46,612 6,592 0.14 29,775 0.64 10,416 0.22 46,783 1.00 

            

Cohort Siblings dnLGD rate dnMIS rate dnSYN rate DNV rate 

SPARK_WES_1, SSC, ASC 5,241 329 0.06 2,999 0.57 1,290 0.25 4,618 0.88 

 
The number of DNVs per proband was calculated for each cohort after data harmonization with the same 
filtering criteria. The DNV rate is consistent across cohorts as well as across the recalled and no-recall 
subset cohorts. This table corresponds to Figure S1. 
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Table S3. DNV comparison in ASD and DD patients for LC615 NDD candidate genes. 

Significant genes with 
non-synonymous DNVs dnLGD dnMIS dnMIS30 DNVs 

In ASD only 42 27 32 13 
In DD only 152 158 206 118 
In neither 245 10 216 0 
In both 176 420 161 484 

ASD > DD 56 138 58 149 
ASD < DD 120 282 103 335 

 
A comparison of non-synonymous DNVs, broken down by mutation class, in ASD (n = 15,560) and DD (n 
= 31,052) patients was performed for all LC615 candidate risk genes. For genes with DNVs in both ASD 
and DD patients (“In both”), the DNV ratio was further compared with sample size considered for calculation. 
“ASD > DD” means genes with relatively more DNVs in ASD than DD patients; “ASD < DD” means genes 
with relatively less DNVs in ASD than DD patients. In the cohort, 78.7% (484/615) of the genes have DNVs 
in both ASD and DD samples; more genes have high frequency of DNVs in DD (335 genes) than in ASD 
(149 genes) patients; and more genes have DNVs in DD (118 genes) than in ASD (13 genes) patients. 
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Figure S1. Overlap of genes with non-synonymous DNVs across phenotype groups. The majority of 
genes (82.8%, 2,047/2,472) with DNVs in siblings also have DNVs in probands. There are (a) 425 genes 
(all DNVs), (b) 101 genes (DNV > 1), and (c) 21 genes (DNV > 2) with DNVs only in siblings at different 
filtering levels of DNV counts. (d) Most of the 21 genes with DNVs (n > 2) exclusively in siblings carry only 
dnMIS variants, except four genes (ADAM18, PDZRN3, RABGAP1, and YIF1A) with one dnLGD variant. 
Only two genes (CLEC2D and CEP20) show an excess of dnMIS variants in siblings with FDR at 5% (q-
value < 0.05, DNV count > 1).  
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Figure S2. DNV rate across cohorts. The number of DNVs per person was calculated for (a) each 
individual cohort and (b) each phenotype group after data harmonization with the same filtering criteria 
applied. The DNV rate is consistent across large cohorts as well as across the cohorts with (recalled) and 
without (no-recall) reanalysis of the underlying sequencing data. The numbers of probands are also shown 
with color indicating the phenotype (ASD in purple, DD in green, and NDD in dark blue). Note, the bar plot 
indicates the number of DNVs per person: they are absolute values and no statistics or distributions are 
involved. 
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Figure S3. Overlap of the three gene sets by different significant thresholds. LC615 genes are the 
most comprehensive set of 615 genes with lowest confidence based on the union FDR 5% significance by 
one or more of three models, which includes the MC237 and HC138 genes; MC237 genes are 237 genes 
with moderate confidence based on the intersection FDR 5% significance by all three models—it is a subset 
of the LC615 genes, but includes all HC138 genes; HC138 genes are the most stringent of 138 genes with 
the highest confidence based on the intersection FWER 5% significance by all three models—it is a subset 
of the HC237 and LC615 genes.  
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Figure S4. Significant genes across phenotype by three models. Overlap of FDR 5% significant genes 
by three models are shown in (a) ASD, (b) DD, and (c) NDD groups in the above panel; similarly, the 
overlap of FWER 5% significant genes are shown in (d) ASD, (e) DD, and (f) NDD groups. 
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Figure S5. Significant genes are highly enriched as intolerant genes. Three intolerant score metrics—
(a) LOEUF, (b) mis_Z, and (c) RVIS—were compared across HC138 and LC615 genes; the rest of genes 
with DNVs in the combined NDD group that did not show any DNV significance (Not-sig), and the genes 
show significance in siblings (Sib-sig). The LC615 and HC138 genes identified in this study are significantly 
intolerant to mutation when compared to not-significant genes, and also between the LC615 and HC138 
significant genes, with the corresponding p-value annotated on the top. The number of genes with scores 
available are shown in parentheses below each category. Wilcoxon two-sample test was performed in R 
(v3.6.1) with the wilcox.test function. For the box plots, the lower whisker indicates the lowest data point 
excluding outliers (minima) and the upper whisker indicates the largest data point excluding outliers 
(maxima); the lower bound indicates the first quartile, which is the median of the lower half of the dataset 
(25th percentile), the upper bound indicates the third quartile, which is the median of the upper half of the 
dataset (75th percentile), and the middle value of the dataset (50th percentile) indicates in the middle. 
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Figure S6. Overlap of NDD-significant genes with reported significant genes. Three main published 
gene lists—Coe25320, ASC1021, and DDD2859—were considered for the first-step comparison of reported 
significance. The overlap of these published genes with the genes identified in this study with FDR 5% 
significance at the (a) union set and (b) the intersection set of the three models (CH model, denovolyzeR, 
DeNovoWEST) are shown above; similarly, the overlap with FWER 5% significance in the (c) union set and 
(d) intersection set of all three models are shown below. If considered the most stringent of FWER 5% 
intersection significance, three candidate genes show potential “novel” statistical significance. Protein 
diagrams with dnLGD (red) and dnMIS (blue) variants from ASD (above the diagram, n = 15,560) and DD 
(below the diagram, n = 31,052) patients for the three candidates are shown in: (e) MED13, (f) NALCN, 
and (g) PABPC1. 
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Figure S7. Brain expression of significant genes. (a) Specific brain region enrichment during 
development as determined by CSEA, showing enriched expression of the LC615 genes in the early-mid 
and late-mid fetal amygdala, early fetal cerebellum, early to late fetal cortex, early to early-mid fetal striatum, 
and early fetal thalamus. (b) Those genes have an enriched expression in the brain as suggested by TSEA. 
The p-values are from the Fisher's exact test followed by the Benjamini–Hochberg correction. Similar 
enrichment is also observed for the HC138 genes even with much fewer genes as shown in (c) and (d). 
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Figure S8. Expression of NDD and control genes in human cortex. Expression heatmap of (a) LC615 
NDD genes and (b) 447 sibling DNV (n > 1) genes in 120 cell types identified across six human neocortical 
areas. (c) Empirical cumulative distributions of log2 trimmed mean expression of three gene sets. 
Rightward-shifted curves indicate more genes with greater expression. 



24 
 

 
Figure S9. Expression comparison of identified and reported NDD genes with control genes. All NDD 
gene sets are significantly enriched in neuronal types compared to controls. The HC138 genes trend 
toward more neuronal enrichment than ASC102, although this is not statistically significant. All NDD gene 
sets (except the LC615 genes) are significantly enriched in non-neuronal cells compared to controls. 
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Figure S10. The cell types and number of nuclei in single-nucleus RNA expression analysis. The 
dendrogram below depicts the transcriptomic similarity between cell types (columns), the number of nuclei 
in each cell type (bar plot), and the cell-type labels that provide cortical layer and gene marker information. 
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Figure S11. Conditional and unconditional enrichment analyses. Conditional enrichment analysis 
between the neuronal lineage populations found excitatory neurons to have an independent signal with 
respect to controlling interneuron signal; while neither enrichment nor significance (p = 1 for all) is reached 
in any neuronal lineage population when controlling for excitatory neurons (* indicates p < 0.05, ** indicates 
FDR p < 0.05).  
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Figure S12. Enriched expression of top genes with sex-biased DNV enrichment significance. The 
top genes for both female and male DNV enrichment were tested with the HC138 genes as background. 
Enrichment signal was found in the intermediate progenitor cells for the female-enriched genes, and no 
such signal for male-enriched genes. Asterisk indicates p < 0.05; F means female and M indicates male in 
the legends on x-axis. 
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Figure S13. Overlap of significant genes in NDD patients with recalled and no-recall subsets. (a) 
Among the HC138 genes in the combined NDD group, there are 12 genes exclusively significant in the no-
recall subset and one gene (PABPC1) exclusively significant in the recalled subset. (b) DNVs were almost 
exclusively from GeneDx, especially for ZEB2, PDHA1, and SLC2A1 where all DNVs are from GeneDx and 
no DNVs from other cohorts in the no-recall subset. Note, the bar plot indicates the number of DNVs in 
each gene, they are absolute values and no statistics or distributions are involved.  
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Supplementary Analyses 

As ASD (n = 15,560) has a smaller sample size than the DD cohorts (n = 31,052), in order to 

model this effect for a more balanced sample size between ASD and DD cohorts, we have also 

performed two analyses by either downsampling DD samples or increasing ASD samples. In the 

analysis of downsampling DD samples, the data clearly show that the DD shows a greater degree 

of burden for DNV mutations, especially for dnLGD variants. We also performed another analysis 

with increasing ASD samples by adding the new release of SPARK_WES_2 and SPARK_WES_3. 

Both analyses with matched sample sizes for ASD and DD cohorts showed that sample size alone 

unlikely underlies the paucity of true ASD-specific genes at least for a de novo mutation model. 

 

I. Downsampling of DD to match ASD samples 

First, we performed the downsampling of DD samples to match the number of ASD families. 

Specifically, we focused on the DDD13K and RUMC cohorts as we have the underlying sample 

manifest data for a total of 12,269 DD trios compared to 12,902 ASD trios from SSC, 

SPARK_WES_1, and ASC (Table S4).  

 
Table S4. Downsampled DD and size-matched ASD cohorts used in analysis. 

 

We repeated de novo enrichment analyses using the same three models (CH model, 

denovolyzeR, and DeNovoWEST) as we did for the entire DD, ASD, and the combined NDD 

cohorts. We considered the union and intersection of both the FDR 5% and FWER 5% 

significance, which are the same criteria used as in the manuscript. We found no ASD-specific 
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genes with strong significance, as the Venn shown below, even at a comparable sample size 

between ASD (n = 12,902) and DD (n = 12,269) cohorts. The number of DD genes was more 

than double that of ASD genes, including the discovery of DD-specific genes where no significant 

DNV enrichment was observed in ASD samples (Figure S14). 

 

 
Figure S14. Overlap of significant genes in the downsampled DD analysis. 

 

II. Increase in the number of ASD families 

As a second approach, we also analyzed recently released ASD trio data from SPARK_WES_2 

(n = 2,192) and SPARK_WES_3 (n = 2,060) as the reviewer suggested and used the same 

pipeline to identify DNVs as in SPARK_WES_1. We want to note that the majority of families in 

SPARK_WES_2 and SPARK_WES_3 are singletons that only have one or no parental DNA 

available to detect DNV. Taken together, the ASD size has increased to 19,812 trios by combining 

with all ASD cohorts in the present study (Table S5). 

 

As for the DD cohorts, we have three cohorts included in the current study: DDD13K (n = 9,852), 

RUMC (n = 2,417), and GeneDx (n = 18,783). Due to the unavailability of the complete manifest 

for all samples (e.g., GeneDx), we are unable to perform a random downsampling of the DD 

samples. To match the ASD proband size, we took the combined ASD set (n = 19,812) and the 

GeneDx cohort (n = 18,783) to repeat the same de novo enrichment analyses. 
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Table S5. Increased ASD and size-matched DD cohorts used in analysis. The SPARK_WES_2 and 

SPARK_WES_3 in red are new cohorts added here to increase the ASD size. 

 

After applying the same thresholds of significance, we identified only one gene, SMARCC2, that 

met the most stringent threshold (FWER 5% intersection) specifically in ASD cohorts (Figure S15). 

SMARCC2 loss-of-function and severe mutations, however, are known to be associated with 

Coffin-Siris syndrome-8 (OMIM #618362)—a known neurodevelopmental disorder. Indeed, we 

do observe two dnMIS variants among the DD cohort (n = 18,783) compared to seven dnLGD 

variants in the ASD cohorts (n = 19,912), so this does not represent a true ASD-specific gene. 

This is in contrast to several DD-specific genes already described in the main text. 

 
Figure S15. Overlap of significant genes in enrichment analysis with increased ASD sample size. 

 

Thus, sample size unlikely underlies the paucity of true ASD-specific genes at least for a de 

novo mutation model.  
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