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Liability-scale heritability estimation for biobank
studies of low-prevalence disease

Sven E. Ojavee,1,2 Zoltan Kutalik,1,2,3 and Matthew R. Robinson4,*
Summary
Theory for liability-scale models of the underlying genetic basis of complex disease provides an important way to interpret,

compare, and understand results generated from biological studies. In particular, through estimation of the liability-scale heritabil-

ity (LSH), liability models facilitate an understanding and comparison of the relative importance of genetic and environmental risk

factors that shape different clinically important disease outcomes. Increasingly, large-scale biobank studies that link genetic infor-

mation to electronic health records, containing hundreds of disease diagnosis indicators that mostly occur infrequently within the

sample, are becoming available. Here, we propose an extension of the existing liability-scale model theory suitable for estimating

LSH in biobank studies of low-prevalence disease. In a simulation study, we find that our derived expression yields lower mean

square error (MSE) and is less sensitive to prevalence misspecification as compared to previous transformations for diseases with

% 2% population prevalence and LSH of % 0:45, especially if the biobank sample prevalence is less than that of the wider popu-

lation. Applying our expression to 13 diagnostic outcomes of %3% prevalence in the UK Biobank study revealed important dif-

ferences in LSH obtained from the different theoretical expressions that impact the conclusions made when comparing LSH across

disease outcomes. This demonstrates the importance of careful consideration for estimation and prediction of low-prevalence

disease outcomes and facilitates improved inference of the underlying genetic basis of %2% population prevalence diseases, espe-

cially where biobank sample ascertainment results in a healthier sample population.
Introduction

Genetically informed deep-phenotyped biobanks are an

increasingly available important research resource. From

these data, estimates of SNP heritability, h2
SNP, can be ob-

tained, a quantity describing the proportion of phenotypic

variance attributable to the genetic marker data.1 Linked

electronic health records provide a large number of binary,

presence/absence disease diagnosis indicators and it is

important to be able to compare h2
SNP estimates in order

to infer the relative importance of genetic and environ-

mental risk factors that shape different clinically impor-

tant disease outcomes.

To better describe the genetics of such binary traits, the

notion of liability-scale heritability (LSH) has been coined2

to reflect the underlying continuous nature of additive ge-

netic effects. Falconer defines liability to a disease as ‘‘an

underlying gradation of some attribute immediately

related to the causation of the disease,’’2 however in prac-

tice one instead observes the binary disease trait defined

as the liability exceeding or not exceeding some threshold.

It is possible to estimate the heritability on the observed bi-

nary scale, however as this will be dependent on the dis-

ease prevalence, it is preferred to transform the observed

scale heritability into LSH. Therefore, LSH is defined as

the ratio of genetic variance and the total phenotypic vari-

ance on the previously described latent liability scale. An
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initial derivation for LSH was given by Alan Robertson in

the Appendix of Dempster and Lerner3 for the scenario

where the case-control ratio was the same in the sample

and the population. Lee et al.4 proposed an extended deri-

vation to account for the fact that, in a case-control study,

cases tend to be over-represented compared to the popula-

tion prevalence, arriving at the following expression for

the LSH:

h2
liab ¼ h2

obs

Kð1 � KÞ
4ðF�1ðKÞÞ2

Kð1 � KÞ
Pð1 � PÞ ; (Equation 1)

where h2
obs is the observed scale heritability, K is the

prevalence of the binary trait in the full population,

P is the prevalence of the binary trait in the sampled

subpopulation, and the denominator of the first fraction

is the squared probability density function of the

standard normal distribution evaluated at the Kth

quantile of the inverse cumulative density function

of the standard normal distribution. This expression

was derived under the assumption that sample preva-

lence is greater than or equal to population prevalence

(PRK).

The problem of accurately estimating LSH was

further investigated by Golan et al.,5 who noted that in

the common setting of sample prevalence exceeding

population prevalence (P > K), Equation 1 applied on

REML estimates underestimates LSH. To account for
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this, they proposed phenotype correlation-genotype cor-

relation (PCGC) regression, which generalizes a

Haseman-Elston regression and yields unbiased estimates

of LSH in simulations. In many settings, especially if

there are individual-level data available and the sole

goal of the analysis is to estimate the LSH, it is recom-

mended to use PCGC or its extension to summary statis-

tic data.6 However, often summary-level marginal SNP

regression coefficients from biobank studies are used in

methods such as LD score regression7 or high-definition

likelihood8 to indirectly infer h2
SNP. Furthermore, the

observed scale heritability estimate could be a hyper-

parameter embedded into effect size estimation

(BayesRR-RC9) or GREML10 is used to directly infer the

observed scale heritability. Therefore, it remains impor-

tant to facilitate the transformation of observed scaled

heritability into LSH.

The structure of the biobank datasets creates additional

problems. Firstly, they often represent a subset of the

population that often is healthier, younger, or has higher

socio-economic background than the average popula-

tion. Because of this, many, if not most, binary disease

traits have a lower sample prevalence compared to the

population prevalence (P < K). The classical expression

in Equation 1 has been derived and tested for situations

where PRK, and this can result in estimates with in-

flated variance for situations where P < K. Secondly,

the disease prevalence in biobank-scale studies can be

small and measurement errors of such a small quantity

could greatly amplify the variance of the LSH estimate.

In practice, as biobanks include people born during

different decades, cohorts have usually not reached the

end of their lifespan, and as disease prevalences change

across time, it seems appropriate to accompany the prev-

alence estimates with error estimates when arriving at an

LSH estimate. Furthermore, although Equation 1 has

solid theoretical justification, it does not guarantee that

the LSH estimate will be lower than or equal to 1, and

even if the LSH estimate is bounded, it can still have

high variance in the biobank setting, especially if the

model is imperfectly specified or there are greater devia-

tions away from the assumption of the existence of

latent genetic liability.

Here, we propose an alternative expression to address

some of those issues. Firstly, the suggested expression

will guarantee that the LSH estimate will be bounded

between 0 and 1, and secondly, we demonstrate that for

low prevalences (K%0:02), our formula results in lower

mean square error (MSE) compared to the classical expres-

sion. Thirdly, we show that our formula limits the infla-

tion in MSE if we take into account the uncertainty in

the prevalence estimation. We further provide an

adjusted expression for ascertained samples. Although

the suggested expressions can result in a small

downwards bias, we argue that for many biobank-based

studies for which P%1:5K and K%0:02, this still is
2010 The American Journal of Human Genetics 109, 2009–2017, Nov
preferred to inhibit the emergence of unrealistic estimates

due to large MSE. Finally, we apply our proposed expres-

sions to 13 disease outcomes with low sample prevalence

in the UK Biobank and we compare the LSH estimates ob-

tained by our expression to those of Equation 1. We also

provide a shiny app, https://medical-genomics-group.

shinyapps.io/h2liab/.
Material and methods

Derivation of the expression
Suppose that we have a binary trait with a frequency of K in the

population, and a frequency of P in the sample is here equal to

K. Suppose that a liability model holds meaning that there exists

a latent liability l that is defined as a sum of genetic (g) and error

(e) components, l ¼ g þ e. We assume that l has a variance of 1

and that g and e come from normal distributions: g � Nð0;h2
l Þ,

e � Nð0;1 � h2
l Þ, where h2

l is the LSH. Then we assume that the bi-

nary disease trait y is associated with l such that y ¼ 1 if l > t and

y ¼ 0 if l% t, where t is some liability-scale threshold defining the

required liability value for disease occurrence, and t ¼ F�1ð1 �
KÞ.
We first write the expression of how is the observed scale

heritability associated with LSH. As shown by Dempster and

Lerner,3

h2
o ¼ h2

l 4ðF�1ðKÞÞ2
Kð1 � KÞ ; (Equation 2)

where h2
o is the observed scale heritability. We recognize that

the numerator represents the observed scale genetic variance

and the denominator represents the total observed scale

phenotypic variance. Our idea is to replace the total pheno-

typic variance estimate Kð1 �KÞ with the sum of genetic and

error variances and that by definition will guarantee that

the LSH estimate remains bounded. Thus, we need to rewrite

the total phenotypic variance by using the error variance

EðVarðyjcþzgÞÞ:

VarðyÞ ¼ h2
l 4
�
F�1ðKÞ�2 þ EðVarðyjcþ zgÞÞ: (Equation 3)

We find (see supplemental information) that the error variance

is expressed as

EðVarðyjcþ zgÞÞ ¼ K � ~F
�
F�1ðKÞ;F�1ðKÞ;h2

l

�
; (Equation 4)

where ~Fðx1; x2; rÞ is the cumulative distribution function of a

bivariate normal distribution with a mean of 0, variance of 1,

and correlation r evaluated at ðx1; x2Þ. That gives us the expression
for observed scale heritability

h2
o ¼ h2

l 4ðF�1ðKÞÞ2
h2
l 4ðF�1ðKÞÞ2 þ K � ~F

�
F�1ðKÞ;F�1ðKÞ;h2

l

� ¼ u
�
h2
l

�
:

(Equation 5)

It is impossible to find the closed expression for h2
l from the last

expression, however, we can still plug in values for K and h2
o and

solve Equation 5 numerically for h2
l .

We derive the variance for h2
l from the last expression by using

the delta method. Suppose that we know Varðh2
l Þ and we would

like to find Varðh2
o Þ. For this, we need to differentiate Equation 5

with respect to h2
l and that results in
ember 3, 2022
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(Equation 6)
where we have denoted F�1ðKÞ ¼ � t (negative of the disease

defining threshold), ~F
0ð� t; � t;h2

l Þ is the partial derivative of

~Fð� t; � t;h2
l Þ with respect to h2

l , and as demonstrated by Drezner

and Wesolowsky,11

~F
0�� t; � t;h2

l

� ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � �

h2
l

�2q exp

 
� t2

1þ h2
l

!
:

(Equation 7)
d

dh2
l

v
�
h2
l

�
¼ d

dh2
l

0B@ h2
l 4ð� tÞ2Pð1 � PÞh

h2
l 4ð� tÞ2 þ K � ~F

�
� t; � t;h2

l

�i2
1CA

¼ 4ð� tÞ2Pð1 � PÞ
2h2

l
~F
0�� t; � t;h2

l

�
� 4ð� tÞ2h2

l þ K � ~F
�
� t; � t;h2

l

�
�
4ð� tÞ2h2

l þ K � ~F
�
� t; � t;h2

l

��3 ;

(Equation 12)
The variance can thus be expressed from the delta method as

Var
�
h2
o

� ¼ Var
�
u
�
h2
l

��
z

 
d

dh2
l

u
�
h2
l

�!2

Var
�
h2
l

�
(Equation 8)

and conversely for the h2
l as

Var
�
h2
l

�
z

 
d

dh2
l

u
�
h2
l

�!�2

Var
�
h2
o

�
: (Equation 9)

Adjustment for ascertained samples
Knowing that it is possible to write the total phenotypic variance

as a sum of genetic and error variances h2
l 4ðF�1ðKÞÞ2 þ K � ~F

ðF�1ðKÞ;F�1ðKÞ;h2
l Þ, we can plug in the Equation 1 to replace

the term Kð1 � KÞ. That gives us the expression

h2
l ¼ h2

o

�
h2
l 4ðF�1ðKÞÞ2 þ K � ~F

�
F�1ðKÞ;F�1ðKÞ;h2

l

��2
4ðF�1ðKÞÞ2Pð1 � PÞ ;

(Equation 10)

and we can solve this for h2
l to get an estimate of liability-scale her-

itability under stronger ascertainment. Similar to as with the pre-

vious case of no ascertainment, we will derive an expression for
The American Jour
the variance of this estimator by using the delta method. From

Equation 10, we can write that

h2
o ¼ v

�
h2
l

� ¼ h2
l 4ð� tÞ2Pð1 � PÞh

h2
l 4ð� tÞ2 þ K � ~F

�� t; � t;h2
l

�i2:
(Equation 11)

The derivative of vðh2
l Þ is
where the derivative of ~F
0ð� t; � t;h2

l Þ is given in Equation 7.

From the delta method, we can thus write the expression for

Varðh2
o Þ exactly the same way as shown in Equations 8 and 9 by

simply replacing uðh2
l Þ with vðh2

l Þ.

Results

Simulation study

We executed two simulation settings. Simulation 1

followed the strategy of Lee et al.,4 and we used it to

demonstrate the implications of the uncertainty of

prevalence estimates to the outcome in the absence of

ascertainment. There, we used a sample size of 20,000

and we created a low level of relatedness by simulating in-

dividuals in independent batches of 100 with genetic

values (g) drawn from a multivariate normal distribution

given a 1003100 covariance matrix with off-diagonal

elements in the covariance matrix that were 0:05h2
l and

h2
l for the diagonals. Error term e was simulated from a

normal distribution Nð0; s2e Þ such that the variance of the

liability l ¼ g þ ewould beVarðlÞ ¼ h2
l þ s2e ¼ 1. The cor-

responding observed binary phenotype was defined as
nal of Human Genetics 109, 2009–2017, November 3, 2022 2011



A

B

Figure 1. MSE and bias of previous and proposed formula in the case of no ascertainment and no measurement error for the prev-
alence across different values for the liability-scale heritability
(A) The proposed estimate yields lower MSE in the settings where the prevalence is low (K < 0:01). The benefit of using the proposed
formula decreases as the underlying liability-scale heritability increases, stemming from (B) the small bias introduced in the proposed
estimate that is also bounding the estimate below 1. For example, for moderate size liability-scale heritability h2

l ¼ 0:45, the relative
downward bias is 4%. For datasets created under simulation scenario 1, the ribbon around the line indicates the 95% CI via a bootstrap-
ping procedure with 250 replicates.
y ¼
�
0; if l < F�1ð1 � KÞ
1; if lRF�1ð1 � KÞ : (Equation 13)

We varied the true LSH from 0.15 to 0.65 with a step of

0.1, and we varied prevalence between K ¼ 0.001, 0.005,

0.01, 0.05, 0.1, 0.5. In addition, to mimic the potential un-

certainty coming from the heterogeneity across estimates,

at each step when estimating the LSH, we drew the value

for bK from a normal distribution NðK; ð0:1KÞ2Þ yielding a

coefficient of variation of 10%. The number of simulation

replicates was 2,000.

For low-prevalence traits, our proposed formula results

in amore accurate result in terms ofMSE inmany common

settings where the LSH is smaller than 0.55 and the preva-

lence less than 2% (Figure 1A). However, we note caution

that if the underlying LSH is higher than 0.45, then bound-

ing the LSH estimate below 1 results in a small bias that be-

comes more noticeable with higher values of heritability

(Figure 1B), but we expect this to be less common for

real-world disease outcomes. For example, at a liability-

scale heritability of 0.45 and disease prevalence of 0.001,

the relative downwards bias is 4%. Using an inaccurately

measured prevalence results in increasedMSE, and the pro-
2012 The American Journal of Human Genetics 109, 2009–2017, Nov
posed formula is more robust to this kind of misspecifica-

tion, as it generally yields a lower MSE increase across all

scenarios (Figure 2).

Simulation 2 examined a more realistic scenario simi-

larly to Golan et al.5 The final sample size was again

20,000, but here we created the genetic values by using

SNP data of 10,000 markers. For each of the 10,000 SNPs,

we simulated the SNP minor allele frequency (MAF) from

a uniform distribution Uð0:05;0:5Þ, and the minor allele

counts xij for individual i at SNP j were simulated from a

binomial distribution Bð2;MAFjÞ. The effect size for each

SNP j was drawn from a normal distribution such that

bj � N
�
0;

h2
l

10;000

�
. The genetic value for an individual i gi

was calculated as gi ¼ x0ib and the error term ei was simu-

lated from Nð0; s2e Þ such that the variance of the liability

li ¼ gi þ ei would be VarðliÞ ¼ h2
l þ s2e ¼ 1. The liability-

scale phenotype li was translated into binary phenotype

yi as shown in Equation 13. To create suitably ascertained

samples, we first simulated a slightly larger population of
~Nð > 20; 000) that has a case prevalence (in population)

of K, and then we randomly selected N,P cases and

N,ð1 �PÞ controls to achieve case prevalence (in sample)
ember 3, 2022
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Figure 2. Increase in MSE due to measurement error of prevalence
Using prevalence that has not been completely accurately measured results in an increase in the mean squared error. However, the pro-
posed formula is more robust to this kind of misspecification, as it yields a lower MSE increase across all scenarios. For datasets created
under simulation scenario 1, the error bar indicates the 95% CI via a bootstrapping procedure with 250 replicates.
of P. We used GREML10 from GCTA12 to estimate the

observed scale heritability that was transformed to the lia-

bility scale by either using the classical expression (Equa-

tion 1), proposed adjusted (Equation 10), or proposed un-

adjusted expression (Equation 5). Additionally, we

compared the GREML results with the summary statistic

version of PCGC6 that directly estimates the LSH. We

used the same values for heritability, we varied the K be-

tween 0.005, 0.01, 0.02, and 0.05, and we used P as a factor

of 0.25, 0.5, 0.75, 0.9, 1, 1.25, 1.5, 2, and 4 of the K value.

As a result of the increased computational complexity, we

resorted to 100 simulation replicates.

Here, we find the GREML along with proposed expression

for unascertained (Equation 5) and the proposed expression

for ascertained samples (Equation 10) to result in lower MSE

(Figure 3A, Data S1) at lower population prevalence (K%

0:02) and with moderate or low LSH values (LSH % 0:45)

as compared to the classical expression of Equation 1,

supporting the results of the first simulation setting. Impor-

tantly, the proposed expressions of Equation 5 and Equation

10 can result in a small downwards bias for the scenarios

with higher LSH (Figure 3B, Data S1). The proposed adjusted

expression keeps bias similar across different ascertainment

levels, whereas the bias from the proposed unadjusted

expression changes linearly with downwards bias with P <

K andupwards biaswithP > K scenario. The PCGCmethod
The American Jour
works well in situations where the sample prevalence ex-

ceeds the population prevalence, giving virtually unbiased

results but resulting in greatly increased MSE values if the

population prevalence is small and P%K. Given the simula-

tion results, we propose that for biobank studies of diseases

with%2%populationprevalence, especiallywhere the sam-

pleprevalence is less thanthatof thewiderpopulation,Equa-

tion 5 or Equation 10 for moderately ascertained samples

should be preferred over Equation 1 or PCGC. Although

this can result in a small downwards bias, we believe that

giving a slightly more conservative but more accurate

estimate is useful for characterizing low-prevalence traits.

Empirical data analysis

We then analyzed 13 ICD-10 binary disease outcomes with

%3% sample prevalence in UK Biobank (Table 1) with our

recently proposedGMRM software to obtain observed scale

heritability estimates, accounting for marker effect size dif-

ferences across SNPs of different minor allele frequencies,

linkage disequilibrium, and functional annotation,9,13 by

using 2,174,071 SNP markers and 382,390 individuals of

SNP marker relatedness (%0:05). To attempt to control for

environmental confounding before analysis, we adjusted

for the leading 20 principal components as supplied by

the UK Biobank, sex as a binary factor, age as a linear and

quadratic term, east and north coordinate of residence,
nal of Human Genetics 109, 2009–2017, November 3, 2022 2013
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Figure 3. MSE and bias given different values of liability-scale heritability, population prevalence, and sample prevalence
Results about MSE and bias are shown in (A) and (B), respectively. We observe that for the scenarios of small to moderate heritability
(h2 < 0:5), small population prevalence (K%0:02) and sample prevalence smaller or slightly larger than the population prevalence
(P%1:25K), it is preferred to use our proposed expression, as it gives a lower MSE while not increasing the bias too much. In the case
of ascertainment, we suggest using the proposed expression with the adjustment. We evaluated the observed scale heritability using
GREML and then transformed it to the liability scale either by using the previous expression from Lee et al., by our proposed expression
without adjustment for ascertainment, and by our proposed adjustment with ascertainment adjustment. In addition, we directly esti-
mated the liability-scale heritability by using the PCGC method with summary statistics. Datasets were created under simulation sce-
nario 2, and the number of simulation replicates was 100. 95% CI for MSE and bias values are provided in Data S1.
recruitment center, and genotype batch. We estimated the

posterior mean observed scale heritability from the last

1,500 sampling iterations after stabilization of the running

mean and then compared the liability-scale estimates pro-

duced with either the classical expression of Equation 1 or

our proposed expressions of Equation 5 and Equation 10

for unascertained and ascertained samples, respectively.
2014 The American Journal of Human Genetics 109, 2009–2017, Nov
Liability-scale heritability estimates obtained by Equa-

tion 5 or Equation 10 were lower than the classical expres-

sion of Equation 1 (Figure 4). For disease outcomes where

we assume that the UK Biobank sample prevalence is iden-

tical to the wider population prevalence, the estimates

from either equation are in agreement (Figure 4). However,

once the sample prevalence was %1%, and when it was
ember 3, 2022



Table 1. 13 selected disease outcomes recorded in the UK Biobank of <3% sample prevalence with higher prevalence in the general UK
population

Disease
ICD-10
code

Sample
prevalence

Estimated
population
prevalence h2

obs 95% CI
Proposed SNP-h2

liab
95% CI

Classic SNP-h2
liab

95% CI
Reduction
in 95% CI

Carpal tunnel
syndrome

G56 2.8% 5.0%14 0.038 (0.031, 0.044) 0.277 (0.232, 0.316) 0.291 (0.240, 0.338) 14%

Chronic obstructive
pulmonary disease

J44 2.6% 4.6%15 0.036 (0.029, 0.043) 0.276 (0.227, 0.320) 0.291 (0.235, 0.344) 15%

Oesophagitis K20 2.5% 2.5%* 0.026 (0.020, 0.032) 0.180 (0.138, 0.220) 0.182 (0.139, 0.223) 2%

Iron deficient
anaemia

D50 2.4% 5.5%16 0.021 (0.015, 0.027) 0.188 (0.140, 0.235) 0.192 (0.141, 0.244) 8%

Atherosclerosis I70-I79 2.3% 2.3%* 0.025 (0.020, 0.031) 0.191 (0.153, 0.234) 0.193 (0.154, 0.239) 5%

Osteoporosis M80-M82 2.1% 5.1%17 0.028 (0.022, 0.034) 0.270 (0.220, 0.320) 0.284 (0.227, 0.344) 15%

Cellulitis L03 2.1% 2.1%* 0.023 (0.017, 0.029) 0.186 (0.141, 0.229) 0.188 (0.141, 0.233) 4%

Endometriosis N80 1.8% 10.0%18 0.043 (0.034, 0.051) 0.528 (0.445, 0.594) 0.634 (0.504, 0.758) 41%

Acute renal failure N17 1.8% 1.8%* 0.022 (0.018, 0.028) 0.197 (0.156, 0.248) 0.199 (0.157, 0.253) 4%

Glaucoma H40 1.4% 2.5%19 0.030 (0.025, 0.037) 0.341 (0.286, 0.399) 0.370 (0.302, 0.448) 23%

Macular
degeneration

H35.3 0.8% 3.4%20 0.025 (0.020, 0.032) 0.508 (0.428, 0.584) 0.624 (0.491, 0.783) 47%

Hyperthyroidism E05 0.5% 0.8%21 0.027 (0.022, 0.032) 0.536 (0.466, 0.596) 0.656 (0.535, 0.786) 48%

Hypertensive
renal disease

I12 0.4% 0.4%* 0.027 (0.021, 0.032) 0.679 (0.581, 0.743) 0.817 (0.650, 0.961) 48%

Columns of the table give the commonly used disease name, the ICD-10 code, the UK Biobank sample prevalence, the estimated UK population prevalence with
the corresponding reference (‘‘*’’ denotes that we used the UK Biobank prevalence as a result of unavailability or vast heterogeneity in the estimates), the posterior
mean 0/1 observed scale single-nucleotide polymorphism (SNP) heritability with 95% credible interval, the posterior mean liability-scale SNP heritability with 95%
credible interval via the proposed transformation, the posterior mean liability-scale SNP heritability with 95% credible interval via the classic transformation, and
the reduction in the width of the 95% CI via the proposed transformation
lower than that estimated in the wider population from

which it was drawn, we observe substantially lower liabil-

ity-scale estimates from Equation 5 or Equation 10

(Figure 4). For example, LSH estimate differed by 0.11 for

endometriosis and 0.12 for macular degeneration. Even

though we assumed equal sample and population preva-

lence for hypertensive renal disease, we still get a difference

of 0.14 between the classical and proposed estimates. This

is accompanied by a narrower 95% CI for the proposed es-

timate for each of the analyzed traits (Table 1) with the

reduction in CI ranging from 2% for oesophagitis to 48%

for hypertensive renal disease (15% of median reduction

in 95% CI length). These differences influence the infer-

ence made, as Equation 10 estimates a borderline signifi-

cant difference of LSH between hypertensive renal disease

and macular degeneration, in contrast to the clearly over-

lapping credible interval that would be obtained from

Equation 1 (Figure 4). Therefore, the lower MSE of our pro-

posed estimate across many common settings translates to

real-world differences in inference for low-prevalence dis-

eases within biobank studies.
Discussion

Using biobank-scale datasets to infer the heritability of rare

traits is increasingly important because of the general diffi-
The American Jour
culties of collecting case-control samples for rare diseases.

However, our results demonstrate the importance of treat-

ing low prevalence traits with extra care. Moreover, the

advantage of using our proposed estimate is even greater

if we take into account the uncertainty or heterogeneity

in the lifetime prevalence estimates. Heterogeneity in the

lifetime prevalence estimates is very common and stems

from regional differences, differences in the time of the

study, methodology, usage of subpopulations, and that

often the lifetime prevalence estimate is simply unavai-

lable or some proxies are used. All this amounts to a

considerable amount of uncertainty, and unfortunately,

the most common way to handle this is to simply pick

one of the prevalence estimates and not take into account

the uncertainty. Our proposed approach limits the error

that stems from uncertainty, and we argue that future an-

alyses using lifetime population prevalence should reflect

the uncertainty in the estimates.

The analysis of empirical data in UK Biobank calculating

SNP heritability demonstrated that in many settings the

classical expression could lead to likely, if not clear, overes-

timates. For example, for hypertensive renal disease, the

classic formula gave an LSH estimate of 0.82 (95% CI:

0.65, 0.96), whereas the proposed formula estimated an

LSH of 0.68 (95% CI: 0.58, 0.74). For a similar trait of

chronic kidney disease, the heritability values have been

estimated between 0.30 to 0.75,22 suggesting that the
nal of Human Genetics 109, 2009–2017, November 3, 2022 2015
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Figure 4. Comparison of previous and proposed liability-scale
heritability estimates with 95% CI for 13 ICD-10 binary disease
outcomes with %3% sample prevalence in the UK Biobank
Table 1 gives the full disease names, codes, sample prevalence,
population prevalence, observed-scale estimates, and liability-
scale conversions. We analyzed the 13 traits with our recently
proposed GMRM software to obtain observed scale heritability
estimates, accounting for marker effect size differences across
SNPs of different minor allele frequency, linkage disequilibrium,
and functional annotation in 382,390 unrelated UK Biobank
individuals. We estimated the posterior mean observed scale heri-
tability and plot the liability-scale estimates produced with either
the classical expression of Equation 1 on the x axis or our proposed
expressions of Equation 5 and Equation 10 on the y axis.
classical estimate might be unrealistically high. We also

observe a similar effect for macular degeneration where

the classical formula also yields a likely overestimate of

0.62 (95% CI: 0.49, 0.78), whereas the literature suggests

SNP heritability of 0.47 that had been calculated on a larger

case count.23 Such high estimates in empirical data are

likely to be driven by greater estimator variance, which is

still problematic. Even if, on average, the bias is small or

non-existing with the previous estimator, a high estimator

variance can yield estimates that greatly miss the actual

value. However, it should be acknowledged that it is not

fully clear whether the observed differences in empirical

data analysis are from improvement in accuracy or differ-

ences in bias under potential model violations. Instead, it

is likely to be a combination of the two, as the proposed

expression has a narrower credible interval and overlap-

ping yet ranked confidence intervals between the two

methods do not prove the existence nor eliminate the pos-

sibility of bias. In conclusion, we believe that no one

model is best for every scenario and that models can

perform suboptimally under certain conditions. Therefore,

LSH estimation would benefit from careful consideration

of themodeling assumptions, and different LSH estimators

could be compared within sensitivity analysis to achieve a

more reliable understanding of the estimate.

In general, there seems to be a switch point in prevalence

after which the classical expression (Equation 1) tends to
2016 The American Journal of Human Genetics 109, 2009–2017, Nov
become more effective. That is probably because Kð1 �KÞ
is a good estimator for the total phenotypic variance

with high K values (as in Equation 2), but with small K

values, that product Kð1 �KÞ becomes tiny and the expres-

sions using the inverse 1
Kð1�KÞ will become highly sensitive

to the observed scale heritability estimation error. Our pro-

posed expressions make the total phenotypic variance

dependent on the estimated observed genetic variance

and thus control better for the mismatch between the total

phenotypic and genotypic variances in the classical

expression.

There are important caveats to our proposed formulas.

Even though we manage to effectively constrain the

heritability between 0 and 1, it also introduces a small

downward bias that becomes more visible with higher

values of prevalence and true liability-scale heritability

(>0.6). Nevertheless, we argue that this will most likely be

the exception for real-world disease outcomes. Any trans-

formation of scale will be an approximation made under a

set of theoretical assumptions, andour aimhere is to simply

provide an approach that facilitates comparisons of the

proportion of variance attributable to the SNP markers for

low-prevalence diseases with as low MSE as possible. We

additionally find that for the scenario with stronger case

oversampling (P > 1:5K), moderate to high LSH and popu-

lation prevalence above 2% our proposed formulas do not

give a more precise estimate in terms of MSE compared to

the previous classical Equation 1 or PCGC,6 and in these

cases, the user could use other methods. Regardless, we

advocate using the proposed expressions for scenarios

with low prevalence, small to moderate LSH, and small

case oversampling. Especially for the scenario where the

cases are underrepresented compared to the population,

we find the proposed expressions to be a lot more precise

in terms of MSE compared to other compared methods.

Here, we have proposed expressions for calculating LSH

suitable for traits with low prevalence.We have shown that

our proposed formulas result in a more accurate LSH esti-

mator in terms of MSE in many common settings and in

general results in slightly more conservative estimates

that can result in more accurate estimates of liability-scale

heritability. Hopefully, it can lead to a more realistic quan-

tification of rare trait heritabilities, many of which are still

yet to be explored.
Data and code availability

The shiny app for calculating liability-scale heritability can be

found at https://medical-genomics-group.shinyapps.io/h2liab/.

This project uses UK Biobank data under project 35520. UK Bio-

bank genotypic and phenotypic data are available through a

formal request at http://www.ukbiobank.ac.uk. The UK Biobank

has ethics approval from the North West Multi-centre Research

Ethics Committee (MREC). The GMRM model was executed

with the GMRM software, and full open source code is available

at https://github.com/medical-genomics-group/gmrm. The code

generated during this study is available at https://github.com/

svenojavee/LSH.
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Derivation of the error variance term

Suppose that the genetic value (of an individual) g and error term e are from normal distributions g ∼ N(0, h2
l )

and e ∼ N(0, 1 − h2
l ), where h2

l is the underlying liability scale heritability. Then the underlying liability
l = g + e and the binary trait y with a prevalence of K is defined as

y =

0, if l < Φ−1(1 − K)

1, if l ≥ Φ−1(1 − K)
(1)

From this we will derive the error variance term E(V ar(y|c + zg)) where c is some constant and z is the
standard Gaussian density evaluated at Φ−1(1 − K) as shown in [?]. As c + zg is a linear combination of g

we can equivalently find E(V ar(y|g)). First, we note the conditional distribution of y given g

y 0 1
P (y|g) P ( e√

1−h2
l

< Φ−1(1−K)−g√
1−h2

l

) = P ( e√
1−h2

l

≥ Φ−1(1−K)−g√
1−h2

l

) =

Φ( Φ−1(1−K)−g√
1−h2

l

) Φ( g−Φ−1(1−K)√
1−h2

l

)
(2)

As y can be equal to only 0 or 1, we can write

V ar(y|g) = E(y2|g) − E(y|g)2 = E(y|g) − E(y|g)2 = P (y = 1|g) − P (y = 1|g)2 =

Φ
(g − Φ−1(1 − K)√

1 − h2
l

)
− Φ

(g − Φ−1(1 − K)√
1 − h2

l

)2
. (3)

To find E(V ar(y|g)) we need to find E(Φ
(

g−Φ−1(1−K)√
1−h2

l

)
) and E(Φ

(
g−Φ−1(1−K)√

1−h2
l

)2
). For this, we use auxiliary

standardised Gaussian random variables X, X1 and X2 that are independent of g and X1 is independent of
X2. From this it follows that V ar(X

√
1 − h2

l − g) = 1 and using the law of total probability we get

E(Φ
(g − Φ−1(1 − K)√

1 − h2
l

)
) = P

(
X ≤ g − Φ−1(1 − K)√

1 − h2
l

)
= P (X

√
1 − h2

l − g ≤ −Φ−1(1 − K)) =

Φ(−Φ−1(1 − K)) = 1 − Φ(Φ−1(1 − K)) = K. (4)

Secondly, we see that we can analogously use X1 and X2 to find the second moment of Φ
(

g−Φ−1(1−K)√
1−h2

l

)
. For

this we need to find the following correlation

cor(X1

√
1 − h2

l − g, X2

√
1 − h2

l − g) = E((X1

√
1 − h2

l − g)(X2

√
1 − h2

l − g)) = E(g2) = h2
l . (5)

1



Now we express the expectation using a cumulative distribution function of a bivariate Gaussian distribution
of two random variables that have a correlation of h2

l

E(Φ
(g − Φ−1(1 − K)√

1 − h2
l

)2
) = E(P

(
X1 ≤ g − Φ−1(1 − K)√

1 − h2
l

)
P

(
X2 ≤ g − Φ−1(1 − K)√

1 − h2
l

)
) =

E(P
(

X1 ≤ g − Φ−1(1 − K)√
1 − h2

l

, X2 ≤ g − Φ−1(1 − K)√
1 − h2

l

)
) = P

(
X1 ≤ g − Φ−1(1 − K)√

1 − h2
l

, X2 ≤ g − Φ−1(1 − K)√
1 − h2

l

)
P (X1

√
1 − h2

l − g ≤ −Φ−1(1 − K), X2

√
1 − h2

l − g ≤ −Φ−1(1 − K)) =

Φ̃(−Φ−1(1 − K), −Φ−1(1 − K), h2
l ) = Φ̃(Φ−1(K), Φ−1(K), h2

l ), (6)

where Φ̃(x1, x2, ρ) is the cumulative distribution function of a standardised bivariate Gaussian distribution
with a correlation of ρ. The first equation follows from the definition of cumulative distribution function,
second from the independence of X1 and X2, third from the law of total probability. Thus, by combining the
two last results, we get the final expression for the error variance

E(V ar(y|c + zg)) = K − Φ̃(Φ−1(K), Φ−1(K), h2
l ). (7)
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