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Supplemental Notes 

 

 

Supplemental Note 1. A summary of statistics in S/HIC 

 

S/HIC 1 is a method for detecting and classifying selective sweeps on the basis of 11 

summary statistics which reflect spatial patterns of genetic polymorphism; we have 

incorporated these summary statistics as features in MagicalRsq’s input. According 

to the different aspects of genetic variation they summarize, these features can be 

divided into 3 subgroups: those summarizing information in the SFS (site frequency 

spectrum), haplotype structure and LD (linkage disequilibrium). 
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1.SFS (Site Frequency Spectrum) 

 

The site frequency spectrum (SFS) of a sample of DNA sequences is the histogram 

of allele frequencies of polymorphisms found in that sample. More formally, the SFS 

it is the vector [𝜂1, 𝜂2, … , 𝜂𝑘], where 𝜂𝑖 is the number of polymorphisms whose 

derived allele frequency is 𝑖.  

The first group of statistics used by S/HIC includes �̂�𝜋 (often referred to as π) 2, �̂�𝐻 3, 

Tajima’s D 4 and Fay and Wu’s H 3. The first two of these are estimators of the 

population-scaled mutation rate 𝜃 = 4𝑁𝜇 (where 𝑁 is the population size and 𝜇 is the 

mutation rate). The second two statistics are obtained by taking the difference 

between two estimators of θ. The four statistics are defined as follows: 

 

(1) �̂�𝜋 =
2

𝑛(𝑛−1)
∑ 𝑖(𝑛 − 𝑖)𝜂𝑖

𝑛−1
𝑖=1   (See Nei and Tajima 5 . This formulation is obtained 

from Achaz 6 .) Referred to as “pi” by S/HIC.   

(2) �̂�𝐻 =
2

𝑛(𝑛−1)
∑ 𝑖2𝜂𝑖

𝑛−1
𝑖=1  3. Referred to as “thetaH” by S/HIC.      

(3) Tajima’s D =
�̂�𝜋−�̂�𝑤

√𝑣𝑎𝑟(�̂�𝜋−�̂�𝑤)

 4, where �̂�𝑤 = 𝑎 ∑ 𝜂𝑖
𝑛−1
𝑖=1  and 𝑎 = ∑

1

𝑖

𝑛−1
𝑖=1  7. Referred to as 

“tajD” by S/HIC. 
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(4) Fay and Wu’s H = �̂�𝜋 − �̂�𝐻 , where �̂�𝐻 is defined in (2) above 3. Note that S/HIC 

reverses these operands, such that positive values reflect an excess of high-

frequency derived alleles, and refers to this value as “fayWuH”. 

 

Biological Interpretation: Tajima’s D is a commonly used statistic for detecting 

departures from the standard neutral model, e.g. a beneficial mutation sweeping to 

fixation in the population and/or changes in population size will cause D to differ from 

the neutral expectation of 0. Negative D indicates a deficit of intermediate-frequency 

alleles (consistent with population expansion and/or positive selection); positive D 

indicates an excess of intermediate frequency alleles (consistent with population 

contraction and/or balancing selection). Fay and Wu’s H is similar in principle, but 

tests for an excess or deficit of high-frequency derived alleles. 

2. Haplotype structure  

 

The second group of statistics, namely H1, H12, H2/H1 8 and k is used to describe 

haplotype structure. H1 is haplotype homozygosity: the probability that any two 

randomly chosen haplotypes from the sample are identical. More formally:  

 𝐻1 = ∑ 𝑝𝑖
2𝑛

𝑖=1 , 

where 𝑝𝑖 is the frequency of the 𝑖th most frequent haplotype observed in the sample. 

H12 is identical to the value of H1 obtained when treating the two most frequent 

haplotypes as if they are identical: 

 𝐻12 = (𝑝1 + 𝑝2)2 + ∑ 𝑝𝑖
2𝑛

3 = 𝐻1 + 2𝑝1𝑝2 

H12 was designed to be sensitive to soft selective sweeps, wherein multiple 

haplotypes containing a beneficial allele participate in a sweep. H2 is identical to the 

value of H1 that one would obtain by omitting the term for the most common 

haplotype: 

𝐻2 = ∑ 𝑝𝑖
2𝑛

2   

The ratio 𝐻2/𝐻1 is expected to be higher for soft sweeps than hard sweeps, 

because H2 may be elevated by alternative haplotypes bearing the adaptive allele 

and which may participate in the sweep. Finally, k, referred to as HapCount by 

S/HIC, is the number of distinct haplotypes observed in the population. 

3. Linkage Disequilibrium 

 

(1) ZnS 9 

 

𝑍𝑛𝑆 is the average value of 𝑟2 across all pairs of SNPs within a genomic region. I.e., 

if 𝑟𝑖𝑗
2 is the value of 𝑟2 between the 𝑖th and 𝑗th of 𝑆 SNPs in the window, then: 
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(2) Omega 10 

 

Kim and Nielsen’s ω is designed to detect the characteristic pattern of LD around a 

hard selective sweep: because recombination events occur independently on either 

flank of a selected allele during its sojourn toward fixation, blocks of LD will appear 

on either side of the selected site, but these blocks will be independent of one 

another and thus there will be little LD stretching across the selected site. If we again 

have 𝑆 SNPs in the genomic region being examined, and choose our 𝑙th SNP as the 

focal SNP, the formula for ω is as follows: 

 

𝜔 =
∑ 𝑟𝑖𝑗

2
𝑖,𝑗∈𝐿 + ∑ 𝑟𝑖𝑗

2
𝑖,𝑗∈𝑅

((𝑙
2
) + (𝑆−𝑙

2
)) (1/(𝑆 − 𝑙)) ∑ 𝑟𝑖𝑗

2
𝑖∈𝐿,𝑗∈𝑅

 

 

 

where L is the set of all SNPs to the left of the focal SNP, and R is the set of all 

remaining SNPs (i.e. the 𝑙th SNP and all SNPs to its right), and again 𝑟𝑖𝑗
2 is the value 

of 𝑟2 between the 𝑖th and 𝑗th SNPs in the window.  

 

Because the location of a selective sweep in the window, if there is one, is not 

known, the value of ω is calculated for each focal 𝑙 in the window (in S/HIC’s 

calculation, 𝑙 ranges from 3 to 𝑆 −2), and the maximum of all of these values of ω is 

taken. S/HIC refers to the resulting value as “Omega”. 
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Supplemental Note 2. Additional supporting results 
 

Mix-and-match of reference panel under Scenario 1 

 

In the mix-and-match section, we examined whether MagicalRsq trained using imputed data 

from one reference panel can be applied to imputed data from a different reference panel. 

Specifically, we trained MagicalRsq models using 1000G-imputed variants on odd number 

autosomes and applied to TOPMed-imputed variants on even number autosomes 

(experiment 3); and vice versa from TOPMed training to 1000G testing (experiment 4), in 

the same 2k CF samples. When evaluating restricted to the shared variants between 

TOPMed and 1000G reference panels, our mix-and-match reference panels experiments 

show promising results (Figure 2C, Table S6): MagicalRsq models trained from 1000G-

imputed data still outperform Rsq when applied to TOPMed-imputed data, and vice versa. 

For instance, applying the MagicalRsq model trained from low frequency variants in 1000G-

imputed data to TOPMed-imputed low frequency variants, we observe that MagicalRsq 

leads to 24.5% increase in squared Pearson correlation with true R2, 35.4% decrease in 

RMSE, and 18.2% decrease in MAE, compared to standard Rsq. The improvements are 

slightly less pronounced than using the matched reference panel (i.e., applying models 

trained in TOPMed to TOPMed) (Figure 2C). For example, when applying matched (i.e. 

TOPMed-) trained MagicalRsq model to TOPMed low frequency variants, we observe 60.5% 

increase in squared Pearson correlation with true R2, 57.2% decrease in RMSE, and 40.7% 

decrease in MAE, compared to standard Rsq. Although MagicalRsq models trained from a 

mismatched reference perform less well than those trained from a matched reference, they 

still demonstrate a clear advantage over standard Rsq.  

 

We also note that the absolute performance of Rsq seems to be better using 1000G 

reference panel than TOPMed in terms of squared Pearson correlation with true R2 (Figure 

2A, B and Table S6, 0.73 v.s. 0.58 for common variants, 0.63 v.s. 0.49 for low frequency 

variants and 0.59 v.s. 0.54 for rare variants), though we know that 1000G contains far fewer 

variants (~80M v.s. ~3000M) and fewer individuals (~2.5K v.s. ~100K) than TOPMed. It 

doesn’t imply that 1000G imputation is superior to TOPMed: the statistics shown in Figure 

2A, B and Table S6 are not the true imputation quality, but the performance of the estimated 

imputation quality from the reference panel. Therefore, it only means that the imputation 

quality estimates from a larger reference panel (TOPMed) is worse than that from a smaller 

one (1000G). To better explain this phenomenon, we plotted Rsq and MagicalRsq against 

true R2 respectively, for both 1000G and TOPMed imputed data (Figure 2C), and also 

plotted 1000G against TOPMed, for true R2 and Rsq separately (Figure S4), for low 

frequency variants on chromosome 13. We observe that TOPMed true R2 can still be larger 

than 1000G true R2, and TOPMed Rsq are also larger than 1000G Rsq. One potential 

explanation is that, the larger the reference panel in terms of individuals, the more 

complicated haplotypes we will likely observe. This may cause the imputation engine to be 

less confident about the imputed results, which may lead to under-estimate of the true 

imputation quality. Figure 2C showed clearly that TOPMed Rsq tends to more severely 

under-estimate the true imputation quality than 1000G, making MagicalRsq more desirable 

with larger reference panels. 

 



Investigation of model trained in small regions for common variants under 

Scenario 1 

 

We found that MagicalRsq models trained with variants in a small 20MB region perform 

uniformly reasonably well for low frequency and rare variants, but not for common variants 

(Figure S6), and we hypothesized that the large fluctuation of Rsq performance for common 

variants may contribute to this phenomenon. For example, on chromosome 15, the squared 

Pearson correlation between Rsq and true R2 could reach 0.8, while on chromosome 5, it is 

only ~0.4 (Figure S6). Further investigation showed that such fluctuation was largely driven 

by the spanning range of the imputation qualities for variants on different chromosomes 

(Figure S5). For instance, for the vast majority of variants on chromosome 5, Rsq and true 

R2 are over 0.6; in contrast, variants on chromosome 15 have Rsq and true R2 spanning the 

entire 0 to 1 range. These patterns may hinder the generalizability of MagicalRsq models 

trained with common variants from random small regions to the genome. 

 

Mix-and-match of reference panel under Scenario 2 

 

Same as in scenario 1, we also want to investigate whether MagicalRsq models are similarly 

amenable to mix-and-match under scenario 2, thus we built MagicalRsq models using 

1000G-imputed data in training (i.e., the UKB AFR 1,000 individuals) and applied to 

TOPMed-imputed data in testing (i.e., the remaining 2,960 UKB AFR individuals) 

(experiment 11), and vice versa (experiment 12). The evaluation and comparison are 

restricted to shared variants between TOPMed-imputed and 1000G-imputed data.  

 

To investigate whether MagicalRsq models are similarly robust to different reference panels 

under scenario 2, we built mix-and-match MagicalRsq models leveraging UKB AFR data 

(Methods). We found, similar to observations under scenario 1, that MagicalRsq 

outperforms Rsq in all cases except for applying 1000G-based models to rare variants 

imputed using TOPMed (Table S9). As discussed previously, a likely explanation is that 

TOPMed contains more extremely rare variants that are therefore harder to impute. When 

excluding variants with MAF < 0.1%, as expected, all MagicalRsq models outperform Rsq 

(Table S9), though "matched model" would improve Rsq performance better than mis-

matched ones. For example, when testing on TOPMed imputed data, applying TOPMed-

imputation-based training model would improve the squared Pearson correlation with true R2 

by 36.3% for common variants, while applying 1000G-imputation-based model would only 

increase the squared Pearson correlation by 19.7%. We further plotted true R2 against Rsq 

or MagicalRsq trained with both matched- and mismatched- models for all the variants by 

the three MAF categories, to better compare the performances of the quality metrics (Figure 

3C, Figure S10). We note that Figure 3C shows a clear advantage of 1000G-trained 

MagicalRsq for TOPMed-imputed data (the last sub-figure on the right), compared to Rsq 

(the first sub-figure on the right). However, the squared Pearson correlations with true R2 for 

1000G-trained MagicalRsq and Rsq have minimal differences: 1000G-trained MagicalRsq is 

only 1.35% superior to Rsq (Table S9). This evidence shows that the squared Pearson 

correlation with true R2 has some drawbacks for evaluating the imputation quality. 

 

Other machine learning methods 

 



We also compared the performance of MagicalRsq to other machine learning methods 

enhanced imputation quality estimation metrics. Specifically, we first adopted a simple Deep 

Neural Network (DNN) with two hidden layers with the rectified linear activation function 

(ReLU), using the DeepTables library in Python. For each hidden layer, we assigned 256 

units, specified the dropout rate as 0.3, applied batch normalization and set early stop 

patience to be 30. We also considered an ensemble method, averaging the output from 

three models, a two-hidden-layer DNN (300 units each layer, dropout rate of 0.3 with batch 

normalization), a two-layer Deep Cross Network (DCN) 11, and a one-layer feature machine 

(DeepFM) 12 . 

 

Using the CF 2k cohorts as an example, we found that MagicalRsq outperforms both the two 

DNN models (Table S13) for every MAF category. For example, MagicalRsq was able to 

improve the squared Pearson correlation by 48.22% for common variants, while the 

improvements using DNN and DNN II were 35.77% and 38.58%, respectively.  
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Supplemental Figures 

 

 

 

 
Figure S1. Feature importance for MagicalRsq models in Scenario 1 Experiment 1. The 

standard Rsq weighs the highest and is about 80% importance for all the three categories. 

European allele count (AC) is the second most important feature for common variants, but 

African AC is the second most important feature for low frequency and rare variants. 
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Figure S2. Performance comparison of MagicalRsq and Rsq in terms of RMSE and 

MAE, for Scenario 1 Experiment 1. Imputation was performed using 1000G reference 

panel, and MagicalRsq was calculated from model trained on CF 2k even number 

chromosomes which was also imputed using 1000G reference panel. 

 

 

 

 

 
 

Figure S3. Performance comparison of MagicalRsq and Rsq in terms of RMSE and 

MAE, for Scenario 1 Experiment 2. Imputation was performed using TOPMed freeze 8 

reference panel, and MagicalRsq was calculated from model trained on CF 2k even number 

chromosomes which was also imputed using TOPMed freeze 8 reference panel. 
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Figure S4. Comparison between 1000G and TOPMed imputation. We plotted 1000G true 

R2 against TOPMed true R2, and 1000G Rsq against TOPMed Rsq from imputation 1 and 2. 

Tough the squared Pearson correlation between TOPMed Rsq and TOPMed true R2 is 

smllaer than 1000G, TOPMed imputation quality (and the estimates Rsq) are still better than 

1000G. 

 

 

 

 

 
Figure S5. Rsq v.s. True R2 for common variants on chr5 and chr15 for TOPMed 

imputed CF 2k cohort. We observed the fluctuation of Rsq performance for different 

chromosomes across the genome for CF 2k cohort, and this is likely due to the different 

spanning range of Rsq. Larger range would lead to higher Pearson correlation.  
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Figure S6. Scenario 1 Experiment 5: training models using variants in a 20MB region 

and testing on all other chromosomes for CF 2k samples with TOPMed imputation. 

Performance comparison between Rsq and MagicalRsq in terms of squared Pearson 

correlation with true R2 for models trained with variants in (A) CFTR +/- 10MB region; (B) 

chr10:80-100MB region; (C) chr20:20-40MB region. 

 



 
Figure S7. Scenario 1 Experiment 6: training models using variants in a 20MB region 

and testing on all other chromosomes for CF 2k samples with 1000G imputation. 

Performance comparison between Rsq and MagicalRsq in terms of squared Pearson 

correlation with true R2 for models trained with variants in (A) CFTR +/- 10MB region; (B) 

chr10:80-100MB region; (C) chr20:20-40MB region. 

 

 

 

 

 

 

 

 

 



 
 

 

Figure S8. Scenario 1 Experiment 7: training models using TOPMed imputed exonic 

variants from CF 2k samples and testing on TOPMed imputed variants in other genomic 

regions of the same CF 2k samples. Performance comparison between Rsq and MagicalRsq 

in terms of (A) squared Pearson correlation with true R2; (B) RMSE; (C) MAE. 

 

 

 



 
 

Figure S9. Scenario 2 Experiment 8: training models using TOPMed imputed variants from 

CF 2k samples and testing on TOPMed imputed all chromosomes of independent CF 3k 

samples. Performance comparison between Rsq and MagicalRsq in terms of (A) squared 

Pearson correlation with true R2; (B) RMSE; (C) MAE. 

 

 

 

 

 

 

 



 
 

Figure S10. Scenario 2 Experiment 9-12: training models using 1000 UKB AFR 

samples and testing on 2960 independent UKB AFR samples, for all variants with 

WES available. Smooth scatter plot showing Rsq or MagicalRsq (X-axis) calculated from 

both matched- (second row) and mis-matched- (third row) models against true R2 (Y-axis) for 

both 1000G- (left) and TOPMed- (right) based imputation, for (A) common variants; (B) rare 

variants with MAF > 0.001 (corresponding to MAC >= 6) with WES available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

 

Figure S11. Scenario 2 Experiment 13: training models using TOPMed imputed variants of 

1,000 UKB SAS samples and testing on TOPMed imputed variants (across all 

chromosomes) of an independent set of UKB SAS 3,436 samples. Performance comparison 

between Rsq and MagicalRsq in terms of (A) squared Pearson correlation with true R2; (B) 

RMSE; (C) MAE. 

 



 
Figure S12. Scenario 2 Experiment 14: training models using randomly selected 

variants varying from 10k to 1000k from CF 2k samples, and testing on independent 

CF 3k samples. We repeated 5 times for each number of variants and evaluated 

MagicalRsq and Rsq performance using (A) RMSE and (B) MAE. The red dashed line 

denotes the performance of standard Rsq. 
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Figure S13. CPU time in minutes and memory usage in GB for MagicalRsq model 

training with different numbers of variants, separately for three MAF categories.  
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