PPARy lipodystrophy mutants reveal intermolecular interactions required

for enhancer activation

Supplementary information

Supplementary Table 1: Oligonucleotides

Supplementary Table 2: PPARγ2-WT regulated genes

Supplementary Table 3: Genes contributing to PCA

Supplementary Table 4: Mutation sensitive genes

Supplementary Figures 1-10

Supplementary Table 1 Oligonucleotides

nstructs
GCGTGCTAGCCCGGGGAAGA GGGGAAAGGGCA CTCGAGATCTGCGAT
ATCGCAGATCTCGAG TGCCCTTTCCCCT TCTTCCCCGGGCTAGCACGC
AATCGATAAGGATCCGAAGA AGGGGAAAGGGCA GTCGACCGATGCCCT
AGGGCATCGGTCGAC TGCCCTTTCCCCT TCTTCGGATCCTTATCGATT
GCCCGGGGCACTAGGCAAGAGGGCACTCGAGATCTGCG
CGCAGATCTCGAG TGCCCTCTTGCCT AGTGCCCCGGGC
AGGATCCGCACTAGGCAAGAGGGCAGTCGACCGATGCC
GGCATCGGTCGAC TGCCCTCTTGCCT AGTGCGGATCCT
GCCCGGGGACGAAGGGAAAGGGCACTCGAGATCTGCG
CGCAGATCTCGAG TGCCCTTTCCCT TCGTCCCCGGGC
AGGATCCGACGAAGGGAAAGGGCAGTCGACCGATGCC
GGCATCGGTCGAC TGCCCTTTCCCT TCGTCGGATCCT
GCCCGGGGCCCA AGGCAAGAGGGCA CTCGAGATCTGCG
CGCAGATCTCGAG TGCCCTCTTGCCT TGGGCCCCGGGC
AGGATCCGCCCA AGGCAAGAGGGCA GTCGACCGATGCC
GGCATCGGTCGAC TGCCCTCTTGCCT TGGGCGGATCCT
GCGTGCTAGCCCGGGAACT AGGTCAAAGGTCA CTCGAGATCTGCGAT
ATCGCAGATCTCGAG TGACCTTTGACCT AGTTCCCGGGCTAGCACGC
AATCGATAAGGATCCAACT AGGTCAAAGGTCA GTCGACCGATGCCCT
AGGGCATCGGTCGAC TGACCTTTGACCT AGTTGGATCCTTATCGATT
purifications
5BiosgAGAAGAGGTACTGCCCATGGCACT AGGCAAGAGGGCA CAGAA GCAATGGATGTGGCTTAT
ATAAGCCACATCCATTGCTTCTG TGCCCTCTTGCCT AGTGCCATGGGC AGTACCTCTTCT
5BiosgAGAAGAGGTACTGCCCATGGCACT AGCCAAGAGCACA CAGAA GCAATGGATGTGGCTTAT
ATAAGCCACATCCATTGCTTCTG TGTGCTCTTGGCT AGTGCCATGGGC AGTACCTCTTCT
5BiosgAGAAGAGGTACTGCCCATGGAACT AGGTCAAAGGTCA CAGAA GCAATGGATGTGGCTTAT
ATAAGCCACATCCATTGCTTCTG TGACCTTTGACCT AGTTCCATGGGC AGTACCTCTTCT

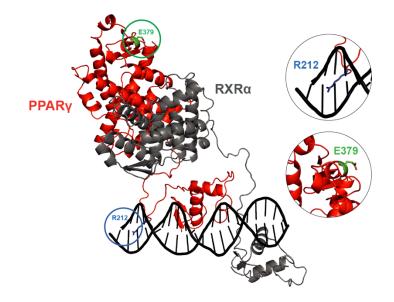
PPRE sequences are indicated in bold with 5'UR plus PPRE highlighted in grey; fw, forward; rev, reverse.

Supplementary Table 2 PPARγ2-WT regulated genes

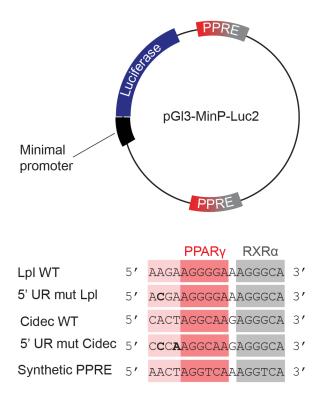
PPARy2-WT induced genes – ranked by decreasing FC (WT vs. Control)							
Agp7 Pr/2c2 Mmp13 Gm15441 Gsn Atp6v0a1 Dake Gja1							
Ацр7 Tmprss11f	Kctd12b	Slc37a2	Paf	Msx2	Apobr	Cela1	Lrrc32
Ehhadh	Acsbg1	Dgat2	Pgj Nav3	PhIda3	Dixdc1	Agpat2	Metrnl
Angptl4	Adra2a	5		Nipal1	Wrb	9130008F23Rik	Klhl25
	Cdk18	Lipe	Spry4 Cobll1	Tmed5			
Cyp26b1		lgf1			Acaa2	Ctsc	Herc3
Fabp4	Pdk4	Wnk4	Krt13	Pnpla2	Btg1	Tecpr1	Far1
Pde1b	Slc43a1	Cebpa	Hic2	Rab11fip1	lfrd1	Mybl2	Zmat3
Plin5	Htra3	116	Adamts4	Spin4	Tiparp	Fads3	Pex14
Hrct1	2310001K24Rik	Phospho1	Klf10	Slc25a20	Unc119	Dancr	Ptpn4
Kank3	Pex11a	Cpt1a	Arc	Pcx	Arhgef18	Fzd5	Dgkh
Cidec	Rasl11b	Abi3	Gm45928	Fam212a	Pitpnm1	Tnfaip2	Acot7
Sema3e	Sema4a	Ppcs	Bcar3	Lgr4	Acadvl	Pard6b	Slc22a5
Prl2c3	Npr3	Lgals3bp	Ptges	Cib2	Aldh9a1	Cbr3	Abcd3
Prl2c4	Btg2	Nrxn2	Vamp5	Dab2	Apbb1ip	Ereg	Igfbp4
Plin4	Serpine1	Fgfrl1	Ormdl3	Smpd2	Col6a3	Gpr137b	Oxsm
Pkp2	Pcsk4	Casp8	Hilpda	Rom1	Ophn1	Cdk2ap2	Sulf2
Abhd15	Sema7a	Mmp19	Reep6	Pold4	Soat1	Nupr1	Fblim1
Stac3	Fah	Dhrs3	Hsdl2	Hsd3b6	Ngf	Gfra1	Gale
Ephx2	Acox1	Eda2r	Tle3	Prune1	Foxd1	Cat	Abcc4
Prl2c5	Sema3c	Txnip	Adgrb2	Plk3	Fam107b	Las1l	Mindy1
Kcnn4	Gzme	Kcnk3	St6gal1	Masp1	Rap1gap2	Slc25a22	Etfdh
Plin2	Acot2	Ucp2	Ech1	Mfsd2a	Hccs	Hadhb	Cpt2
Nppc	Tnxb	Fhod3	Ppp1r13l	Dhx32	Abhd6	Gprc5b	Mgst1
Plin1	Cd36	Stk10	Efna2	Scarb2	Tmem150a	1190002N15Rik	Jade3
Dhrs9	Fitm2	4732471J01Rik	Mgat5	Tmem134	Frat2	Cmpk1	2610318N02Rik
Mmp15	Rtn2	Prtg	Plaur	S1pr3	Kif3c	Cdkn1a	B4galt1
Mycl	Sh2d3c	Tqfb2	Mcrip2	Igck	Stat5a	Il4ra	Chp1
Hcrtr1	Klf11	Has2	Far1os	Pik3r5	Sash1	Snhq3	Man1a
Trem2	Tinagl1	Atp10d	Rreb1	Lpcat3	Rflnb	Baiap2	Mtmr10
lfit1	Deptor	Hmox1	Fosl1	Mertk	Hif1a	Zcchc10	Phactr4
Ĺpl	Clcf1	Ermp1	Stom	Nr1d1	Fdx1	Usp38	lgsec1
Hr	Onecut2	Ccl9	Rqs17	Klf5	Ccdc85b	Slc35d1	
Mlph	Areg	ltqb3	Efnb1	EgIn3	Peq10	Foxred2	
Lgals4	Trim25	Pim3	Prkcd	Irs2	Creld1	Ttyh2	

Supplementary Table 3 GO-categories of PPARy2-WT regulated genes

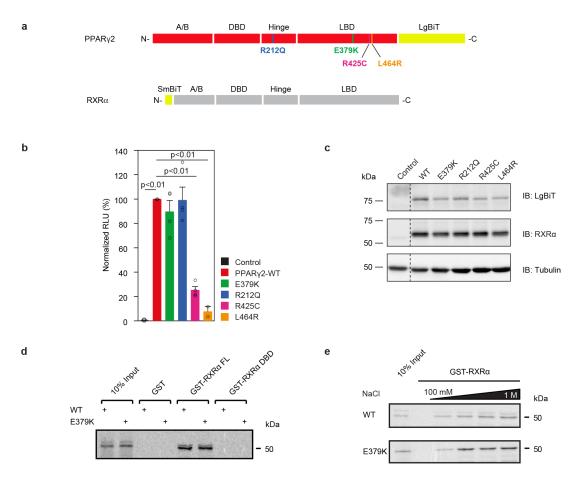
Top 15 PPARγ2-WT-induced and -repressed genes					
PPARy2-WT induced genes		PPARγ2-WT repressed genes			
Gene	Adipocyte related GO-Categories	Gene	Adipocyte related GO Categories		
Aqp7	Glycerol transport	Lvrn	-		
Tmprss11f	-	Nsun7	-		
Ehhadh	Fatty acid beta-oxidation	Cobl	-		
Angptl4	Lipid metabolic process Triglyceride homeostasis Positive regulation of lipid metabolic process Negative regulation of lipoprotein lipase activity Cellular response to cell starvation	Ptx3	-		
Cyp26b1	Lipid metabolic process	Maf	-		
Fabp4	Fatty acid metabolic process Long-chain fatty acid transport White/brown fat cell differentiation	Adamts5	-		
Pde1b	Cyclic-nucleotide phosphodiesterase activity	Sync	-		
Plin5	Lipid droplet organization Regulation of fatty acid beta-oxidation Positive regulation of triacylglycerol biosynthetic process	Krt80	-		
Hrct1	-	Inhbb	Negative regulation of insulin secretion Cellular response to cholesterol		
Kank3		Arrdc1	-		
Cidec	Lipid droplet organization	Hacd4	Sphingolipid biosynthetic process Very long-chain fatty acid biosynthetic process		
Sema3e	-	Cemip	-		
Prl2c3	Response to nutrient levels	Ctgf	Insulin-like growth factor binding		
Prl2c4	Response to nutrient levels	Gbp2	-		
Plin4	No assigned GO-Categories. Lipid droplet protein, expected to play a role in triglyceride packaging into adipocytes	lgsf10	-		

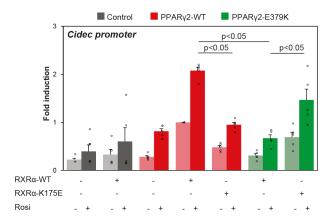

Supplementary Table 4 Genes contributing to PCA

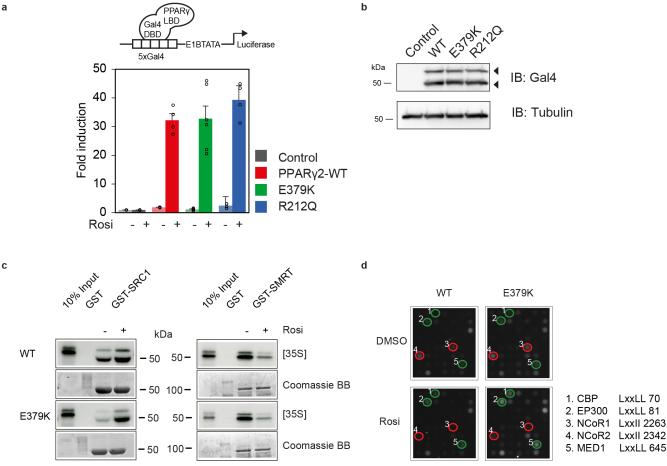
DC1	Top 20 genes contributing to principal component analysis					
PC1		PC2				
Gene	Adipocyte related GO-Categories	Gene	Adipocyte related GO Categories			
Fabp4	Fatty acid metabolic process Long-chain fatty acid transport White/brown fat cell differentiation	Pdk4	Cellular response to fatty acid Cellular response to starvation Glucose homeostasis Regulation of fatty acid oxidation Insulin receptor signalling pathway			
Angptl4	Lipid metabolic process Triglyceride homeostasis Positive regulation of lipid metabolic process Negative regulation of lipoprotein lipase activity Cellular response to cell starvation	Fabp4	Fatty acid metabolic process Long-chain fatty acid transport Fat cell differentiation			
Prl2c3	Response to nutrient levels	Angptl4	Lipid metabolic process Triglyceride homeostasis Positive regulation of lipid metabolic process Negative regulation of lipoprotein lipase activity Cellular response to cell starvation			
Prl2c4	Response to nutrient levels	Sema3e	-			
Plin2	Lipid storage Long-chain fatty acid transport Positive regulation of sequestering of triglyceride	Lpl	Cellular response to fatty acid/nutrient Fatty acid/triglyceride biosynthetic process Lipid catabolic process Positive regulation of fat cell differentiation			
Pkp2	Lipid homeostasis	Dhrs9	Lipid metabolic process			
Kank3		Рсх	Lipid metabolic process Positive regulation of phospholipid biosynthetic process			
Prl2c2	Response to nutrient levels	Acot2	Acyl-CoA metabolic process Fatty acid/long-chain/very long-chain fatty acid metabolic process			
Сур26b1	Lipid metabolic process	Cpt1a	Cellular response to fatty acid Fatty acid beta-oxidation Glucose metabolic process Regulation of insulin secretion Long-chain fatty acid/triglyceride metabolic process			
Sema3e	-	Thbd	-			
Lpl	Cellular response to fatty acid/nutrient Fatty acid/triglyceride biosynthetic process Lipid catabolic process Positive regulation of fat cell differentiation	Ucp2	Response to fatty acid Cellular response to glucose/insulin stimulation			
Cdk18	-	Ptgs2	Response to fatty acid Positive regulation of brown fat cell differentiation			
Plin4	No assigned GO-Categories. Lipid droplet protein, expected to play a role in triglyceride packaging into adipocytes	Sema3c	-			
Dhrs9	Lipid metabolic process	Il4ra	-			
Serpine1	-	Cyp26b1	Lipid metabolic process			
Pde1b	Cyclic-nucleotide phosphodiesterase activity	Plin2	Lipid storage Long-chain fatty acid transport Positive regulation of sequestering of triglyceride			
Sema7a	-	ll1rl1				
Pdk4	Cellular response to fatty acid Cellular response to starvation Glucose homeostasis Regulation of fatty acid oxidation Insulin receptor signalling pathway	Adamts1	-			
Acox1	Fatty acid beta-oxidation Lipid homeostasis	Hmox1	-			
Cpt1a	Cellular response to fatty acid Fatty acid beta-oxidation Glucose metabolic process Regulation of insulin secretion Long-chain fatty acid/triglyceride metabolic process	Peg10	Cell differentiation (adipocytes)			

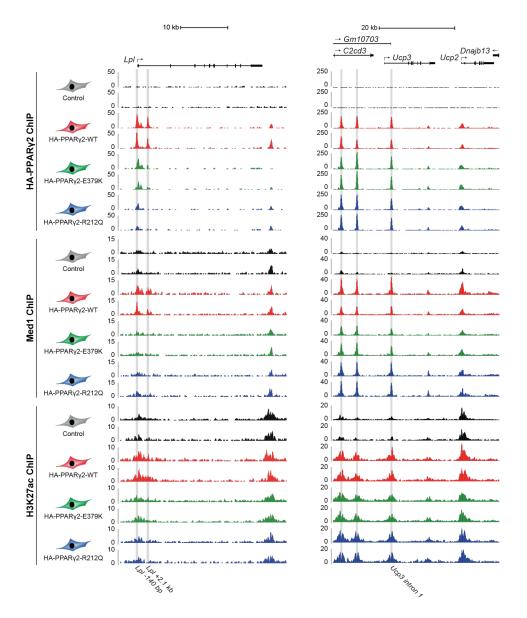

Supplementary Table 5 Mutation sensitive genes

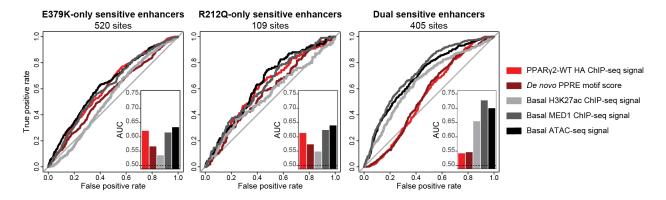
Mutation sensitive genes – ranked by increasing FC (Mut vs. WT)							
E379K-sensit	tive genes						
Plin5	Kank3	Prl2c2	Gsn	Ptpn4	Usp38	Gpr137b	Man1a
Fabp4	Prl2c4	Pcx	Clcf1	Bcar3	Lgr4	St6gal1	Tmem134
Cidec	Mycl	Deptor	Metrnl	Hic2	1190002N15Rik	PhIda3	Cdk2ap2
Sema3e	Fitm2	Cdk18	Agpat2	lgfbp4	Gale	Pitpnm1	Acox1
Prl2c5	Sema7a	Rreb1	EgIn3	Plin2	Prkcd	Dhx32	Sema3c
Sema4a	Vamp5	Ermp1	Btg2	Pkp2	Baiap2	Tiparp	Plaur
Dhrs9	Lgals3bp	Klf5	Mmp19	Dab2	Rap1gap2	Mertk	Hif1a
Abhd15	Stat5a	Mgst1	Plk3	Fdx1	Soat1	Pold4	
Lpl	Cebpa	Adamts4	Foxred2	Col6a3	Nav3	Ttyh2	
Ephx2	Fgfrl1	Lipe	Serpine1	Fam107b	Jade3	Chp1	
Cd36	Spry4	Peg10	Casp8	Rgs17	Gm45928	Phactr4	
Plin4	Ccl9	Unc119	Fads3	Nipal1	Trim25	Kif3c	
Prl2c3	Stk10	Tle3	ltgb3	Pim3	Wrb	Far1	
R212Q-sensi	tive genes						
Fabp4	Cdk18	Hic2	Foxred2	Irs2	Sash1	Nr1d1	Pitpnm1
Cidec	Btg2	Ermp1	Trim25	Mertk	Usp38	Mtmr10	Aldh9a1
Sema3e	Lgals3bp	Bicdl1	Nav3	Agpat2	Sema6d	Ppcs	Jade3
Lpl	Deptor	Unc119	Pard6b	Soat1	Arhgef18	Rgs17	Gprc5b
Dhrs9	Mycl	Tinagl1	Tle3	Tecpr1	Stk10	Wrb	ltgb3
Prl2c5	Pcx	Pex11a	Tiparp	Plk3	Ophn1	Tmem134	Btg1
Hrct1	Arc	Ccl9	Ctsc	Fam107b	Mmp19	St6gal1	lqsec1
Pkp2	Cd80	Rap1gap2	Rreb1	Stom	Acadvl	Chp1	Ttyh2
Prl2c3	Fah	Plin2	Txnip	Fads3	Dab2	Ccdc85b	Masp1
Prl2c4	Fitm2	Angptl4	Bcar3	Fdx1	lgfbp4	Mybl2	Cdk2ap2
Onecut2	Kcnk3	Peg10	Abi3	Hif1a	Las1l	Cobll1	Zmat3
Cd36	Spry4	Fgfrl1	Phospho1	Kif3c	Fzd5	Far1	Hccs
Ephx2	Adamts4	Gm15441	Mgat5	Smpd2	Fosl1	Slc25a22	Hadhb
lgf1	Prl2c2	Prss22	Ppp1r13l	Col6a3	Col18a1	Apbb1ip	Acox1
Kank3	Casp8	Efnb1	PhIda3	Eda2r	Clcf1	Gale	
Cebpa	Pim3	Gsn	Iqck	Scarb2	Fblim1	Pex14	
Abhd15	Vamp5	Cyp26b1	Lgr4	Serpine1	Baiap2	Lpcat3	1
Pcsk4	Sema7a	Prkcd	1190002N15Rik	Metrnl	Phactr4	Pnpla2	1

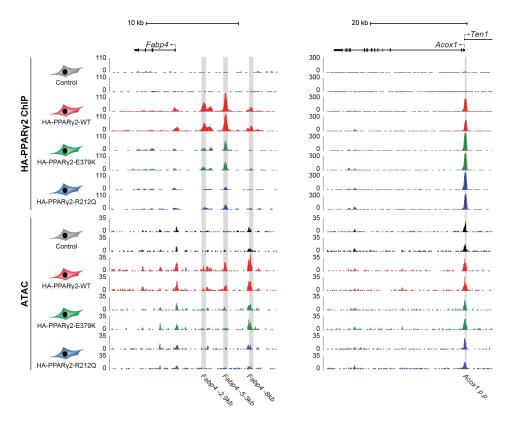

Supplementary Figures

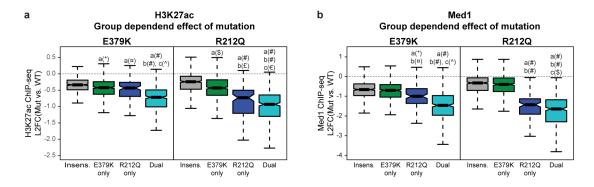

Supplementary Fig. 1. Solution structure of PPARγ-RXRα-DNA complex. Solution structure of PPARγ-RXRα (PPARγ in red; RXRα in grey) obtained by small-angle X-ray scattering (SAXS) (Osz et al., 2012). The circles indicate the magnified regions showing glutamic acid 379 (in green) and arginine 212 (in blue) in the hinge region of PPARγ. The figure was generated by open source software PyMOL 099rc6 (www.pymol.org).

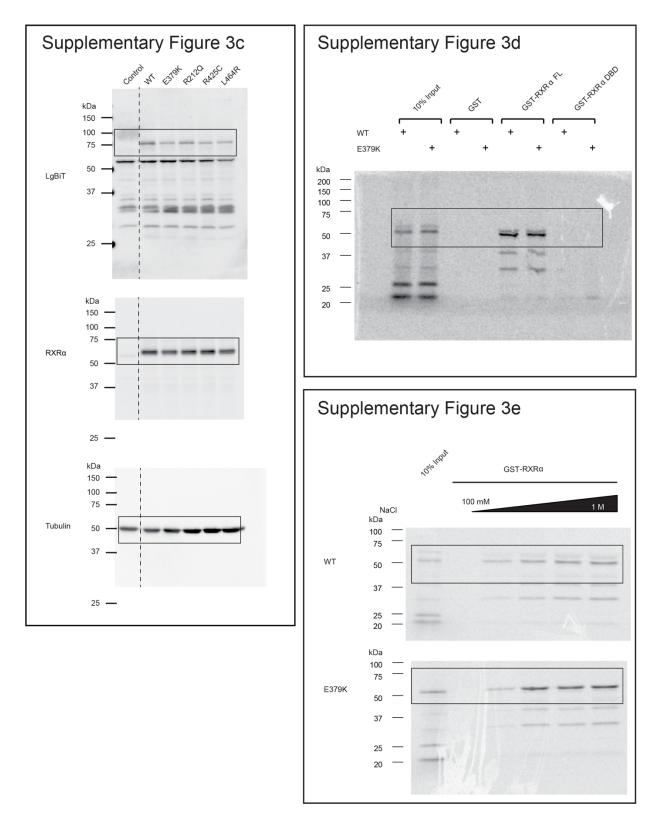

Supplementary Fig. 2. Schematic representations of reporter constructs. Schematic representation of the pGL3-MinP-Luc2 reporters used, including the DNA sequences.

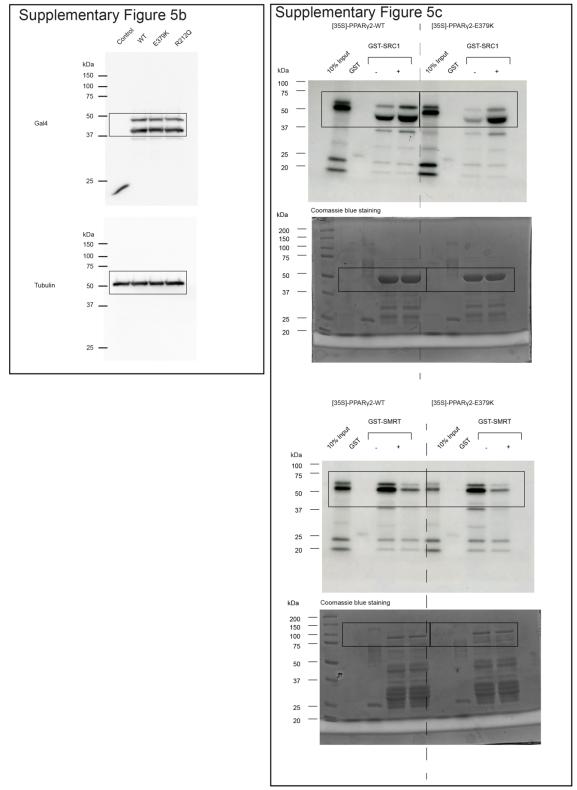

Supplementary Fig. 3 The E379K and R212Q mutans heterodimerize with RXRα in the absence of DNA binding. a Schematic representation of the split-luciferase fusion proteins. **b** HEK293T cells were transfected with SmBiT-RXRα and various PPARγ-LgBiT constructs as indicated in the figure. Luciferase activity is expressed relative to PPARγ2-wt (100%). Data are presented as mean values + SEM with individual data points indicated with circles, n=4 biologically independent experiments. Source data are provided as a Source Data file. **c** Expression of the different LgBiT and SmBiT fusion proteins overexpressed in HEK293T cells, as assessed by Western blot using an LgBiT and RXRα antibody, respectively. WT, wildtype. **d** GST RXRα fusion proteins (full length or RXRα DBD) coupled to glutathione-Sepharose beads were incubated with [35S] methionine-labelled PPARγ (WT or E379K) to determine the effect of E379K on heterodimerization with binding partner RXRα. GST alone was used as a negative control. 10% of the total lysate of the [35S] methionine-labelled PPARγ proteins used for the pull-down assay was applied as control (input). **e** GST-RXRα was incubated with the [35S] methionine-labelled PPARγ proteins in the presence of increasing concentrations of sodium chloride (NaCl).

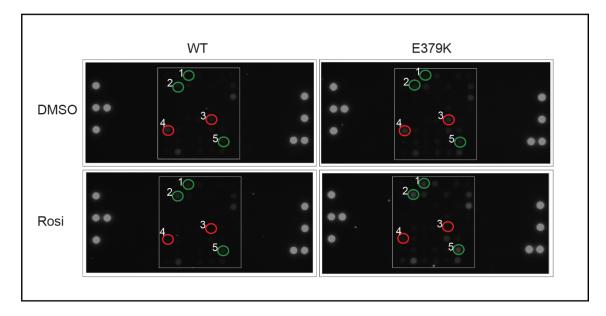

Supplementary Fig. 4. The PPARy-E379K mutation alters interaction with RXR α HEK293T cells were transiently cotransfected with expression vectors encoding WT or mutant PPARy, WT or mutant RXR α , and the *Cidec*(promoter)-reporter, in the absence or presence of 1 μ M rosiglitazone. Activation of the reporter is expressed as fold induction over that with empty vector (control). Data are presented as mean values + SEM with individual data points indicated with circles, n=3-5 biologically independent experiments. One-way ANOVA with Tukey's multiple comparisons were used to compare cells transfected with mutant *vs.* WT; *p<0.05. Source data are provided in the Source Data file.


Supplementary Fig. 5. E379K does not interfere with ligand-dependent coregulator interactions and activation. a U2OS cells were transfected with chimeric Gal4 DBD-hPPARy LBD wildtype, E379K and R212Q fusion proteins and 5xGal4-E1BTATA-Luciferase. Cells were treated with or without 1 µM rosiglitazone. Data are presented as mean values + SEM with individual data points indicated with circles, n=4-6 biologically independent experiments. **b** Expression of the different Gal4DBD fusion proteins overexpressed in U2OS cells, as assessed by Western blot using a Gal4DBD antibody. Control, empty vector control; WT, wildtype. c GST-SRC1 and GST-SMRT coupled to glutathione-Sepharose beads were incubated with [³⁵S] methionine-labelled PPARy (WT or E379K) to determine the effect of E379K on binding to these coregulator proteins, in the absence (-) or presence (+) of 10 μ M rosiglitazone. GST alone was used as a negative control. 10% of the total lysate of the [³⁵S] methionine-labelled PPARy proteins used for the pull-down assay was applied as control (input). Levels of GST proteins were confirmed by Coomassie BB staining. d Pamgene[®] chips containing 53 different cofactor derived peptides (containing either LxxLL or LxxxIxxxL motifs) were incubated with recombinant GST-PPARy-LBD WT or E379K and anti-GST-alexa in the absence (-) or presence (+) of 10 µM rosiglitazone. After 100 pump cycles a CCD camera recorded fluorescence, showing PPARycoregulator interactions as bright spots. As examples, three coactivator motifs (CBP, EP300 and MED1; in green) and two corepressor motifs (NCoR1 and NCoR2; in red) are encircled.


Supplementary Fig. 6. Genome browser tracks of HA-PPARγ2, H3K27ac and Med1 ChIP-seq. UCSC Genome Browser tracks of HA-PPARγ2, Med1 and H3K27ac ChIP-seq in PPARγ^{-/-}MEF-CAR cells induced to express WT or mutant PPARγ, in the vicinity of *Lpl* (left) and *Ucp3* (right). PPARγ-target enhancers are highlighted.


Supplementary Fig. 7. Basal enhancer characteristics predicts dual sensitive enhancers. Receiver operating characteristic (ROC)-analysis showing the discriminate capacity of the determinants HA-PPARy ChIP WT-seq signal, *de novo* PPRE motif score, basal H3K27ac and Med1 ChIP-seq signal, and basal ATAC-seq signal for enhancers sensitive or not to only E379K mutation (left), only R212Q mutation (middle), or dual sensitive enhancers (right). Insert, area under curve (AUC) plot summarizing the entire location of the ROC curves. Source data are provided in the Source Data file.


Supplementary Fig. 8. Genome browser tracks of ATAC-seq and HA-PPARy2 ChIP-seq. UCSC Genome Browser tracks of HA-PPARy2 ChIP-seq and ATAC-seq with highlighted PPARy-target enhancers in the vicinity of *Fabp4* (basal inaccessible enhancers), and *Acox1* (basal accessible enhancer).


Supplementary Fig. 9. Mutation-dependent effect on H3K27ac and Med1. Boxplots showing the ability of E379K (left) and R212Q (right) to induce changes in a H3K27ac and b Med1 ChIP-seq signal compared to PPARγ2-WT in the different enhancer groups (L2FC, log2 fold change). Significance was assessed by two-sided pairwise Wilcoxon rank sum tests with Benjamini–Hochberg correction, a, versus insensitive enhancer group (n=519); b, versus E379K-only sensitive enhancer group (n=520); c, versus R212Q-only sensitive enhancer group (n=109), dual sensitive enhancer group (n=405). *p=1.2e-7, x p=0.0003, # p<2e-16, ^ p=1.2e-11, \$ p=6.7e-13, £ p=1.3e-12, € p=0.0017. b) * p=5.7e-8, x p=7.4e-6, # p<2e-16, ^ p=1.9e-9, \$ p= 0.028. Data in boxplots are presented as notch, median; box, first and third quartiles; whiskers, 1.5 times the interquartile range. Source data are provided in the Source Data file.

Supplementary Fig. 10. Original blots corresponding to Supplementary Fig. 3c, 3d and 3e. Each blot is labeled with its own panel identification tag. Also indicated are the antigens detected and a box around the area represented in Supplementary Fig. 3c, 3d and 3e.

Supplementary Fig. 11. Original blots corresponding to Supplementary Fig. 5b and 5c. Each blot is labeled with its own panel identification tag. Also indicated are the antigens detected and a box around the area represented in Supplementary Fig. 5b and 5c. The dotted line indicates where the Western blot was cut to delete an irrelevant lane.

1. CBP	LxxLL 70
2. EP300	LxxLL 81
3. NCoR1	LxxII 2263
4. NCoR2	LxxII 2342
5. PPRB	LxxLL 645

Supplementary Fig. 12. Original images corresponding to Supplementary Fig. 5d. Images were captured after 100 pump cycles with the same exposure time. Spots containing covalently immobilised fluorescein molecules are located on the left and right of the peptide array are used as anchor points for automated image analysis and quantification of NR binding to the coregulator motifs by BioNavigator software (PamGene, The Netherlands). Also indicated are the areas represented in Supplementary Fig. 5d.