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Supplementary Note 1: Geographical setting

Domenico Lo Vetro

The San Teodoro site near Acquedolci (Messina, North-Eastern Sicily), is a large cave (about 60
m long, 20 m wide and up to 20 m high) which opens in the Jurassic limestone of Pizzo
Castellaro, at the toe of the northern side of Monte S. Fratello (Nebrodi Mountains). The cave is
located at an altitude of 135 m, about 2 km south from the Tyrrhenian coast. The site stands
between two rivers: Inganno, about 2 Km Est, and Furiano, about 2,5 km West (Supplementary
Figure 1).

Supplementary Note 2: History of researches and Archaeological setting

Domenico Lo Vetro

After its discovery by Baron Anca in 1859, several scholars were interested in the prehistoric
remains of San Teodoro cave. The first human remains were recovered in 1937 by G. Bonafede
who unearthed the burial San Teodoro 1!. Other skeletal remains related to 3 distinct individuals
were recovered a few years later by Maviglia!. In 1942 Graziosi conducted first systematic
archaeological excavations?, where he detected a detailed stratigraphic sequence and recovered
three other individuals.

New modern researches were carried on from 1998 to 2006 by Bonfiglio who conducted several
excavations in the Pleistocenic deposit, bearing endemic mammal fauna, underlying the
anthropogenic one.

The archaeological sequence detected by Graziosi consists in two main levels, a lower level,
subdivided into three non-anthropogenic layers (E-F), rich in faunal remains (among which the
endemic Elephas mnaidriensis and the hyena Crocuta crocuta spelaea), and an upper level,
subdivided into four anthropogenic layers (A-D) containing abundant lithic artefacts related to
the Late Upper Palaeolithic (Late Epigravettian) and several faunal remains: red deer (Cervus
elaphus), which remains are prevalent in the faunal assemblage, wild boar (Sus scrofa),
abundant, aurochs (Bos primigenius), scarce, wild ass (Equus hydruntinus), wolf (Canis lupus),
fox (Vulpes vulpes) hyena (Crocuta crocuta spelaea) very scarce. The latter two species occur
only in the lower part of the anthropogenic deposit (layer D). The few remains of hyena could
be intrusive in layer D because of the burial pits dug by the epigravettians in the underlying non-
anthropogenic deposit. In the whole anthropogenic sequence few mollusc shells (both marine
and terrestrial) occur. The human Upper Palaeolithic skeletal sample from San Teodoro (ST) is
presently composed by at least seven individuals (Supplementary Data 1), as several other
fragmentary human remains have not yet been fully analyzed.

Four individuals (ST 1-4) were found in layer E, below a red ochre lens, but they pertained to
the beginning of the cave occupation related to layer D2 Individual ST 5 was found over the red
ochre lens, nevertheless its absolute chronology is consistent to the other dated human remains
(ST 1 and ST 4; see Supplementary Figure 2 and Supplementary Data 2); probably it is the
result of an ab antiquo displacement related to a disturbance of a burial of which the original
position was in the same layer as the others.

Regarding the chrono-cultural framework, stone tool assemblages from layer A-D show the
typical traits of the local Final Epigravettian industries. Recent techno-typological studies
suggest an attribution of San Teodoro lithic industries to a later stage of this culture in Sicily,
chronologically referred to around 12-11.000 uncal. BP. Considering that layers A-D are
imputable to human frequentations which are subsequent to the burials standing in the layer E,



the chronology based on techno-typological features of lithics is consistent with both their
stratigraphic position and AMS radiocarbon dates from ST 12, ST 4 and ST 5 individuals
(Supplementary Data 2). Here, we also present the new radiocarbon date of the individuals: ST 4
and ST 5 (Supplementary Data 2).

ST 4 and ST 5 refer to the same period, spanning from about 15,300-14,200 cal. BP. We also
tried to date ST 3, however the dating was unsuccessful. The chronology of ST 4 and ST 5
match with the AMS measure of ST 1° (Supplementary Data 2 and Supplementary Figure 2).
The AMS date of ST 5, coming from layer B, is consistent, although a little older, with the
chronology of the other individuals and leaves open the issue of the original position of these
human remains, which Graziosi* hypothesized could be in a secondary position.
Supplementary Note 3: Anthropological analysis

Pier Francesco Fabbri

Graziosi?, in his original publication, attributed to the male sex five of the Upper Palaeolithic
individuals from San Teodoro cave (ST 1-5). Two other individuals were published in the
following years, ST 6, Pardini*, and ST 7, Aimar and Giacobini®. These two individuals are
represented by crania only, the former is a fragmentary frontal and facial skeleton, the latter is
lacking the right emi-frontal and the facial skeleton. ST 6 has been sexed as female and ST 7 as
male. Later, one of the current authors, Fabbri®, proposed that ST 1 and ST 4 should be
diagnosed as females on the basis of pelvis morphology. As to general cranial morphology,
compared to Late Upper Palaeolithic individuals, ST 3 shows very large and robust mastoids and
pronounced supraorbital and nuchal reliefs while ST 5 is more gracile in the three features
(Supplementary Figure 4).

The female sex determination for ST 6 seems reasonable as this individual is certainly the most
gracile among the seven known crania from ST while it seems likely that the robust ST 7 is a
male. ST 2 has intermediate cranial robustness and no other bones are preserved; sex
determination should be viewed as impossible on morphological grounds.

The sex determination of ST 3 and 5 among the samples from San Teodoro was evaluated by
some dental, cranial and postcranial measures that can be taken in at least 4 of the seven
individuals: maximum cranial length (Martin M1); occlusal upper canine area (MD*BL);
humeral lower epiphysis breadth (Martin M4). These measures are known to show a higher
sexual dimorphism in modern humans, and they have been compared to those recorded in pelvis
sexed Upper Paleolithic Italian individuals: Barma Grande (BGR), Romito (ROM), Vado
all’Arancio (VAR), Villabruna (VIL)’ and Arene Candide (ACA)3.

Maximum cranial length (M1) can be measured in ST 1, 2, 3, 5 and 7 (Supplementary Figure 5).
This measure doesn’t seem to have a high sexual discriminatory power: pelvis sexed gracile
female ROM 1 and robust male VIL have nearly identical measures, respectively 180 and 181
mm; pelvis sexed male ACA 4 and female ROM 4, are both 195 mm. Maximum measure in ST
samples (198 mm) is recorded in pelvis sexed female ST 1, whose measure is identical to the
ones recorded in pelvis sexed males ROM 7 and 8 and very close to ST 3 (196 mm) and ROM 4
(195 mm). ST 7 very robust cranium is shorter than more gracile ST 5 cranium, respectively 187
and 192 mm.

As to occlusal upper canine area (Supplementary Figure 6), it could be computed in individuals
ST 1, 2, 3 and 6, all of them are placed in the lower half of Italian UP range and ST 6 shows the
lowest value. Pelvis female sexed ST 1’s value (68.03 mm?) is slightly larger than the one



observed in ST 3 (63.04 mm?) and both of them are lower than unsexed ST 2 (70.94 mm?). As
observed for maximum cranial length, occlusal upper canine area doesn’t permit clear
discrimination between sexes: values computed for the four individuals from ST are lower than
those observed in female pelvis sexed BGR 3 and ROM 4.

The only postcranial bone measurement recordable in both ST 3 and ST 5, as well as in pelvis
sexed individuals ST 1 and ST 4, is humeral lower epiphysis breadth (Supplementary Data 3).
The four individuals from San Teodoro show limited metrical variation. The three females, ST 1,
4 and 5, are very similar, respectively 60, 57.5 and 59 mm, and fall in the range 52-60 mm where
male and female variabilities overlap, the only ST 3 sample (62 mm) is slightly over the female
maximum.

The three chosen measures recorded in ST samples give conflicting results when compared to
other Upper Palaeolithic Italian samples. In ST samples, canine occlusal areas are generally
small, maximum cranial length spans most of Italian Upper Palaeolithic variability, and humeral
lower epiphysis breadth are mostly in the overlapping area of male and female ranges, but we
cannot exclude that this is at least partially due to the small size of comparison samples. These
observations confirm that without diagnostic pelvic features, sex determination based on
available singular cranial, dental or postcranial measures are not reliable except when dealing
with individuals placed at the upper edge of male range or at the lower one of female range.
Cranial morphological features commonly used for sex determination, supraorbital and occipital
reliefs and mastoid size are scored following Walker” (Supplementary Data 4). ST 3 is one of the
more robust crania in Upper Paleolithic Italy and the most robust among San Teodoro
individuals while ST 5 shows robust supraorbital reliefs (score 4) and gracile mastoid and nuchal
crest (score 2 for both).

Considering all the information obtained from ST samples, we find more women (ST 1, 4, 5, 6)
than males (ST 3, 7), and ST 2 is not sexable on the basis of cranial measures and features.
Supplementary Note 4: Deamidation pattern comparison between petrous bones and dental
calculus

Furthermore, we compared the deamidation patterns of the peptides obtained from the dental
calculus and from the petrous bones of the same individuals, in order to verify and confirm
different preservation states between the two matrices analyzed. The peculiar composition of
dental calculus allows it to protect trapped biomolecules from environmental attack!?, unlike
bone, where endogenous biomolecules are more easily subjected to environmental factors. By
comparing the collagen deamidation patterns obtained on bone and dental calculus, San Teodoro
3 (Supplementary Figure 37) shows an almost identical preservation state. While, the collagen
deamidation rates obtained from the bone and from the dental calculus in San Teodoro 5
(Supplementary Figure 38) shows a better preservation state of the dental calculus proteins. To
date, it has not yet been clarified if the number of total identified proteins and their diagenesis in
dental calculus is due to the mechanism associated with dental calculus formation or the
taphonomic factors to which it could have been subjected.

By comparing the damage patterns of collagen obtained in dental calculus versus bone from the
same individual, we speculate that since the two individuals were recovered from two different
areas within the cave, the calculus samples have been subjected to different environmental
factors leading to two different protein contents and preservation states. Surely, further studies
are needed to address this question.



Supplementary Figure 1: Sampling location of San Teodoro cave (Sicily, Italy).
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Supplementary Figure 2: Cumulative calibration curves of the AMS Radiocarbon dates on
human samples from San Teodoro individuals ST1, ST4 and STS5.



San Teodoro 3 San Teodoro 5
A a 3 o8 os LA AL c

‘ i i Vm

?w?zﬂx’ it -t
. 1l

T T [ [

L j
i e
ki

Single-end read length distribution

Single-end read length per strar

Resaengtn

H H

onuren
H

R
onuren
uren
- H H E H

Resdength

e
N:
w8

T o1

@A

@A

Cumiaiv roqencies

San Teodoro 3

o
0.0 0.2 0.4 0.6 0.8 1.0
Pr(authentic)
San Teodoro 5
@ -
291
‘@
& <
[a]
o
© 1 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Pr(authentic)

Supplementary Figure 3: a) Damage patterns and reads length of human DNA of samples
analyzed. b) Results of Likelihood-based mitochondrial contamination estimates by contamMix.




Supplementary Figure 4: Left San Teodoro 3 and right San Teodoro 5 skulls from top to

bottom: supraorbital reliefs; occipital reliefs. Scale bar 5 cm.
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Supplementary Figure 5: Maximum cranial length (M1) in Italian Upper Palaeolithic upper
canines. San Teodoro in orange; male in black; female in light green.
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Supplementary Figure 6: Occlusal area (MD*BL) in Italian Upper Palaeolithic upper canines.
San Teodoro in orange; male in black; female in light green.
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Supplementary Figure 7: Phylogenetic tree of U5b haplogroup based on 31 ancient samples
(Supplementary Data 7) and using MareuilLesMeaux1 as outgroup (U5a). The San Teodoro 3
date coming from other individuals found in the same layer (Supplementary Data 2). Estimated
divergence dates for principal nodes, as well as bootstrap values associated with each node are
shown, with bootstrap values lower than 0.8 indicated in red.
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Supplementary Figure 8: Phylogenetic placement of San Teodoro 3 Y chromosome.
Phylogenetic tree of Y chromosome sequences from the 1000 Genomes project, with maximum
likelihood placement of ST3 using epa-ng. Major haplogroups are indicated with coloured
symbols.
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Supplementary Figure 9: Multidimensional scaling (MDS) of 160 pre- and post-LGM hunter-

gatherer individuals, based on a pairwise identity-by-state (IBS) allele sharing.
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Supplementary Figure 10: Heatmap of pairwise genetic distances between individuals,
calculated as 1- p(IBS).
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+ 3 standard errors.



IronGatesSerbia_ M.CAP

0.054 15237_rnd | 98008P 15409_rnd | 9800BP__~ 15235_rnd | 108358P
15236_md | moosepWrm 105308P
15234_rnd | 9800BP _rnd | 1080582 w&
14916_md | 87638P /ﬂmml/a 2_md | 845081 15238_rnd | 99938P
15771_rnd | 83258P —T4870_md | 87408P  15401.11(| 83388° 14660_md 1 97138P
15402_rnd | 81568P __ 15239_rnd | 103338P
14878_rnd | 7803BP ~4914_md | 81238P @ 14915.rnd | 81158P
14876_rnd | 84558P! _md | 78138P 15233_rnd | 8001BP
14881_md | 83638P imd | g4sanp 4871 84508
14877_md | 85058P ——¢
14874_rnd | 85068P
14873_md | 78728P
14917_rnd | 80588P
0.00 -
Age
eV} 12000
c
o
2 10000
C
[}
£ 8000
(@]
6000
—-0.05 A1
T T .
-0.08 -0.04 0.00 0.04

Dimension 1

Supplementary Figure 12: MDS plot showing age-related stratification of hunter-gatherer
individuals from Iron Gates, Serbia.



ritain_M.CAP

IronGatesRomania_M.CAP

IronGatesSerbia_M.CAP
SEEUHG_M.CAP
Iberia_M.CAP
Iberia_M.SG
NorwayHG_M.SG
Motala_M.CAP
BalticlslandHG_M.SG
Baltic_M.CAP
Ukraine_M.CAP.
Ukraine_M.SG
Ukraine_N.CAP
Ukraine_N.SG

ElMiron_LP.CAP
BalmaGuilanya LP.CAP.

Fomania_M.CAP
WHG_M.CAP
Loschbour M.SG

B Goyet LP.cAP

2
8
g b
E £ ignif0s
10 signif
<ol
co08 . os
s }
£ rej
Sos
2
5
£ 04 refPop
E W tay msc
Foz i
B rronGatesSerbia_M.CAP
00 B Easternic_mcaP

Test population

Supplementary Figure 13: Ancestry proportions of post-LGM Hunter-Gatherers, inferred using gpAdm with the associated p-
value.



2
:
g
o
§
R m ERY R §
nT =¥ = 3 2
IS < TES S ® =
B8 So 25998 93 g
535, 52-55553808%, &8
Bz Qs %
SESLEL55aEEATRESSE OF
SOPESS28E564028888 o8
0w SS8SsRS83gghaBeSBLEy
SHSTRCLRFRa g 3T8SS el
Q 5 38003038C00ae
82 253888858888
Q S8 88888 Q=
s SRR
23 QEEESESREEESY
s S8295288S288 0
RS SSSSOSoaSSEosd
2 LOCTECEOETOSOS
a O SA<<IBIBLOIIBI S
o
FIlE BN 'S DN E

— I N -
R ==

.
AT —— b ] _I«.N v awar
- oo o

S L e e P ]

SOV 05 el o0 sesusBRAPARI BRI | S
SNVOIH4Y

I P | e
N 1 [ ECen

e a—— ] ]| I_—M”H”MU

I R 5o s

Auewuie ‘ussneyiyniy-1eBINIS “ow ey ueadoing Ajes o

Aoyl ‘o10posy. Ues ¢

wniBjeg ‘ened Adg ‘fersapuean o

0.00=

Speal palISSeo JO UonoRl4

S 12)

3

ET 3
© 9 28, & o 8€ &
S 03 m.w.mm S 8 S3w03
o 88 §PSS & 5§ 8xsFSEsR
c 2588 S48 oo888ssd
¢ 20I30Ns FIUEGIESSESTS
o ESTSSE0 TS5 ST SSSS8ERR
S SB§SERCITASRSRSEREsS:s

S0885 2SS 52aES 0N 5.

N TEL20T0TEFTRTIST IS, £
o BorSS(I2LETFISS3SET
o
FIlE N 'S DN E

Auew.en) ‘JpaisieH ‘UoNN|oAsY [eLISNPUI-1SOd

pue|BuT “HIOA ‘AINGMaF [eABIpaW BjeT]

BOLJY UINOS ‘UmoL ade) Jeau ‘pouiad Isieiolsed
| I

BOLIY YINOS ‘umo) ade) Jeau 1abelio) poliad isifeiolsed—aid

I N -

puE|Od ‘B)pPNQ “IasayreB-ieuny oIyNjosajy

IR -
Ajey ‘010poa]. ueS ‘OIupIosEled

f . HINEEEE Bl

wnibjag ‘are) Adg ‘lepiapuea) oI

I I
losered

uleds ‘oAeD UOIPIS |3 ‘EHapUBaN I

a

1.00=
0.75=
0.50=
0.25=
0.00=

SpEal PalYISSE|O JO Uooel

ies in

bundances of the top 20 most abundant a) genera (Supplementary Data 18), b) spec

Relative a
the ancient calculus samples (Supplementary Data 19).

Supplementary Figure 14



Relative abundance bar_plot of the top 20 most abundant genera in all oral samples.
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Supplementary Figure 16: Relative abundance barplot of the top 20 most abundant species in all oral samples.



ST3

2.0
15
1.0

Average edit distance
0.5
0.0

ns

metaDMG Z score

=3

VvV Z>

v Vg_ V¥
v v Vvv

Vv ¢V wvV

vVvy

vVvv

vV

>

e 17NV 'ds euapjoysng

081 uoxe} [eso "ds sedAwounoy
- 28END ‘ds enjoe|s

I SNSOOSIA S@0AWOUNOY

I 98¢ uoxe) [eJo ds w:__ma_coamn_
F 1L uoxey [eo "ds sedAulounoy
~ Slooje Jojoed|i4

- 101}0B|IpIOE SNJ2090Ipad

I SIsustiow} sedAwounoy

I enbixa enjoe|s

I SI[elo J8JOBJINSIqOUBRYIBIN

oB|S Se2AWounoy

lijoeIs| seoAwounoy

I G/ | uoxe) [eJo “ds s@oAwounoy
+ wnyepou [wnusjoegn3]

F GIND wnugjoeq aea2e20020)dalisoldad
- SIUOI1EI0|0J3P B||ouUBMaYS

FB6 1DV WNLvloeq 9889R00090}dal1soidad
I oell8souaIab seokwounoy

F nuosuyol seoAwounoy

F Wnpiwi wnieoeqibo

I 6178 UOXE] |BJ0 "ds S@oAwounoy
+ aeIbi0ab saoAwounoy

0/ uoxej |eso ‘ds sedAwounoy
F lIpun|seeu sadAwounoy

° F Lliseb wne1oeqooA

F 2/8 uoxej [eio "ds sadAwounoy

F 0GIND "ds wnuajoeqiboly

F 1¥Sd ‘ds wnipuyso|)

8/ | uoxej [eJo ‘ds saoAwounoy

+ 000Y#S002 ‘ds wniqoziylossy
+0SS8 61110 OVIN ‘ds wnuaoeqodApy
I Sliewols snoooooidalisoidad

+ ZIND "ds snoooooideng

I SISUayipJed saoAwoundy

- euiwebIq eIsageg

+ 0099 ¥OHS T ‘dS WNIqoziyI0sa|\
+ 00VOOHST "ds wniqoziyiosa|y
I SISUBUIS SN920001da.iS

GGG LE DY 'ds seuowobulyds
+ 261 uoxel [eso "ds wnusjoeqiuoldoid
#0aq "ds snoooooidais

+ 00YZEYOHST "ds WNIqozIYI0Ss
+ 009¥2yOHS 1 ds wniqoziyioss
¥ L UoXe) [0 "ds sedAwouoy
e M1 "ds snuisojAyley

- Sijelusp seoAwounoy

>
L ' _::_: 1 _::_: 1 _::_: 1 _=:_: 1
[t}

< ) Y
o o o o

— — — —

paddew speas N

lualss s bt 208 UOXE] [B1O "dS BJ|2USS|O
— (=]

o

—_

€11 UOXe} [eJ0 wniv}oRg 9B80EI2000}daI1S01dad

F X/|\LL UOXE] [BJO BLISJORQIBYOORS SNIEpIpuBR)

Species name

Read mapping summary statistics for the 50 most abundant species

identified in San Teodoro 3 using Bracken (Supplementary Data 15). Species are ordered by

Supplementary Figure 17

decreasing Bracken abundance rank along the x axis. Plot symbol color indicates average edit
distance of mapped reads. Species with significant evidence for ancient DNA damage

(metaDMG Bayesian Z > 3) are indicated with black triangle shape.
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Supplementary Figure 18: Read mapping summary statistics for the 50 most abundant species

identified in San Teodoro 3 using Bracken (Supplementary Data 15). Species are ordered by
decreasing Bracken abundance rank along the x axis. Plot symbol color indicates average edit
distance of mapped reads. Species with significant evidence for ancient DNA damage

(metaDMG Bayesian Z > 3) are indicated with black triangle shape.
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Supplementary Figure 19: Example damage plots for the five most abundant species after
filtering for ancient DNA damage (Z > 3) and breadth of coverage (observed breath of coverage
>30% of expected) identified in San Teodoro 3 (A) and in San Teodoro 5 (B) (Supplementary
Data 15). Coloured cross symbols show observed frequencies of 5° C>T (red) and 3° G>A (blue)
substitutions. Black points and shaded area show estimated fit and standard deviation from
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Bayesian damage estimation implemented in metaDMG.
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Supplementary Figure 20: Read edit damage distributions for the most abundant species after
filtering for ancient DNA damage (Z > 3) and breadth of coverage (observed breath of coverage
> 30% of expected) in San Teodoro 3 and in San Teodoro 5 (Supplementary Data 15).
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Supplementary Figure 23: PCA, all samples, clr transformed.
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Supplementary Figure 24: PCA all samples, including labels.
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Supplementary Figure 25: PCA oral samples, clr transformed.

ocmmabbd>

°

 E1 Sidron Cave, Spain
Palaeolithic Neandertal, Spy Cave, Belgium

Palaeolithic, San Teodoro, Italy

Mesolithic hunter-gatherer, Dudka, Poland

Pre-pastoralist Period forager, near Cape Town, South Africa
Neolithic early European farmer, Stuttgart-Muhlhausen, Germany
Pastoralist Period, near Gape Town, South Africa

Late medieval Jewbury, York, England

Post-Industrial Revolution, Hettstedt, Germany

Modern Chimpanzee, Sierra Leone

Modern, Adelaide, Australia

Human subgingival plague, chronic Periodontitis, PRINA255922
Dental plaque, periodontal disease, PRINA230363

Dental plaque, dental caries, PRINA383868

Dental plaque, dental caries free, PRINA333868

HMP gingiva

HMP buccal mucosa

HMP dorsum of tongue

HMP throat

HMP palatine tonsil

HMP portion of saliva

Saliva, PRIEB14383

Saliva, PRIEB24090

Saliva, healthy, PRINA396840

Saliva, caries, PRINA396840

Saliva, periodontitis, PRINA396840

Swab, periodontal disease, PRINA230363



40

PC2 (9.5%)
0
1

PC1 (15.44%)

Supplementary Figure 26: PCA oral samples, including labels.
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Supplementary Figure 27: DAPC (DA=15, PC=600), clr-transformed, all samples, grouped by
k-means, Supplementary Data 21.
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Supplementary Figure 28: DAPC (DA=15, PC=600), clr-transformed, all samples, grouped by
k-means, Supplementary Data 21. Including labels.
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Supplementary Figure 29: DAPC (DA=15, PC=400), clr-transformed, oral samples, grouped

by k-means, Supplementary Data 22.
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Supplementary Figure 30: DAPC (DA=15, PC=400), clr-transformed, oral samples, grouped

by k-means, Supplementary Data 22. Including labels.
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Supplementary Figure 31: Unrooted dendrogram, clr-transformed, Aitchison distance, oral
samples.
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Supplementary Figure 32: Zoom in on ancient clade in unrooted dendrogram, clr-transformed,
Aitchison distance, oral samples.
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Supplementary Figure 35: Heatmap of significantly different abundant species (P-value<0.01) between modern oral and
ancient calculus samples using ALDEx2. Hierarchical clustering of species on the x-axis and the samples isolation source on
the y-axis. Heatmap colored by centred-log transformed abundance estimate. White: the sample has the mean abundance of the
species. Blue: the sample abundance of the species is below the mean. Red: the sample abundance of the species is above the
mean.
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Supplementary Figure 36: Heatmap of significantly different abundant species (P-value<0.01) between modern
gingiva/plaque and ancient calculus samples using ALDEx2. Hierarchical clustering of species on the x-axis and the samples
isolation source on the y-axis. Heatmap colored by centred-log transformed abundance estimate. White: the sample has the
mean abundance of the species. Blue: the sample abundance of the species is below the mean. Red: the sample abundance of
the species is above the mean.
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Supplementary Figure 37: Overall percentage of deamidation for asparagine (N) and glutamine
(Q) amino acids for the collagen protein found in San Teodoro 3: a) dental calculus b) petrous
bone. Numbers above each bar represent the number of peptides used for the analysis and the
error bars represent standard deviation.
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Supplementary Figure 38: Overall percentage of deamidation for asparagine (N) and glutamine
(Q) amino acids for the collagen protein found in San Teodoro 5: a) dental calculus b) petrous
bone. Numbers above each bar represent the number of peptides used for the analysis and the
error bars represent standard deviation.
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