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1 Overview

This supplementary note contains two substantive sections: The first give a comparison between
H3AGWAS workflow and a competing tool, especially with respect to computational performance.

The second gives example runs of a number of the different workflows that we provide.
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2 Computational comparison between the BIGwas and H3AGWAS
workflow

2.1 Introduction

This section documents a computational comparison of the BIGwas and H3AGWAS workflow
workflows in response to the findings of Kässens et al. that BIGwas is significantly faster than
H3AGWAS workflow for QC for medium and larger files. For example, Kässens et al. found
that data set with 5k individuals and 50k SNPs takes 8 minutes (BIGwas) versus 15 minutes
(H3AGWAS workflow), and a data set with 20,554 individuals and 700k SNPs takes 135m (BIG-
was) versus 537m (H3AGWAS workflow) and for even larger data sets that they could not rea-
sonably complete execution of H3AGWAS workflow. (It must be emphasised that comparing
workflows requires comparing multiple factors and in our view this is not the most important
factor, but Kässens et al have made very serious negative findings, which we believe needs to be
addressed. We do not agree with their findings)

2.2 Data sets used

The following data sets were used:

• The example data set that comes with BIGwas – this is a set based on 1000 Genomes data
with 2504 individuals and 50k SNPs.

• The AWI-Gen unqc-ed data – 11062 individuals and 2.267 million SNPs.

• A simulated data set (sim1 22142 individuals and 2.267 million SNPs.

One difference between the two workflows is that H3AGWAS workflow expects that all the
genotype data is in one PLINK file, while BIGwas allows multiple files to be input which are
then merged, which exposes further parallelism. To make the comparison fair we compare the
H3AGWAS workflow times with two separate runs of the BIGwas workflow:

• The BIGwas example data set is provided as two separate PLINK data sets – one the
“cases” and one the “controls”, each with approximately 2500 individuals. We compare
the H3AGWAS workflow with the merged data setas input with the BIGwas on both the
merged data and on the original split files.

• For the AWI-Gen data, we split into roughly two halves and artificially declare the two halves
as cases and controls. We compare the H3AGWAS workflow on the original AWI-Gen data
with BIGwas on the original data and on the split data. For the sim1 data set a similar
comparison was made.

2.3 Computational setup

We used Nextflow 21.04.1 and used Singularity with the images provided by the two tools. In both
cases, both the Nextflow repos and the Singularity images were already downloaded and installed.
We performed the experiments on a single machine (no scheduler) and using SLURM on a cluster.

2.3.1 Single machine execution

We used a machine with a dual Xeon Silver 4214 CPUs running at 2.20GHz (24 physical cores,
48 hyper-threaded cores) and 128GB of RAM, and all data inputs and outputs were stored on a
Seagate ST2000NM0008 2TB SATA Hard Drive. The machine was otherwise unloaded.

We ran both of these on the default settings – presumably both developers chose appropriate
default settings so that is fair enough. However, H3AGWAS workflow has performance parameters
that the user can set if they have more powerful computers. The max_plink_cores parameter is
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Data set H3AGWAS workflow BIGwas
Split Merged

Elapsed (s) CPU h Elapsed (s) CPU h Elapsed (s) CPU h
Example 34 0.05 480 0.1 496 0.2
AWI-Gen 1383 2.1 2576 0.8 3700 1.2
sim1 7278 12.3 29938 8.3 30240 8.4

Table 1: Comparison between H3AGWAS workflow and BIGwas workflow using QC script and
3 different data sets using single machine execution

by default set to 4 – this limits any PLINK process to use 4 cores (and makes 4 cores available
and so hence counts to CPU hours whether used or not). If we run the Nextflow with the
--max_plink_cores=12, the elapsed time for the AWI-Gen data set drops from 1383s to 750s
at the cost of accounted CPU hours going to 4.2 CPU hours. This is a trade-off the user must
consider. No doubt there are similar changes that could be made to the BIGwas workflow.

Note the difference in the AWI-Gen and sim1 data set for the H3AGWAS workflow is a
factor of 5.2. In principle we would expect the overall computational cost to scale quadratically
with number of SNPs as the single biggest computational costs are steps which are quadratic.
However as these components take longer there is less task parallelism as a proportion of the
overall cost. The BIGwas workflow also scales super-quadratically but by a greater factor (our
superficial observation is that the bulk of this extra cost is as at similar points in the computation).

2.3.2 Cluster execution

We tested on our production University Research Cluster: SLURM 20.11.8, CentOS7.9, Singu-
larity 3.6.3 (default Singularity OSG release). The cluster is heterogeneous so we set Nextflow
clusterOptions to execute only on 20 nodes with dual core Intel Xeon Silver 4114 CPUs running
at 2.2GHz (20 physical, 40 hyper-threaded cores per node – note that these machines are slower
than the one we tested above). Since this is a production cluster we were unable to test while the
cluster otherwise completely idle but we could test late on weekend with only a few other jobs
running so we do not think that this affected the results (we manually inspected that the jobs ran
on machines not being used by other jobs).

Singularity issues: We were unable to run BIGwas on the cluster in its default Singularity set-
ting. Like many production HPC systems, the cluster follows recommendations to not allow Singu-
larity with setuid enabled (https://sylabs.io/guides/latest/user-guide/security.html).
The disadvantage of this is that standard Singularity SIF images cannot be directly executed but
must be copied (unsquashed) to a temporary disk for each separate Nextflow process1. The BIGwas
image is 11GB in size in SIF (compressed) format and the computational cost of unsquashing, es-
pecially when multiple processes are doing this in parallel made running the workflow impractical.
The same Singularity issue applies to H3AGWAS workflow, of course. However, the H3AGWAS
workflow container design approach is to have several, specialised containers rather than one mono-
lithic container. For example, the workhorse py3plink container is ≈450MB in size – so although
there is a significant penalty for running H3AGWAS workflow on the cluster using Singularity
compared to running the natively installed software, it is not an outrageous penalty. In order to
perform the testing below, we were able to enable setuid for (this requires root privileges), but
this is not something we are allowed to leave for extended periods. In many environments setuid
is enabled in Singularity installations (as it was in our testing on the single machine), so many
users will not face this problem. But we suspect that other Singularity users in production HPC
environment will run into the same problem as us. (We also tested Singularity 3.8 and 3.9 and it
had the same problem).

1And to be clear if a Nextflow process is executed 10 times in parallel then each instantiation of the process
requires this.
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Data set H3AGWAS workflow BIGwas
Split Merged

Elapsed (s) CPU h Elapsed (s) CPU h Elapsed (s) CPU h
Example 189 < 0.1 967 0.4 899 0.2
AWI-Gen 2025 3.8 3712 1.2 3647 1.1
sim1 8346 16.2 33728 8.4 31028 8.6

Table 2: Comparison between H3AGWAS workflow and BIGwas workflow using the QC script
and three different data sets using the Cluster and SLURM

2.4 Comparison between association workflow of BIGwas and H3AGWAS
workflow

2.4.1 Data sets used and methodology

We used output of QC produced by the BIGwas workflow to run association of H3AGWAS
workflow and BIGwas. For both workflow we ran PLINK as the underlying association testing
tool defaults of workflows where used. We ran each test using an Intel Xeon Silver 4114 dual core
processor (40 hyper-threaded cores on 20 physical cores) with 128GB of RAM

2.5 Run, troubleshooting and duration

Table 3 shows the comparison. For the small test Data set, duration is lower for BIGwas than
H3AGWAS workflow, but for bigger sample size and SNP number, H3AGWAS workflow per-
formed better.

In using BIGwas, we observed missing data causes error on workflow when used with binary
phenotype.

Data set SNPs number Sample Size BIGwas H3AGWAS workflow
Example 35317 2464 35 70
AWI-GEN 2120006 8487 2383 1637
sim1 2091083 18322 5607 2327

Table 3: Comparison between H3AGWAS workflow and BIGwas workflow using Association script
and 3 different data sets

2.6 Conclusion

As we have indicated, performance is not the primary measure of a workflow because ultimately
the costs depend on the underlying software used and the workflow designer can neither take too
much credit nor blame for this. However, it is important to demonstrate the workflow can expose
appropriate parallelism, which we believe has been demonstrated. Certainly we do not believe that
the experimental evidence supports the claim that the BIGwas workflow is faster than H3AGWAS
workflow.

3 Description and test of different scripts of H3AGWAS
workflow : CPUs, Time

This section shows additional testing of H3AGWAS workflow on our SLURM cluster as shown.
Again since the cluster is a production cluster we were only able to run it on a lightly loaded cluster
not on a cluster that was idle. The purpose of this testing is to give indicative real-world costs.
For the tests done, the workflow execution is shown graphically as a directed acyclic graph and
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the computational cost of the individual components is shown (of course, many of the individual
components can be done in parallel).

3.1 Quality Control of genetics data

• Objectives : apply a quality control on genetics data.

• Input : workflow take as input PLINK file from genomics data, phenotype, sex phenotype.

• Individual filter :

– Apply sex control with X chromosome and sex phenotype.

– heterozygosity control using Hardy–Weinberg equilibrium.

– missingness

– relatedness

• SNPs filter :

– minor allele frequency

– heterozygosity

– duplicated markers

– missingness

• Output :

– report in pdf is produce in PDF describing each steps with different filters

– PLINK file after quality control with frequencies distribution, hardy Weinberg equilib-
rium... see example 1

– intermediate files produce by workflow.

• Test: QC workflow has been apply for 12,000 individuals with genotype using h3array po-
sitions (2.4 millions positions) using the cluster and SLURM – see the statistics in table
4.

An overview of the execution can be found in Figure 2 and the detailed computational results
in Table 4.
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Quality control report for KGPH3abionet_qc

H3Agwas QC Pipeline

Fri Jul 8 09:20:36 SAST 2022

1 Introduction

The input file for this analysis was KGPH3abionet.orig.{bed,bim,fam}. This data includes:

• 2133532 SNPs

• 2504 participants

The input files and md5 sums were

KGPH3abionet.bed 167dcda2acb129ab5cd05c42fd7f42c9

KGPH3abionet.bim d82c762f48366d210b0fa4bfea920be1

KGPH3abionet.fam 3da1e9a1b1ecb2ddad534d93cb241241

Note that some statistics are shown twice – on the raw input data and on the final result, since these
statistics are needed or different purposed.

Approach

The pipeline takes an incremental approach to QC, trading extra computation time in order to achieve
high quality while removing as few data as possible. Rather than applying all cut-offs at once, we
incrementally apply cutoffs (for example, removing really badly genotyped SNPs before checking for
heterozygosity will result in fewer individuals failing heterozygosity checks).

2 QC Phase 0

This phase only removes SNPs which are duplicated (based on SNP name). No other QC is done and
so the output of this phase should really be considered as raw data.

1. There were 0 duplicate SNPs. The file with them (if any) is called KGPH3abionet.dups. Note
that duplicate SNPs are determined by the names of the SNPs. SNPs which appear at the
same position are probably duplicates but may not be. You can control whether you want to
detect these using the parameter remove_on_bp. It is crucial to examine this file to avoid
inadvertently removing SNPs. On some chips there are duplicate SNPs at a position
– you should select what you what want.

2. 495 individuals had discordant sex information – the full PLINK report can be found in KGPH3abionet-nd.

sexcheck and an extract of the PLINK report showing only the failed reports can be found can
be found in KGPH3abionet-nd.badsex, and a more detailed analysis can be found in Section 5.

Figure 1 shows the spread of missingness per SNP across the sample, whereas Figure 2 shows the
spread of missingness per individual across the sample. Note that this shows missingness before any
filtering or cleaning up of the data.

1

2 QC PHASE 0

Figure 1 SNP missingness: For each level of missingness specified on the x axis, the corre-
sponding y-value shows the proportion of SNPs which have missingness less than this. [File is
{KGPH3abionet-nd-snpmiss_plot.pdf}]
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Minor allele frequency. Table 1 on page 2 shows the minor allele frequency spectrum for the raw
data. The number of monomorphic SNPs is shown in the first row. Note that some of the MAFs with
very low MAF are actually monomorphic, with the polymorphisms due to genotyping error. Figure 3
on page 4 shows the cumulative distribution of MAF. This can be used to determine an appropriate
MAF cut-off.

Note that the minor allele is determined with respect to the frequency spectrum in this data –
‘minor’ is not synonym for alternate or non-reference allele, or the allele that has minor frequency in
some other data set. Under this definition the MAF is always ≤ 0.5.

Table 1 Minor Allele Frequency spectrum of the raw data. The number of apparently monommorphic
SNPs is shown in the row labelled 0; the other rows show the number of SNPs in the bins shown.

Num SNPs
MAF bin

0 170
(0.0, 0.005] 80982
(0.005, 0.01] 95744
(0.01, 0.02] 199806
(0.02, 0.03] 130005
(0.03, 0.04] 88191
(0.04, 0.05] 69375
(0.05, 0.1] 252997
(0.1, 0.15] 206665
(0.15, 0.2] 179802
(0.2, 0.25] 162666
(0.25, 0.3] 147657
(0.3, 0.4] 269344
(0.4, 0.5] 250128

Hardy Weinberg Statistics : Figure 4 shows the cumulative distribution of Hardy-Weinberg p-
value for the SNPs in the raw data. This can be used to assess the cost of excluding SNPs with a

Page 2 Completed on 2022/07/08 at 09:20:36

2 QC PHASE 0

Figure 2 Missingness per indvididual: For each level of missingness specified on the x axis, the
corresponding y-value shows the proportion of individuals which have missingness less than this. [File
is {KGPH3abionet-nd-indmiss_plot.pdf}]
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particular p-cutoff. We expect the curve the fit tightly to the main diagonal, except for a very small
p values (and this deviation may not be observable on a linear plot).

The QQ plot for the HWE scores can be found in Figure 5. The region of deviation from the line
of expected versus observed p-values will be more observable here. Note that if there are very small
observed p-values in relation to expected values, the expected curve may be very flat — pay attention
to the x and y axis coordinates. Since we are plotting on a negative log-scale, note that regions of low
probabiliy of deviation from HWE (p-value close to 1) are at the left, and regions of high probability
(low p-value) are at the right. The tail of the plot where deviation from the diagonal occurs is likely
to be a good cut-off to use for QC.

However, care needs to be taken not exclude SNPs. We are using HWE p-value as a proxy for
something having gone wrong with the sample or genotyping, and this is a little crude. In a study
with participants from different population groups in a recently admixed group, deviation from HWE
is expected and does not indicate problems with QC. Moreover, in a disease study, it is likely that
those individuals that are affected, those SNPs that are associated with the condition under study
will not in be in HWE. Care needs to be taken – it is easier to handle in a pure case/control study. In
a population cross-section study with different conditions being considered, it might be advisable to
re-run the QC pipeline for HWE for each study. The current version of the pipeline does not support
his more complex analysis, though we plan to extend.
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2 QC PHASE 0

Figure 3 Cumulative frequency of SNPs. For a frequency shown on the x-axis, the corresponding
y-value shows the proportion of SNPs with frequency at least this frequency ; that is, it shows the
proportion of SNPs which will remain if the MAF filter of this x-value is chosen.
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Figure 4 HWE distribution. For an HWE-value shown on the x-axis, the corresponding y-value
shows the proportion of SNPs with HWE p-value at least this frequency ; that is, it shows the
proportion of SNPs which will be removed if the HWE filter of this x-value is chosen. File is
KGPH3abionet-nd-inithwe.pdf.
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Figure 1: Example of four first pages of quality control report generated by pipeline
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Process Tot hours % times % cpu
num-
ber

used
(Mean)

Max
mem
(MB)

NF
pro-

cesses

analyseX 0.00 1.13 28.40 67.10 1
batchProc 0.00 0.31 106.50 100.70 1
calculateMaf 0.00 0.23 55.10 138.20 1
calculateSampleHeterozygosity 0.10 2.40 25.70 105.90 1
calculateSnpSkewStatus 0.00 1.03 295.90 212.60 1
compPCA 0.60 19.73 365.40 1200.00 1
drawPCA 0.00 0.54 85.70 83.60 1
findHWEofSNPs 0.00 0.98 5.30 2.40 1
findRelatedIndiv 0.00 0.40 32.80 49.70 1
findSnpExtremeDifferentialMissingness 0.00 0.33 101.30 125.50 1
generateDifferentialMissingnessPlot 0.00 0.33 107.60 327.70 1
generateHwePlot 0.00 0.91 54.30 344.20 1
generateIndivMissingnessPlot 0.00 0.33 136.20 11.40 1
generateMafPlot 0.00 0.42 76.20 512.40 1
generateMissHetPlot 0.00 1.07 90.50 101.90 1
generateSnpMissingnessPlot 0.10 2.54 57.10 299.00 1
getBadIndivsMissingHet 0.00 1.41 61.70 49.70 1
getDuplicateMarkers 0.00 1.64 82.40 221.60 1
getInitMAF 0.10 2.55 10.80 171.80 1
getX 0.10 2.40 17.30 113.90 1
identifyIndivDiscSexinfo 0.10 3.33 25.70 214.90 1
inMD5 0.00 1.64 23.10 8.10 1
noSampleSheet 0.00 1.30 34.10 61.80 1
outMD5 0.00 0.95 35.30 8.10 1
produceReports 0.00 1.37 4.60 25.10 1
pruneForIBDLD 0.90 31.43 384.50 1500.00 1
removeDuplicateSNPs 0.10 4.17 15.30 199.50 1
removeQCIndivs 0.00 1.60 28.20 152.20 1
removeQCPhase1 0.30 10.20 28.00 196.30 1
removeSkewSnps 0.00 0.69 47.80 152.40 1
showHWEStats 0.00 1.01 76.70 926.10 1
showInitMAF 0.00 1.62 51.40 484.80 1

Table 4: Statistics resumé of the QC workflow: process – Nextflow process name; Tot. hours –
total hours used by NF process; % times – percentage of times used by process compared to other
process ; % cpu number used (Mean) – mean % cpu number used by the process; Max mem (MB)
is maximum of memory (resident set size) used by one process; NF processes – number of Nextflow
process used for the steps
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3.2 Association

• input :

– phenotype file and one or more phenotype, covariates

– genetics data in plink file and in option dosage : bgen (regenie, SAIGE, fastGWA and
BOLT-LMM), VCF (SAIGE) and impute2 (BOLT-LMM)

• output :

– each summary statistics of each software and phenotype used and pdf report contains
for each combination 3

– report with Manhattan, qq plot and best result

– relatedness comptued for each software

3.3 Fine-mapping

• Objective: apply a fine-mapping on significant regions of summary statistics result

• Input data : summary statistics, causal variant number and genetics data in PLINK format

• identify region to apply fine-mapping on full summary statistics using PLINK clump to
identify lead SNPs.

• Steps

– for each region apply different algorithms to find the number of independent SNPs, puta-
tive causal variant and credible interval with different software for fine-mapping : COJO
(step-wise model selection procedure to select independently associated), FINEMAP
(stochastic and conditional algorithm), Caviarbf and PAINTOR software with possi-
bility to use eQTL information.

• Output 4:

– intermediate file produce in workflow and by each software

– file contains all result merge

– figures plot as locus zoom with has been had probability of each software of fine-
mapping.

• Test : Fine-mapping has been done on summary statistics obtained with cholesterol output
of association testing done with GEMMA with AWI-Gen data set. We obtained 40 windows
with p < 5× 10−8: for each region different software was used fine-mapping

Figure 5 gives an overview of the execution and Table 5 shows the detailed computational
costs.
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Process Tot hours % times % cpu
num-
ber

used
(Mean)

Max
mem
(MB)

NF
pro-

cesses

clump data 0.20 2.19 61.60 3900.00 1
ComputedCaviarBF 0.50 5.79 86.80 16.50 40
ComputedCojo 0.50 5.54 76.41 11.10 40
ComputedFineMapCond 0.50 6.72 81.09 11.20 40
ComputedFineMapSSS 0.40 5.53 164.14 8.20 40
ComputedLd 0.90 11.41 113.56 38.40 40
ComputedPaintor 0.40 5.29 85.59 76.40 40
extract sigpos 0.00 0.12 131.90 1
ExtractPositionGWAS 1.90 22.84 95.63 3800.00 40
GetGenesInfo 0.10 1.23 42.60 2000.00 1
GWASCatDl 0.00 0.25 77.30 445.20 1
MergeResult 0.70 8.12 93.01 439.10 40
SubPLINK 2.00 25.00 78.50 826.50 40

Table 5: Statistics resumé of fine-mapping workflow running on cluster, using cholesterol pheno-
type. Process - it is Nextflow process name; Tot. hours – total hours used by NF process; % times
– percentage of times used by process compared to other process ; % cpu number used (Mean) -
mean % cpu number used by the process; Max mem (MB) is maximum of memory used by one
process; NF processes - number of Nextflow process used for the steps
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Association Testing Draft : pheno_qt2

H3Agwas Association Testing Pipeline

Mon Jul 11 15:44:42 SAST 2022

1 Introduction

This report gives a brief overview of the run of the association testing pipeline.

• You were testing for the following phenotypes pheno_qt2

• You were using the following covariates []

2 Principal Component Analysis of Participants

Figure 1 shows a PCA of the participants. This should be examined for possible structure.

Figure 1 PCA of participants
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2 PRINCIPAL COMPONENT ANALYSIS OF PARTICIPANTS

A summary of the data for pheno_qt2 can be found in the Table 1, transformed using different
transforms. A histogram is found in Figure 2.

Table 1 Overview of phenotype pheno_qt2 distribution

Data Count Min Max Ave StdDev

no transform 550 −4.8290E+0150.31 7.4218E−0218.04
log transform 299 −3.7771E+003.93 2.25 1.11
square root transform 289 0.16 7.09 3.40 1.50
cube root transform 550 −3.6416E+003.69 6.5912E−022.35

Figure 2 Histogram of pheno_qt2 values under different transforms [File is B050-pheno-qt2.pdf]

�� � ��

������������

�

�

��

��

�
��
�
�
�
�
�
�

��� ��� ���

�������������

�

�

��

��

�
��
�
�
�
�
�
�

� � � �

���������������������

�

�

��

�
��
�
�
�
�
�
�

��� ��� ���

�������������������

�

��

��

�
��
�
�
�
�
�
�

Page 2 Completed on 2022/07/11 at 15:44:42

3 RESULT OF GEMMA ANALYSIS : PHENOTYPE PHENO-QT2

Table 2 The top 10 SNPs found by GEMMA analysis of phenotype pheno-qt2

Chr SNP Pos Beta P

1 1:117532790:C:T 117532790 -14.9551 3.122E-46
10 10:112678657:G:T 112678657 -15.1765 1.732E-45
17 17:78757626:A:G 78757626 12.2282 3.115E-21
12 12:31367856:A:C 31367856 9.5014 3.502E-17
2 2:45832137:A:G 45832137 13.5996 1.276E-15
17 17:78727734:T:C 78727734 10.8065 2.504E-14
17 17:78728813:G:A 78728813 10.6795 4.655E-14
17 17:78716122:G:A 78716122 10.3850 1.273E-13
17 17:78716417:A:G 78716417 10.3850 1.273E-13
17 17:78714793:C:T 78714793 10.3850 1.273E-13

3 Result of Gemma analysis : phenotype pheno-qt2

All the results from the GEMMA analysis can be found in the gemma directory. The result of the
GEMMA analysis is shown for phentoytype pheno-qt2. The file with association statistics is found
in imput_data-pheno-qt2.assoc.txt. The top 10 results are shown in Table 2:
The Manhatten plot can be found in Figure 3. The corresponding QQ-plot can be found in Figure 4.

Figure 3 Gemma testing: Manhatten plot for phenotype pheno-qt2

� � � � � � � � �

��

��

��

��

�� �� �� �� �� �� �� �� �� �� �� ����

��

��

��

��

Page 3 Completed on 2022/07/11 at 15:44:42

3 RESULT OF GEMMA ANALYSIS : PHENOTYPE PHENO-QT2

Figure 4 Gemma testing: QQ-plot for phenotype pheno-qt2
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Figure 3: Example of four first pages of association report generated by pipeline with 10 best
solutions, qq plot and manhantan plot
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Legends (from top to bottow):

− top box: 

  − gwas catalog, are square point and rsid red 

  − lead snps defined by gcta are points and rsid in black

  − credible set defined by cond / sss finemapping are in grey

− genes / gwas catalog box : 

  − arrow : red arrow : present in dataset / grey arrow absent in dataset

  − genes represented by box (exon) and lines (intron)

− distribution of post probability : 

  − dstribution of post probability for finemapinf caviar, paintor and finemap, color variabtion ga

  − distribution of annotation : in % for each positions, red correspond to lead position, or credib

Gwas catalog :

45632453 Metabolite levels /PubmedId: 23823483 −

45646824 Glaucoma /PubmedId: 20363506 −

45669485 Height /PubmedId: 30595370 −

45678606 Carotid Intima−media thickness (mean of the maximum cIMT) /PubmedId: 35165267 −

45748277 Type 2 diabetes /PubmedId: 25760438 −

45752709 Metabolite levels /PubmedId: 23823483 −

45762607 Osteoarthritis (self−reported) /PubmedId: 29559693 −

45775995 Haemorrhoidal disease /PubmedId: 33888516 −

Figure 4: Example of report generated by fine-mapping pipeline contained page 1)locus-zoom
with lead snps defined using stepwise model selection procedure (gcta), credible position from
fine-mapping softwares, post-probability of fine-mapping software, information relative to GWAS
catalog, genes. Pages 2 : legends. Pages 3 : GWAS catalog information’s.
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Figure 5: flowchart of Fine-mapping workflow

13



3.4 Heritability

• Objectives : compute heritability and/or co-heritability using genetics diversity and pheno-
type or/and summary statistics

• Input : genetics data and phenotype or/and summary statistics.

• Steps :

– format and prepared files

– build matrix of relatedness or/and genetic relationships matrix for GCTA, GEMMA

– computed heritability using GEMMA and LDSC using summary statistics and GCTA,
GEMMA and BOLT-LMM using genetics and phenotype.

• Test: using 4 phenotypes of lipid, genotype and summary statistics obtained using associa-
tion testing result, we ran heritability and co-heritability using the cluster.

• Output : pipeline gave all intermediate file from each software but also a barplot with each
heritability (see Figure 6)

An overview is shown in Figure 7 and the detailed computational cost is shown in Table 6.

Process Tot hours % times % cpu
num-
ber

used
(Mean)

Max
mem
(MB)

NF
pro-

cesses

doGemmah2 4.10 4.26 372.19 4200.00 8
doGemmah2 Stat 0.00 0.01 67.39 43.00 8
DoGemmah2Pval 59.50 61.55 894.45 8300.00 4
doGemmah2Pval Stat 0.00 0.00 63.38 43.00 4
doGRLEM GCTA Stat multi 0.00 0.00 78.15 1.90 4
doh2Bolt 6.10 6.34 1523.67 5700.00 4
doh2Bolt Stat 0.00 0.01 70.15 43.00 4
doh2BoltiMulti 17.00 17.61 1973.90 5700.00 1
DoLDSC 0.40 0.44 98.10 13900.00 1
doLDSC Stat 0.00 0.00 29.50 43.00 1
doMultiGRM 0.50 0.55 779.73 5800.00 4
GCTAComputeMultiGRM 0.50 0.51 495.40 6500.00 1
GCTAGRMByFile 7.40 7.66 99.40 2700.00 4
GCTAStrat 0.00 0.00 79.00 158.00 1
getBoltPhenosCovar 0.00 0.01 47.60 65.30 1
getGctaPhenosCovar 0.00 0.04 44.80 66.60 4
getGemmaRel 0.80 0.82 673.60 5100.00 1
MergeFile 0.00 0.00 31.20 1
MergeH2 0.00 0.01 64.40 106.80 1
select rs format 0.20 0.17 54.40 609.70 1

Table 6: Statistics resume of heritability workflow running with cluster, using 4 phenotypes and
10,000 individuals and corresponding summary statistics. Process – Nextflow process name; Tot.
hours – total hours used by NF process; % times – percentage of times used by process compared
to other process ; % cpu number used (Mean) – mean % cpu number used by the process; Max
mem (MB) is maximum of memory (RSS) used by any process; NF processes – number of Nextflow
processes used for the steps.
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Figure 6: example of output of heritability workflow
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3.5 Simulations workflow

Three workflows of simulation exist

3.5.1 Description of each workflow

Workflow Input genotype Simulation
process

Output Post-simulation
computation

utils/build_

example_data/

main.nf
• genotype in VCF

file (or downloaded
by ftp, by default
1000 Genomes,
v37),

• effect database (or
download by ftp
GWAS catalog),
phenotype of
database,

• positions reference
in BED format as
array positions

• phenotype of effect
database

Extract
positions
reference
from
genetics
data, clean
and format
in plink file

extract positions
and effect from
the Effect
database,
extract
corresponding
genotype and
simulated
phenotypes with
GCTA

• genetic data
of population

• phenotypes
quantitative
or qualitative

Randomly
switch the sex of
some individuals
to test qc
pipeline

utils/build_

example_data/

simul-assoc_

gcta.nf

• genotype in plink
file

• effect database

• phenotype of effect
database

None as above phenotypes
quantitative or
qualitative

None

utils/build_

example_data/

simul-assoc_

phenosim.nf

genotype in plink file None random
positions will be
selected and
phenotype
simulated using
phenosim

• phenotype
simulated

• summary
statistics of
associations
and statistics
(FP and TP)

GEMMA and
BOLT-LMM will
run on genetics
data and
phenotype
simulated. False
Positive, True
positive rate will
be computed

Table 7: Description : input - Input of different pipeline, genotype - if pipeline produce also a
independent genotype complementary of phenotype simulation; simulation - how pipeline simu-
lated phenotype; output - what output give pipeline; Post-simulation computation - Analyse or
modification done after simulations

3.5.2 Simulation using 1000Genome, GWAS catalog and GCTA

• Objectives : building phenotype using genetics data

• Input : by default, workflow uses (1) genetics data from 1000 Genomes Project (2) result
of lead SNPs from GWAS catalog (3) list of phenotype choice in GWAS catalog to build
phenotypes.

• Steps

– Downloads GWAS catalog.

– Extracts and format GWAS catalog file with extraction of positions and effect using
list of SNPs.

17

utils/build_example_data/main.nf
utils/build_example_data/main.nf
utils/build_example_data/main.nf
qc
utils/build_example_data/simul-assoc_gcta.nf
utils/build_example_data/simul-assoc_gcta.nf
utils/build_example_data/simul-assoc_gcta.nf
utils/build_example_data/simul-assoc_gcta.nf
utils/build_example_data/simul-assoc_phenosim.nf
utils/build_example_data/simul-assoc_phenosim.nf
utils/build_example_data/simul-assoc_phenosim.nf
utils/build_example_data/simul-assoc_phenosim.nf


– Downloads genomics data of positions extracted from GWAS catalog and array.

– Extracts independent positions from position of GWAS catalog using ”–clump” of
PLINK and genetic data download.

– Uses Genomics data and z values extracted from GWAS catalog using independent
positions to build phenotype using GCTA.

– Output :

∗ genotype in plink format of positions from array defined in input.

∗ Quantitative and qualitative phenotype with position and genotype used to build
phenotype corresponding and information relative to GWAS catalog and used to
build phenotype.

• Test : build phenotypes using data of 1000 Genomes project, GWAS catalog and diabetes
as phenotype.

See Table 8 for the detailed computational costs and Figure 8 for an overview of the different
steps.

Process Tot hours % times % cpu
num-
ber

used
(Mean)

Max
mem
(MB)

NF
pro-

cesses

addSexFile 0.00 0.01 22.00 3.90 1
cleanPLINKFile 0.20 0.26 417.94 1.50 22
cleanPLINKFile GC 0.40 0.56 307.69 1.50 22
Dl1000G 52.10 75.30 1.50 38.30 22
Dl1000G GC 3.90 5.71 0.95 13.80 22
format sim qualitatif 0.00 0.03 90.30 20.90 1
format sim quantitatif 0.00 0.03 88.80 15.10 1
format simulated 0.00 0.01 91.30 13.70 1
getchr gc 0.00 0.03 39.30 1
GWASCatDl 0.10 0.11 75.30 245.30 1
mergePLINKFile 0.00 0.01 135.00 71.20 1
mergePLINKFile GC 0.00 0.01 307.40 12.70 1
simulation qualitatif 0.00 0.01 89.10 1.50 1
simulation quantitatif 0.00 0.01 95.00 5.60 1
transfvcfInBed1000G 2.10 3.11 422.98 9.20 22
transfvcfInBed1000G GC 10.20 14.79 530.84 1.50 22

Table 8: Summary result for simulation individual using GWAS catalog for phenotype and 1000
genome project as genotype data. Process - it is Nextflow process name; Tot. hours – total hours
used by NF process; % times – percentage of times used by process compared to other process ; %
cpu number used (Mean) - mean % cpu number used by the process; Max mem (MB) is maximum
of memory used by one process; NF processes - number of Nextflow process used for the steps

3.6 Format data

3.6.1 Convert PLINK format to VCF

• Objective : converts data to VCF for imputation

• Input PLINK file, reference genome of FASTA file and reference for positions, chromosome,
and rs name.

18



Figure 8: flowchart of simulation workflow
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• Steps

– extract rsid and information of each positions from the reference file and reference
sequence.

– splits file by chromosome (optional)

– converts PLINK to VCF.

– cleans and rename position name.

– fix allele using BCFtools

• Output : VCF file and VCF file by chromosome.

• Test : convert data after QC of 10,796 individuals using workflow in VCF format

See Figure 9 for an overview of the process and Table 9 for the detailed computational costs.

Process Tot hours % times % cpu
num-
ber

used
(Mean)

Max
mem
(MB)

NF
pro-

cesses

checkfixref 0.40 7.73 98.80 11.00 1
checkVCF 0.40 8.12 97.40 173.40 1
convertInVcfChro 3.00 62.03 155.99 1100.00 22
convertrsname 0.00 0.43 86.50 211.60 1
CounChro 0.10 1.29 3.50 2.60 1
deletedmultianddel 0.00 0.63 93.30 687.60 1
extractpositionfasta 0.00 0.19 50.90 1.50 1
extractrsname 0.70 13.46 98.60 505.60 1
mergevcf 0.20 3.86 319.00 16.00 1
refallele 0.10 2.26 13.80 165.60 1

Table 9: Summary of the result of the workflow to format PLINK to VCF prepare data for
imputation. Process – Nextflow process name; Tot. hours – total hours used by NF process; %
times – percentage of times used by process compared to other process; % cpu number used (Mean)
– mean % cpu number used by the process; Max mem (MB) is maximum of memory used by one
process (resident set size); NF processes – number of Nextflow processes used for the steps

3.6.2 Convert VCF to PLINK or other format

• Objective : convert output from imputation in PLINK or other format to run association
testing.

• Input : list of VCF, genetic map.

• Steps

– Computed various statistics as frequency and imputation score

– Filter VCF by score and frequency

– Transform file to PLINK.

– check for rs duplicate and correct.

– merge all files PLINK by chromosome.

20



Figure 9: Flowchart of workflow to convert PLINK format to VCF to prepare data for imputation
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• Output: PLINK file and report presenting distribution of quality and frequencies 10 and
plink files converted.

• Test : used output of imputed data (≈30 millions SNPs and 12,000 individuals)

transformation pipeline

H3Agwas : transformation of vcf in plink format

Sat Jul 9 19:45:07 SAST 2022

1 Introduction

This report gives a brief overview of transformation vcf file from imputation in plink format.

1

Table 1 Table contains resume of score number (Sc) higher than upper limit and frequencies (f) not
null by file

File f > 0 Sc > 0.6 Sc > 0.6andf > 0 Total

22.pbwt_reference_impute.vcf.stat 830831 1111581 828177 1165064
21.pbwt_reference_impute.vcf.stat 850805 1135955 848775 1183101
19.pbwt_reference_impute.vcf.stat 1354029 1793624 1349398 1886100
14.pbwt_reference_impute.vcf.stat 2099453 2816929 2093317 2939523
20.pbwt_reference_impute.vcf.stat 1451051 1955950 1446747 2036437
17.pbwt_reference_impute.vcf.stat 1769010 2370050 1763417 2483649
15.pbwt_reference_impute.vcf.stat 1876787 2529600 1871442 2642129
18.pbwt_reference_impute.vcf.stat 1818318 2446804 1813937 2543884
16.pbwt_reference_impute.vcf.stat 2053373 2763399 2045247 2909149
13.pbwt_reference_impute.vcf.stat 2296092 3085243 2289323 3214114
12.pbwt_reference_impute.vcf.stat 3053375 4111389 3045163 4283159
9.pbwt_reference_impute.vcf.stat 2763078 3742474 2755629 3903677
10.pbwt_reference_impute.vcf.stat 3154340 4238523 3146387 4411996
11.pbwt_reference_impute.vcf.stat 3184906 4275739 3173067 4483216
6.pbwt_reference_impute.vcf.stat 3962862 5313190 3948421 5560553
7.pbwt_reference_impute.vcf.stat 3673810 4938142 3662614 5166355
8.pbwt_reference_impute.vcf.stat 3673908 4967200 3661800 5191483
5.pbwt_reference_impute.vcf.stat 4206969 5679381 4193906 5924338
4.pbwt_reference_impute.vcf.stat 4540013 6081660 4525781 6350604
3.pbwt_reference_impute.vcf.stat 4644141 6284902 4630203 6561776
1.pbwt_reference_impute.vcf.stat 5035197 6791356 5019430 7084113
2.pbwt_reference_impute.vcf.stat 5595851 7576057 5579562 7913667
Total 63888199 86009148 63691743 7913667

Resume by files format, SNPs number higher than the score higher than 0.6 and with frequencies
more than 0
The score distribution plot can be found in Figure 1.The frequencies distribution total be found in
Figure 2.

2

Figure 1 score distribution
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Figure 2 Distribution of frequencies
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3

Figure 10: Output of pipeline format vcf in plink, with distribution of quality and frequency
(figures with general distribution and table distribution by frequency)

An overview is shown in Figure 11 and the detailed computational costs are shown in Table 10.
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Figure 11: flowchart of workflow to convert VCF file from imputation into PLINK format
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Process Tot hours % times % cpu
num-
ber

used
(Mean)

Max
mem
(MB)

NF
pro-

cesses

TransformRsDup 7.20 4.71 10.97 224.70 22
AddedCM 2.80 1.83 26.99 187.50 22
computedstat 13.20 8.65 99.33 8.60 22
dostat 0.10 0.08 96.80 6400.00 1
formatvcfscore 128.00 84.08 108.37 196.10 22
GetRsDup 0.00 0.02 89.00 2900.00 1
MergePLINK 1.00 0.64 83.10 62700.00 1

Table 10: Summary of result of workflow to format VCF after imputation in PLINK format using
data after imputation obtained in QC. Process – Nextflow process name; Tot. hours – total hours
used by NF process; % times – percentage of times used by process compared to other process ; %
cpu number used (Mean) – mean % cpu number used by the process; Max mem (MB) is maximum
of memory used by one process; NF processes – number of Nextflow processes used for the steps.

3.6.3 Multi-trait analyse using MTAG

• Objective : Analyse multi trait using summary statistics

• Input : result of summary statistics from various phenotype

• Steps

– format each files to prepared input for MTAG software

– Run MTAG with all summary statistics

– Run MTAG seletected 2 by 2 each summary statistics.

• Output : result of mtag sofware (summary statistics), and report in PDF as association
pipeline

• Test : used output summary statistics (14 millions SNPs) for 4 SNPs

An overview is shown in Figure 12 and the detailed computational costs in Table 11.
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Figure 12: flowchart of workflow to convert VCF file from imputation in PLINK format
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Process Tot hours % times % cpu
num-
ber

used
(Mean)

Max
mem
(MB)

NF
pro-

cesses

doFormatFilePlk 0.70 13.13 71.35 6400.00 4
doMTAG 1.20 22.82 98.70 34600.00 1
doMTAG2by2 3.00 59.39 100.35 18600.00 6
doReport 0.00 0.02 45.10 20.50 1
RenameMtag 0.00 0.88 17.70 9.30 1
showMtag 0.20 3.76 91.75 6900.00 4

Table 11: Summary of result of workflow doing a multi trait analysis using MTAG: Process –
Nextflow process name; Tot. hours – total hours used by NF process; % times – percentage of
times used by process compared to other process; % cpu number used (Mean) – mean % cpu
number used by the process; Max mem (MB) is maximum of memory used by one process; NF
processes – number of Nextflow processes used for the steps.
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4 Detail of experimentation in the main paper

These tables give detail of the experimentation described in the main paper.

Process Tot hours % times % cpu number
used (Mean)

Max mem
(MB)

NF
processes

computePCA 2.3 0.5 374 1100 1
drawPCA 0.0 0.0 114 89 1
extractPheno 0.0 0.0 81 63 1
bgen formatsample 0.0 0.0 92 93 1
indexbgen list 3.4 0.8 41 7 22
getBoltPhenosCovar 0.0 0.0 79 68 1
select rs format 0.0 0.0 58 635 1
FastGWADoGRM 11.5 2.7 227 2100 100
MergFastGWADoGRM 0.0 0.0 17 3 1
computeTest 8.1 1.9 100 824 4
format genetic ldscore 0.4 0.1 43 2200 1
doBoltmm 5.7 1.3 351 3600 4
getListeChroGem 0.0 0.0 120 5 1
getGemmaRel 0.6 0.1 854 5100 1
doGemmaChro 312.1 72.7 945 5400 88
doMergeGemma 0.1 0.0 24 4 4
FastGWARun 41.9 9.8 972 2200 4
getListeChro saige 0.0 0.0 81 5 1
getchrobgen 0.0 0.0 86 23 22
getSaigePheno 0.0 0.0 103 66 1
checkidd saige 0.0 0.0 43 136 1
subplink heritability saige 0.0 0.0 74 927 1
saige computed variance 1.5 0.4 878 806 4
doSaigeListBgen 13.4 3.1 99 644 88
doMergeSaige 0.0 0.0 40 4 4
regenie step1 4.6 1.1 176 5900 4
regenie step2 22.6 5.3 925 373 88
merge regenie 0.1 0.0 24 4 4
format regeniesumstat 0.1 0.0 78 10 4
ShowManhattan 0.7 0.2 97 7900 20
drawPlinkResults 0.1 0.0 83 4300 4
showPhenoDistrib 0.0 0.0 85 127 1
doReport 0.0 0.0 34 25 1

Table 12: Cost of associationon cluster, using 4 phenotypes and 10,700 individuals. The elapsed
time for the entire workflow was 12h 36min, with a high degree of parallelisation. Process is the
Nextflow process name; Tot hours – total CPU hours used by instances of this NF process; % times
– % of time used by process compared to other process; % cpu number used (Mean) – mean % cpu
number used by instances of the process — a measure of achievable parallelism for instances of
that process; Max mem (MB) is the maximum resident set size used by one process; NF processes
– number of Nextflow process used for the steps, and a measure of parallelism at very coarse level.
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Process Tot hours % times % cpu
number used

(Mean)

Max
mem
(MB)

NF
pro-

cesses
GetRsFile 1.1 1.2 99.5 9 1
ChangeFormatFile 29.9 30.7 65.2 4100 3
doGWAMA 18.0 18.5 67.4 10400 1
doMetal 2.9 3.0 99.6 3500 1
doMetaSoft 12.3 12.7 103.1 7700 1
doMRMEGA 15.8 16.2 68.1 8100 1
doPlinkMeta 8.9 9.2 99.8 2000 1
showGWAMA 1.4 1.5 100.2 5800 1
showMetal 1.8 1.8 97.7 3800 1
showMetasoft 1.9 1.9 100.1 7500 1
showMRMEGA 1.6 1.6 100.2 6200 1
showPlink 1.2 1.3 100.0 4800 1
doReport 0.6 0.6 46.1 24 1

Table 13: Cost of running meta-analysis workflow using Wits cluster, using 3 summary statistics
and 14 millions of positions by summary statistics. Column labels as in Table 12
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