Biophysical Journal, Volume 121

Supplemental information

Effects of vimentin on the migration, search efficiency, and mechanical

resilience of dendritic cells

M. Reza Shaebani, Luiza Stankevicins, Doriane Vesperini, Marta Urbanska, Daniel A.D. Flormann, Emmanuel Terriac, Annica K.B. Gad, Fang Cheng, John E. Eriksson, and Franziska Lautenschläger

Supplementary Information to Effects of Vimentin on the Migration, Search Efficiency, and Mechanical Resilience of Dendritic Cells

M. Reza Shaebani, Luiza Stankevicins, Doriane Vesperini, Marta Urbanska, Daniel A. D. Flormann, Emmanuel Terriac, Annica K. B. Gad, Fang Cheng, John E. Eriksson, Franziska Lautenschläger

Figure S1: Comparison between the kinematics of bone-marrow-derived dendritic cells (BMDCs) with (WT) or without (KO) vimentin in two dimensions. (A) Probability distribution $P(\theta)$ of the turning angle θ at each recorded position of WT (left) and KO (right) BMDCs. (B) Local persistence length ℓ_p versus the migration speed v of WT and KO BMDCs. ℓ_p is deduced from $p = \cos(\theta) = e^{-\ell/\ell_p}$, with ℓ being the distance between two successive recorded positions [56]. The speed binning intervals of 0.1 μ m/min are used.

Figure S2: Cytoskeletal characterization in cells with (WT) or without (KO) vimentin. (A) Representative Western blot for protein quantification of vimentin in WT and KO primary BMDCs (54 kDa, vimentin), with loading control Hsc70 (70 kDa). (B,C) Representative images of WT and KO BMDCs for actin (red) and vimentin (green) filaments in 2D (B) and 1D (C) experiments. Scale bars, 10 μ m.

Figure S3: Real-time deformability cytometry analysis of global mechanical properties of BMDCs with (WT) or without (KO) vimentin. (A) Deformation-cell area scatter plots, showing a representative measurements of WT and KO BMDCs. The color map represents the event density and the contour plots delineate 50% density (dashed lines) and 95% density (solid lines). *n* is the number of measured cells. (B) Overlay of contours from (A). Grey lines are isoelastic regions from numerical simulations, which group cells of same mechanical properties. (C-E) Comparison of dimensionless deformation ξ (C), Young's modulus (D), and cell area (E) of WT and KO BMDCs, measured at two different flow rates: Fr1 ($0.16 \mu L.s^{-1}$) and Fr2 ($0.32 \mu L.s^{-1}$). The data represent median ± median absolute deviation. Circles denote the median values of five independent experiments. Statistical analysis is performed using linear mixed effects model. **p*<0.05; ***p*<0.01; n.s., not significant. (F) Young's modulus versus cell area at two different flow rates.

Figure S4: Force-mode atomic force microscopy analysis of dendritic cell mechanics. (A) Representative ventral and lateral electron microscopy images of wedged cantilevers used to evaluate the cell global mechanical response by atomic force microscopy. (B) Scheme of deformation graph used for analysis, showing measurement of relaxation time with atomic force microscopy. (C,D) Young's modulus (C) and relaxation time (D) of WT (black) and KO (red) BMDCs measured at different extents. Box plots for three independent experiments (total number of cells: 12 WT and 16 KO BMDCs) represent 25^{th} to 75^{th} percentile range with a line at the median and a square at the mean. Whiskers indicate extreme data points within $1.5 \times$ interquartile range (IQR). *p < 0.05; n.s., not significant (*t* test).

Table S1. Comparison between the *in vitro* amoeboid migration of BMDCs with(WT) or without (KO) vimentin. The *apparent persistence* is a dimensionless quantitydefined as the end-to-end distance divided by the actual length of the cell trajectory.

system	observable	cell type	mean \pm standard error	
1D	percentage of migrating cells	WT	72.2±2.4 %	
	percentage of migrating cens	KO	57.8±5.3 %	
	migration speed ($\mu m min^{-1}$)	WT	5.55 ± 0.09	
	ingration speed (µm.inin)	KO	4.98 ± 0.12	
	apparent persistence	WT	0.680 ± 0.007	
	apparent persistence	KO	0.660 ± 0.010	
2D	percentage of migrating cells	WT	52.7±9.1 %	
	percentage of migrating cens	KO	42.0±10.1 %	
	migration encod ($\mu m min^{-1}$)	WT	5.53 ± 0.05	
	ingration speed (µm.mm)	KO	4.53 ± 0.05	
	path length (um)	WT	383±24	
	path length (µm)	KO	240 ± 19	
	apparent persistence	WT	0.510 ± 0.004	
	apparent persistence	KO	0.510 ± 0.004	
	local persistence	WT	0.44 ± 0.02	
	iotai persistence	KO	0.47 ± 0.02	

Table S2. Mechanical properties of BMDCs with (WT) or without (KO) vimentin as analysed by real-time deformability cytometry. The experiments were repeated five times for each condition. The data in the right three columns represent median ± median absolute deviation.

flow rate	cell	number of cells	total number	dimensionless	Young's	cell area
$(\mu L.s^{-1})$	type	per experiment	of cells	deformation ξ	modulus (Pa)	(µm²)
0.16 [Fr1]	WT	3069			776±22	90.1±3.6
		2690	10238	0.0256±0.0025		
		1371				
		1614				
		1494				
	КО	1929			706±12	82.9±1.2
		1991	9494			
		2212		0.0271 ± 0.0012		
		1836				
		1526				
0.32 [Fr2]	WT	1652	9093	0.0403 ± 0.0046	926±66	93.1±5.7
		2550				
		1055				
		1783				
		2053				
	КО	2134	10621		838±16	86.2±1.8
		2218		0.0469 ± 0.0008		
		2512				
		1971				
		1786				

Table S3. Mechanical properties of BMDCs with (WT) or without (KO) vimentin as analysed by atomic force microscopy. The mean value and the standard deviation of the relaxation time and the Young's modulus are shown.

extent	cell type	Young's modulus measurement		relaxation time measurement		
		number of cells	Young's modulus (Pa)	number of cells	relaxation time (s)	
1	WT	12	826 ± 575	8	1.7 ± 1.1	
	KO	16	280 ± 248	13	1.9 ± 1.8	
2	WT	12	1573 ± 1221	7	2.6 ± 1.2	
	KO	16	878 ± 1073	14	2.4 ± 1.3	
3	WT	11	2617 ± 2295	8	3.1 ± 1.6	
	KO	16	1118 ± 993	17	3.4 ± 1.5	
4	WT	10	3782 ± 2731	7	5.7 ± 2.3	
	KO	16	1491 ± 991	17	4.9 ± 2.4	
5	WT	9	10275 ± 7669	6	4.9±1.7	
	КО	16	3288 ± 2583	17	4.8 ± 1.0	