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1 Overview

This supplementary note contains two substantive sections: The first give a comparison between
H3AGWAS workflow and a competing tool, especially with respect to computational performance.
The second gives example runs of a number of the different workflows that we provide.



2 Computational comparison between the BlGwas and H3AGWAS
workflow

2.1 Introduction

This section documents a computational comparison of the BIGwas and H3AGWAS workflow
workflows in response to the findings of Késsens et al. that BIGwas is significantly faster than
H3AGWAS workflow for QC for medium and larger files. For example, Késsens et al. found
that data set with 5k individuals and 50k SNPs takes 8 minutes (BIGwas) versus 15 minutes
(HBAGWAS workflow), and a data set with 20,554 individuals and 700k SNPs takes 135m (BIG-
was) versus 537m (H3AGWAS workflow) and for even larger data sets that they could not rea-
sonably complete execution of H3AGWAS workflow. (It must be emphasised that comparing
workflows requires comparing multiple factors and in our view this is not the most important
factor, but Késsens et al have made very serious negative findings, which we believe needs to be
addressed. We do not agree with their findings)

2.2 Data sets used

The following data sets were used:

e The example data set that comes with BIGwas — this is a set based on 1000 Genomes data
with 2504 individuals and 50k SNPs.

e The AWI-Gen unqc-ed data — 11062 individuals and 2.267 million SNPs.
o A simulated data set (sim! 22142 individuals and 2.267 million SNPs.

One difference between the two workflows is that H3SAGWAS workflow expects that all the
genotype data is in one PLINK file, while BIGwas allows multiple files to be input which are
then merged, which exposes further parallelism. To make the comparison fair we compare the
H3AGWAS workflow times with two separate runs of the BIGwas workflow:

e The BIGwas example data set is provided as two separate PLINK data sets — one the
“cases” and one the “controls”, each with approximately 2500 individuals. We compare
the HBAGWAS workflow with the merged data setas input with the BIGwas on both the
merged data and on the original split files.

e For the AWI-Gen data, we split into roughly two halves and artificially declare the two halves
as cases and controls. We compare the HSAGWAS workflow on the original AWI-Gen data
with BIGwas on the original data and on the split data. For the simI data set a similar
comparison was made.

2.3 Computational setup

We used Nextflow 21.04.1 and used Singularity with the images provided by the two tools. In both
cases, both the Nextflow repos and the Singularity images were already downloaded and installed.
We performed the experiments on a single machine (no scheduler) and using SLURM on a cluster.

2.3.1 Single machine execution

We used a machine with a dual Xeon Silver 4214 CPUs running at 2.20GHz (24 physical cores,
48 hyper-threaded cores) and 128GB of RAM, and all data inputs and outputs were stored on a
Seagate ST2000NM0008 2TB SATA Hard Drive. The machine was otherwise unloaded.

We ran both of these on the default settings — presumably both developers chose appropriate
default settings so that is fair enough. However, HSAGWAS workflow has performance parameters
that the user can set if they have more powerful computers. The max_plink_cores| parameter is


max_plink_cores

Data set | HSAGWAS workflow BIGwas
Split ‘ Merged
Elapsed (s) CPU h | Elapsed (s) CPU L Elapsed (s) CPUh
Example 34 0.05 480 0.1 496 0.2
AWI-Gen 1383 2.1 2576 0.8 3700 1.2
sim1 7278 12.3 29938 8.3 30240 8.4

Table 1:  Comparison between H3AGWAS workflow and BIGwas workflow using QC script and
3 different data sets using single machine execution

by default set to 4 — this limits any PLINK process to use 4 cores (and makes 4 cores available
and so hence counts to CPU hours whether used or not). If we run the Nextflow with the
--max_plink_cores=12| the elapsed time for the AWI-Gen data set drops from 1383s to 750s
at the cost of accounted CPU hours going to 4.2 CPU hours. This is a trade-off the user must
consider. No doubt there are similar changes that could be made to the BIGwas workflow.

Note the difference in the AWI-Gen and sim! data set for the HSBAGWAS workflow is a
factor of 5.2. In principle we would expect the overall computational cost to scale quadratically
with number of SNPs as the single biggest computational costs are steps which are quadratic.
However as these components take longer there is less task parallelism as a proportion of the
overall cost. The BIGwas workflow also scales super-quadratically but by a greater factor (our
superficial observation is that the bulk of this extra cost is as at similar points in the computation).

2.3.2 Cluster execution

We tested on our production University Research Cluster: SLURM 20.11.8, CentOS7.9, Singu-
larity 3.6.3 (default Singularity OSG release). The cluster is heterogeneous so we set Nextflow
clusterOptions to execute only on 20 nodes with dual core Intel Xeon Silver 4114 CPUs running
at 2.2GHz (20 physical, 40 hyper-threaded cores per node — note that these machines are slower
than the one we tested above). Since this is a production cluster we were unable to test while the
cluster otherwise completely idle but we could test late on weekend with only a few other jobs
running so we do not think that this affected the results (we manually inspected that the jobs ran
on machines not being used by other jobs).

Singularity issues: We were unable to run BIGwas on the cluster in its default Singularity set-
ting. Like many production HPC systems, the cluster follows recommendations to not allow Singu-
larity with setuid enabled (https://sylabs.io/guides/latest/user-guide/security.html).
The disadvantage of this is that standard Singularity SIF images cannot be directly executed but
must be copied (unsquashed) to a temporary disk for each separate Nextflow processﬂ The BIGwas
image is 11GB in size in SIF (compressed) format and the computational cost of unsquashing, es-
pecially when multiple processes are doing this in parallel made running the workflow impractical.
The same Singularity issue applies to HBAGWAS workflow, of course. However, the HSAGWAS
workflow container design approach is to have several, specialised containers rather than one mono-
lithic container. For example, the workhorse py3plink container is ~450MB in size — so although
there is a significant penalty for running H3AGWAS workflow on the cluster using Singularity
compared to running the natively installed software, it is not an outrageous penalty. In order to
perform the testing below, we were able to enable setuid for (this requires root privileges), but
this is not something we are allowed to leave for extended periods. In many environments setuid
is enabled in Singularity installations (as it was in our testing on the single machine), so many
users will not face this problem. But we suspect that other Singularity users in production HPC
environment will run into the same problem as us. (We also tested Singularity 3.8 and 3.9 and it
had the same problem).

1And to be clear if a Nextflow process is executed 10 times in parallel then each instantiation of the process
requires this.


--max_plink_cores=12
https://sylabs.io/guides/latest/user-guide/security.html
py3plink

Data set | HSAGWAS workflow BIGwas
Split ‘ Merged
Elapsed (s) CPU h | Elapsed (s) CPU L Elapsed (s) CPUh
Example 189 < 0.1 967 0.4 899 0.2
AWI-Gen 2025 3.8 3712 1.2 3647 1.1
sim1 8346 16.2 33728 8.4 31028 8.6

Table 2: Comparison between H3AGWAS workflow and BIGwas workflow using the QC script
and three different data sets using the Cluster and SLURM

2.4 Comparison between association workflow of BIGwas and H3AGWAS
workflow

2.4.1 Data sets used and methodology

We used output of QC produced by the BIGwas workflow to run association of H3AGWAS
workflow and BIGwas. For both workflow we ran PLINK as the underlying association testing
tool defaults of workflows where used. We ran each test using an Intel Xeon Silver 4114 dual core
processor (40 hyper-threaded cores on 20 physical cores) with 128GB of RAM

2.5 Run, troubleshooting and duration

Table [3] shows the comparison. For the small test Data set, duration is lower for BIGwas than
H3AGWAS workflow, but for bigger sample size and SNP number, HBAGWAS workflow per-
formed better.

In using BIGwas, we observed missing data causes error on workflow when used with binary
phenotype.

Data set SNPs number Sample Size BIGwas H3AGWAS workflow

Example 35317 2464 35 70
AWI-GEN 2120006 8487 2383 1637
sim1 2091083 18322 9607 2327

Table 3: Comparison between H3AGWAS workflow and BIGwas workflow using Association script
and 3 different data sets

2.6 Conclusion

As we have indicated, performance is not the primary measure of a workflow because ultimately
the costs depend on the underlying software used and the workflow designer can neither take too
much credit nor blame for this. However, it is important to demonstrate the workflow can expose
appropriate parallelism, which we believe has been demonstrated. Certainly we do not believe that
the experimental evidence supports the claim that the BIGwas workflow is faster than H3AGWAS
workflow.

3 Description and test of different scripts of H3AGWAS
workflow : CPUs, Time

This section shows additional testing of HSAGWAS workflow on our SLURM cluster as shown.
Again since the cluster is a production cluster we were only able to run it on a lightly loaded cluster
not on a cluster that was idle. The purpose of this testing is to give indicative real-world costs.
For the tests done, the workflow execution is shown graphically as a directed acyclic graph and



the computational cost of the individual components is shown (of course, many of the individual
components can be done in parallel).

3.1

Quality Control of genetics data
Objectives : apply a quality control on genetics data.
Input : workflow take as input PLINK file from genomics data, phenotype, sex phenotype.
Individual filter :

— Apply sex control with X chromosome and sex phenotype.
— heterozygosity control using Hardy—Weinberg equilibrium.
— missingness

— relatedness

SNPs filter :

minor allele frequency

heterozygosity
— duplicated markers

— missingness
Output :

— report in pdf is produce in PDF describing each steps with different filters

— PLINK file after quality control with frequencies distribution, hardy Weinberg equilib-
rium... see example

— intermediate files produce by workflow.
Test: QC workflow has been apply for 12,000 individuals with genotype using h3array po-

sitions (2.4 millions positions) using the cluster and SLURM — see the statistics in table

4

An overview of the execution can be found in Figure [2] and the detailed computational results
in Table [
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Figure 1: Example of four first pages of quality control report generated by pipeline
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Process Tot hours % times % cpu Max NF

num- mem pro-

ber (MB) cesses

used
(Mean)

analyseX 0.00 1.13 28.40 67.10 1
batchProc 0.00 0.31 106.50  100.70 1
calculateMaf 0.00 0.23 55.10  138.20 1
calculateSampleHeterozygosity 0.10 2.40 25.70  105.90 1
calculateSnpSkewStatus 0.00 1.03 29590  212.60 1
compPCA 0.60 19.73  365.40 1200.00 1
drawPCA 0.00 0.54  85.70 83.60 1
findHWEofSNPs 0.00 0.98 5.30 2.40 1
findRelatedIndiv 0.00 0.40 32.80 49.70 1
findSnpExtremeDifferentialMissingness 0.00 0.33 101.30  125.50 1
generateDifferentialMissingnessPlot 0.00 0.33 107.60  327.70 1
generateHwePlot 0.00 0.91 54.30  344.20 1
generatelndivMissingnessPlot 0.00 0.33 136.20 11.40 1
generateMafPlot 0.00 0.42 76.20  512.40 1
generateMissHetPlot 0.00 1.07 90.50 101.90 1
generateSnpMissingnessPlot 0.10 254 57.10  299.00 1
getBadIndivsMissingHet 0.00 1.41 61.70 49.70 1
getDuplicateMarkers 0.00 1.64 82.40  221.60 1
getInitMAF 0.10 2.55 10.80 171.80 1
getX 0.10 2.40 17.30  113.90 1
identifyIndivDiscSexinfo 0.10 3.33 2570  214.90 1
inMD5 0.00 1.64  23.10 8.10 1
noSampleSheet 0.00 1.30 34.10 61.80 1
outMD5 0.00 0.95  35.30 8.10 1
produceReports 0.00 1.37 4.60 25.10 1
pruneForIBDLD 0.90 31.43 384.50 1500.00 1
removeDuplicateSNPs 0.10 4.17 15.30 199.50 1
removeQClIndivs 0.00 1.60 28.20  152.20 1
removeQCPhasel 0.30 10.20 28.00  196.30 1
removeSkewSnps 0.00 0.69 47.80 152.40 1
showHWEStats 0.00 1.01 76.70  926.10 1
showInitMAF 0.00 1.62 5140  484.80 1

Table 4: Statistics resumé of the QC workflow: process — Nextflow process name; Tot. hours —
total hours used by NF process; % times — percentage of times used by process compared to other
process ; % cpu number used (Mean) — mean % cpu number used by the process; Max mem (MB)
is maximum of memory (resident set size) used by one process; NF processes — number of Nextflow
process used for the steps



3.2 Association
e input :

— phenotype file and one or more phenotype, covariates
— genetics data in plink file and in option dosage : bgen (regenie, SAIGE, fastGWA and
BOLT-LMM), VCF (SAIGE) and impute2 (BOLT-LMM)
e output :
— each summary statistics of each software and phenotype used and pdf report contains
for each combination 3]
— report with Manhattan, qq plot and best result

— relatedness comptued for each software

3.3 Fine-mapping
e Objective: apply a fine-mapping on significant regions of summary statistics result
e Input data : summary statistics, causal variant number and genetics data in PLINK format

e identify region to apply fine-mapping on full summary statistics using PLINK clump to
identify lead SNPs.

e Steps

— for each region apply different algorithms to find the number of independent SNPs, puta-
tive causal variant and credible interval with different software for fine-mapping : COJO
(step-wise model selection procedure to select independently associated), FINEMAP
(stochastic and conditional algorithm), Caviarbf and PAINTOR software with possi-
bility to use eQTL information.

e Output [4

— intermediate file produce in workflow and by each software
— file contains all result merge
— figures plot as locus zoom with has been had probability of each software of fine-

mapping.

e Test : Fine-mapping has been done on summary statistics obtained with cholesterol output
of association testing done with GEMMA with AWI-Gen data set. We obtained 40 windows
with p < 5 x 1078: for each region different software was used fine-mapping

Figure [5] gives an overview of the execution and Table [5 shows the detailed computational
costs.



Process Tot hours % times % cpu Max NF
num- mem pro-
ber  (MB) cesses

used

(Mean)
clump_data 0.20 2.19  61.60 3900.00 1
ComputedCaviarBF 0.50 5.79 86.80 16.50 40
ComputedCojo 0.50 5.54 76.41 11.10 40
ComputedFineMapCond 0.50 6.72 81.09 11.20 40
ComputedFineMapSSS 0.40 5.53 164.14 8.20 40
ComputedLd 0.90 11.41  113.56 38.40 40
ComputedPaintor 0.40 5.29 85.59 76.40 40
extract_sigpos 0.00 0.12 131.90 1
ExtractPosition GWAS 1.90 22.84  95.63 3800.00 40
GetGeneslnfo 0.10 1.23  42.60 2000.00 1
GWASCatDl 0.00 0.25 77.30  445.20 1
MergeResult 0.70 8.12 93.01 439.10 40
SubPLINK 2.00 25.00 78.50  826.50 40

Table 5: Statistics resumé of fine-mapping workflow running on cluster, using cholesterol pheno-
type. Process - it is Nextflow process name; Tot. hours — total hours used by NF process; % times
— percentage of times used by process compared to other process ; % cpu number used (Mean) -
mean % cpu number used by the process; Max mem (MB) is maximum of memory used by one

process; NF processes - number of Nextflow process used for the steps

10



PRINCIPAL COMPONENT ANALYSIS OF PARTICIPANTS

A summazy of the data for pheno_qt2 can be found in the Table 1, transformed using different
teansforms. A histogeam is found in Figure 2.

Association Testing Draft : pheno_qt2 Table 1 Overview of phenotype pheno_qt2 distrbution

Data Comt__ Min__Max__ Ave SidDey
3Agwas Association Testing Pipeline
HaAg & Testing Pipeli o transform 550 —AR200E00 7421861801
Mon Jul 11 15:44:42 SAST 2022 log transform 29 aTTIEAW 225 L1
squae root traform 289 0.16 B0 L5
cube soot transform 550 -3 GAIGE G _6,59126-025
1 Introduction
This report gives a brief overview of the run of the association testing pipeline Figure 2 Histogram of pheno_qt2 vaucs under different transforims [File is B00- pheno-qt2.paf]
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Figure 4 Gemma testing: QQ-plot for phenotype pheno-qi2

3 Result of Gemma analysis : phenotype pheno-qt2
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Figure 3: Example of four first pages of association report generated by pipeline with 10 best
solutions, qq plot and manhantan plot
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- - credible set defined by cond / sss finemapping are in grey
- genes / gwas catalog box
o
~ armow : red arrow : present in dataset / ey artow absent in dataset
o ard
7 ~ genes represented by box (exon) and fines (intron)
_ distribution of post probabilty
~ dstribution of post probabilty for finemapint caviar, paintor and finemap, color variablic
i L} | (1] u L]
=  distrbution of annotation :in % for each positions, red correspond to lead position, or
|

Gwas catalog

45775995 Haemorthoidal disease /Pubmedid: 33888516 —

45762607 Osteoarthrits (seli-reported) /Pubmedid: 29559693

45752709 Metabolite levels /Pubmedid: 23823483 -

45748277 Type 2 diabetes /Pubmedid: 25760438 —

45678606 Carotid Intima-media thickness (mean of the maximum cIMT) /Pub

45669485 Height /Pubmedd: 30595370 —

45646824 Glaucoma /Pubmedid: 20363506 -

45632453 Metabolite levels /Pubmedid: 23823483 —

Figure 4: Example of report generated by fine-mapping pipeline contained page 1)locus-zoom
with lead snps defined using stepwise model selection procedure (gcta), credible position from
fine-mapping softwares, post-probability of fine-mapping software, information relative to GWAS
catalog, genes. Pages 2 : legends. Pages 3 : GWAS catalog information’s.
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3.4 Heritability

e Objectives : compute heritability and/or co-heritability using genetics diversity and pheno-
type or/and summary statistics

e Input : genetics data and phenotype or/and summary statistics.
e Steps :

— format and prepared files

— build matrix of relatedness or/and genetic relationships matrix for GCTA, GEMMA

— computed heritability using GEMMA and LDSC using summary statistics and GCTA,
GEMMA and BOLT-LMM using genetics and phenotype.

e Test: using 4 phenotypes of lipid, genotype and summary statistics obtained using associa-
tion testing result, we ran heritability and co-heritability using the cluster.

e QOutput : pipeline gave all intermediate file from each software but also a barplot with each
heritability (see Figure [6)

An overview is shown in Figure [7] and the detailed computational cost is shown in Table [0}

Process Tot hours % times % cpu Max NF
num- mem pro-

ber (MB) cesses

used
(Mean)

doGemmah?2 4.10 4.26 372.19 4200.00 8
doGemmah2_Stat 0.00 0.01 67.39 43.00 8
DoGemmah2Pval 59.50 61.55  894.45  8300.00 4
doGemmah2Pval_Stat 0.00 0.00 63.38 43.00 4
doGRLEM_GCTA _Stat_multi 0.00 0.00 78.15 1.90 4
doh2Bolt 6.10 6.34 1523.67  5700.00 4
doh2Bolt_Stat 0.00 0.01 70.15 43.00 4
doh2BoltiMulti 17.00 17.61 1973.90  5700.00 1
DoLDSC 0.40 0.44 98.10  13900.00 1
doLLDSC_Stat 0.00 0.00 29.50 43.00 1
doMultiGRM 0.50 0.55  779.73  5800.00 4
GCTAComputeMultiGRM 0.50 0.51  495.40  6500.00 1
GCTAGRMBgyFile 7.40 7.66 99.40  2700.00 4
GCTAStrat 0.00 0.00 79.00 158.00 1
getBoltPhenosCovar 0.00 0.01 47.60 65.30 1
getGetaPhenosCovar 0.00 0.04 44.80 66.60 4
getGemmaRel 0.80 0.82  673.60 5100.00 1
MergeFile 0.00 0.00 31.20 1
MergeH2 0.00 0.01 64.40 106.80 1
select_rs_format 0.20 0.17 54.40 609.70 1

Table 6: Statistics resume of heritability workflow running with cluster, using 4 phenotypes and
10,000 individuals and corresponding summary statistics. Process — Nextflow process name; Tot.
hours — total hours used by NF process; % times — percentage of times used by process compared
to other process ; % cpu number used (Mean) — mean % cpu number used by the process; Max
mem (MB) is maximum of memory (RSS) used by any process; NF processes — number of Nextflow
processes used for the steps.
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pheno-gt2, gemma 1-

pheno-qt2,bolt - -

pheno-gtl gemma 1-
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0.0 02 04 06
Heritabilities

Figure 6: example of output of heritability workflow
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3.5 Simulations workflow

Three workflows of simulation exist

3.5.1 Description of each workflow

Workflow Input genotype Simulation Output Post-simulation
process computation
[Tutils/build_ Extract extract positions Randomly
example_data/ e genotype in VCF positions and effect from e genetic data switch the sex of
main.nf file (or downloaded reference the Effect of population some individuals
by ftp, by default from ‘ database, . to test qc
1000 Genomes, genetics extract *p enojcyp.es pipeline
v37) data, clean | corresponding quantlt.atlv'e
’ and format | genotype and or qualitative
o effect database (or in plink file | simulated
download by ftp phenotypes with
GWAS catalog), GCTA
phenotype of
database,
e positions reference
in BED format as
array positions
e phenotype of effect
L database
utils/build_ None as above phenotypes None
example_data/ e genotype in plink quantitative or
simul-assoc_ file qualitative
gcta.nf
o effect database
e phenotype of effect
L database
utils/build_ genotype in plink file None random GEMMA and

example_data/
simul-assoc_
phenosim.nf

positions will be
selected and
phenotype
simulated using
phenosim

e phenotype
simulated

e summary
statistics of
associations
and statistics
(FP and TP)

BOLT-LMM will
run on genetics
data and
phenotype
simulated. False
Positive, True
positive rate will
be computed

Table 7: Description :

input - Input of different pipeline, genotype - if pipeline produce also a

independent genotype complementary of phenotype simulation; simulation - how pipeline simu-
lated phenotype; output - what output give pipeline; Post-simulation computation - Analyse or
modification done after simulations

3.5.2 Simulation using 1000Genome, GWAS catalog and GCTA

e Objectives : building phenotype using genetics data

e Input : by default, workflow uses (1) genetics data from 1000 Genomes Project (2) result
of lead SNPs from GWAS catalog (3) list of phenotype choice in GWAS catalog to build

phenotypes.

e Steps

— Downloads GWAS catalog.

— Extracts and format GWAS catalog file with extraction of positions and effect using
list of SNPs.
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utils/build_example_data/main.nf
utils/build_example_data/main.nf
utils/build_example_data/main.nf
qc
utils/build_example_data/simul-assoc_gcta.nf
utils/build_example_data/simul-assoc_gcta.nf
utils/build_example_data/simul-assoc_gcta.nf
utils/build_example_data/simul-assoc_gcta.nf
utils/build_example_data/simul-assoc_phenosim.nf
utils/build_example_data/simul-assoc_phenosim.nf
utils/build_example_data/simul-assoc_phenosim.nf
utils/build_example_data/simul-assoc_phenosim.nf

— Downloads genomics data of positions extracted from GWAS catalog and array.

— Extracts independent positions from position of GWAS catalog using ”—clump” of
PLINK and genetic data download.

— Uses Genomics data and z values extracted from GWAS catalog using independent
positions to build phenotype using GCTA.

Output :

x genotype in plink format of positions from array defined in input.

x Quantitative and qualitative phenotype with position and genotype used to build
phenotype corresponding and information relative to GWAS catalog and used to
build phenotype.

e Test : build phenotypes using data of 1000 Genomes project, GWAS catalog and diabetes
as phenotype.

See Table |8 for the detailed computational costs and Figure [§| for an overview of the different
steps.

Process Tot hours % times % cpu Max NF
num- mem pro-

ber (MB)  cesses

used
(Mean)

addSexFile 0.00 0.01 22.00 3.90 1
cleanPLINKFile 0.20 0.26 417.94 1.50 22
cleanPLINKFile_ GC 0.40 0.56  307.69 1.50 22
DI1000G 52.10 75.30 1.50  38.30 22
DI1000G_-GC 3.90 5.71 0.95 13.80 22
format_sim_qualitatif 0.00 0.03 90.30 20.90 1
format_sim_quantitatif 0.00 0.03 88.80 15.10 1
format_simulated 0.00 0.01 91.30 13.70 1
getchr_gc 0.00 0.03 39.30 1
GWASCatDl 0.10 0.11 75.30 245.30 1
mergePLINKFile 0.00 0.01 135.00 71.20 1
mergePLINKFile_.GC 0.00 0.01 307.40 12.70 1
simulation_qualitatif 0.00 0.01 89.10 1.50 1
simulation_quantitatif 0.00 0.01 95.00 5.60 1
transfvcefInBed1000G 2.10 3.11  422.98 9.20 22

transfvefInBed1000G_-GC 10.20 14.79  530.84 1.50

[\
[\

Table 8: Summary result for simulation individual using GWAS catalog for phenotype and 1000
genome project as genotype data. Process - it is Nextflow process name; Tot. hours — total hours
used by NF process; % times — percentage of times used by process compared to other process ; %
cpu number used (Mean) - mean % cpu number used by the process; Max mem (MB) is maximum
of memory used by one process; NF processes - number of Nextflow process used for the steps

3.6 Format data
3.6.1 Convert PLINK format to VCF
e Objective : converts data to VCF for imputation

e Input PLINK file, reference genome of FASTA file and reference for positions, chromosome,
and rs name.
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Figure 8: flowchart of simulation workflow



e Steps
— extract rsid and information of each positions from the reference file and reference
sequence.
— splits file by chromosome (optional)
— converts PLINK to VCF.
— cleans and rename position name.

fix allele using BCFtools

e Output : VCF file and VCF file by chromosome.

e Test : convert data after QC of 10,796 individuals using workflow in VCF format

See Figure [9] for an overview of the process and Table [J for the detailed computational costs.

Process Tot hours % times % cpu Max NF
num- mem pro-
ber  (MB) cesses

used

(Mean)
checkfixref 0.40 7.73 98.80 11.00 1
checkVCF 0.40 8.12 97.40 173.40 1
convertInVefChro 3.00 62.03 155.99 1100.00 22
convertrsname 0.00 0.43 86.50 211.60 1
CounChro 0.10 1.29 3.50 2.60 1
deletedmultianddel 0.00 0.63 93.30 687.60 1
extractpositionfasta 0.00 0.19 50.90 1.50 1
extractrsname 0.70 13.46 98.60 505.60 1
mergevcf 0.20 3.86  319.00 16.00 1
refallele 0.10 2.26 13.80 165.60 1

Table 9: Summary of the result of the workflow to format PLINK to VCF prepare data for
imputation. Process — Nextflow process name; Tot. hours — total hours used by NF process; %
times — percentage of times used by process compared to other process; % cpu number used (Mean)
—mean % cpu number used by the process; Max mem (MB) is maximum of memory used by one
process (resident set size); NF processes — number of Nextflow processes used for the steps

3.6.2 Convert VCF to PLINK or other format

e Objective : convert output from imputation in PLINK or other format to run association
testing.

e Input : list of VCF, genetic map.
e Steps

— Computed various statistics as frequency and imputation score
— Filter VCF by score and frequency
— Transform file to PLINK.

check for rs duplicate and correct.

merge all files PLINK by chromosome.
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Figure 9: Flowchart of workflow to convert PLINK format to VCF to prepare data for imputation
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e Output: PLINK file and report presenting distribution of quality and frequencies and
plink files converted.

e Test : used output of imputed data (=30 millions SNPs and 12,000 individuals)

Figure 10: Output of pipeline format vcf in plink, with distribution of quality and frequency
(figures with general distribution and table distribution by frequency)

An overview is shown in Figure[L1]and the detailed computational costs are shown in Table
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Figure 11: flowchart of workflow to convert VCF file from imputation into PLINK format
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Process Tot hours % times % cpu Max NF

num- mem pro-
ber  (MB) cesses
used
(Mean)

TransformRsDup 7.20 4.71 10.97 224.70 22
AddedCM 2.80 1.83 26.99 187.50 22
computedstat 13.20 8.65 99.33 8.60 22
dostat 0.10 0.08  96.80  6400.00 1
formatvcfscore 128.00 84.08 108.37 196.10 22
GetRsDup 0.00 0.02  89.00  2900.00 1
MergePLINK 1.00 0.64  83.10 62700.00 1

Table 10: Summary of result of workflow to format VCF after imputation in PLINK format using
data after imputation obtained in QC. Process — Nextflow process name; Tot. hours — total hours
used by NF process; % times — percentage of times used by process compared to other process ; %
cpu number used (Mean) — mean % cpu number used by the process; Max mem (MB) is maximum
of memory used by one process; NF processes — number of Nextflow processes used for the steps.

3.6.3 Multi-trait analyse using MTAG

e Objective : Analyse multi trait using summary statistics

Input : result of summary statistics from various phenotype

Steps

— format each files to prepared input for MTAG software
— Run MTAG with all summary statistics
— Run MTAG seletected 2 by 2 each summary statistics.

Output : result of mtag sofware (summary statistics), and report in PDF as association
pipeline

e Test : used output summary statistics (14 millions SNPs) for 4 SNPs

An overview is shown in Figure [12| and the detailed computational costs in Table
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Figure 12: flowchart of workflow to convert VCF file from imputation in PLINK format
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Process Tot hours % times % cpu Max NF

num- mem pro-

ber  (MB) cesses

used
(Mean)

doFormatFilePlk 0.70 13.13  71.35  6400.00 4
doMTAG 1.20 22.82  98.70  34600.00 1
doMTAG2by2 3.00 59.39  100.35 18600.00 6
doReport 0.00 0.02 45.10 20.50 1
RenameMtag 0.00 0.88 17.70 9.30 1
showMtag 0.20 3.76  91.75  6900.00 4

Table 11: Summary of result of workflow doing a multi trait analysis using MTAG: Process —
Nextflow process name; Tot. hours — total hours used by NF process; % times — percentage of
times used by process compared to other process; % cpu number used (Mean) — mean % cpu
number used by the process; Max mem (MB) is maximum of memory used by one process; NF
processes — number of Nextflow processes used for the steps.
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4 Detail of experimentation in the main paper

These tables give detail of the experimentation described in the main paper.

Process Tot hours % times % cpu number Max mem NF

used (Mean) (MB)  processes
computePCA 2.3 0.5 374 1100 1
drawPCA 0.0 0.0 114 89 1
extractPheno 0.0 0.0 81 63 1
bgen_formatsample 0.0 0.0 92 93 1
indexbgen _list 3.4 0.8 41 7 22
getBoltPhenosCovar 0.0 0.0 79 68 1
select_rs_format 0.0 0.0 58 635 1
Fast GWADoGRM 11.5 2.7 227 2100 100
MergFastGWADoGRM 0.0 0.0 17 3 1
computeTest 8.1 1.9 100 824 4
format_genetic_ldscore 0.4 0.1 43 2200 1
doBoltmm 5.7 1.3 351 3600 4
getListeChroGem 0.0 0.0 120 5 1
getGemmaRel 0.6 0.1 854 5100 1
doGemmaChro 312.1 72.7 945 5400 88
doMergeGemma 0.1 0.0 24 4 4
FastGWARun 41.9 9.8 972 2200 4
getListeChro_saige 0.0 0.0 81 5 1
getchrobgen 0.0 0.0 86 23 22
getSaigePheno 0.0 0.0 103 66 1
checkidd _saige 0.0 0.0 43 136 1
subplink_heritability_saige 0.0 0.0 74 927 1
saige_computed_variance 1.5 0.4 878 806 4
doSaigeListBgen 13.4 3.1 99 644 88
doMergeSaige 0.0 0.0 40 4 4
regenie_stepl 4.6 1.1 176 5900 4
regenie_step2 22.6 5.3 925 373 88
merge_regenie 0.1 0.0 24 4 4
format_regeniesumstat 0.1 0.0 78 10 4
ShowManhattan 0.7 0.2 97 7900 20
drawPlinkResults 0.1 0.0 83 4300 4
showPhenoDistrib 0.0 0.0 85 127 1
doReport 0.0 0.0 34 25 1

Table 12: Cost of associationon cluster, using 4 phenotypes and 10,700 individuals. The elapsed
time for the entire workflow was 12h 36min, with a high degree of parallelisation. Process is the
Nextflow process name; Tot hours — total CPU hours used by instances of this NF process; % times
— % of time used by process compared to other process; % cpu number used (Mean) — mean % cpu
number used by instances of the process — a measure of achievable parallelism for instances of
that process; Max mem (MB) is the maximum resident set size used by one process; NF' processes
— number of Nextflow process used for the steps, and a measure of parallelism at very coarse level.

27



Process Tot hours % times % cpu Max NF

number used mem pro-

(Mean)  (MB)  cesses

GetRsFile 1.1 1.2 99.5 9 1
ChangeFormatFile 29.9 30.7 65.2 4100 3
doGWAMA 18.0 18.5 67.4 10400 1
doMetal 2.9 3.0 99.6 3500 1
doMetaSoft 12.3 12.7 103.1 7700 1
doMRMEGA 15.8 16.2 68.1 8100 1
doPlinkMeta 8.9 9.2 99.8 2000 1
showGWAMA 1.4 1.5 100.2 5800 1
showMetal 1.8 1.8 97.7 3800 1
showMetasoft 1.9 1.9 100.1 7500 1
showMRMEGA 1.6 1.6 100.2 6200 1
showPlink 1.2 1.3 100.0 4800 1
doReport 0.6 0.6 46.1 24 1

Table 13: Cost of running meta-analysis workflow using Wits cluster, using 3 summary statistics
and 14 millions of positions by summary statistics. Column labels as in Table
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