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Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

In this manuscript, van der Meer et al performed univariate and multivariate GWAS using MRI derived 

measures of body composition including different measures of fat deposition and muscle volume. By 

estimating the genetic correlation between these MRI derived measures of body composition and 

metabolic biomarkers and metabolic disease outcomes, they showed liver fat plays a key role in 

cardiometabolic health. 

 

 

 

In the results: 

 

It says ‘The Supplementary Information (SI) contains Manhattan plots’. I could not find these plots or 

any other supplementary figures in the supplementary files. 

 

Please provide confidence interval when you provide information on mean. 

 

The univariate and multivariate GWAS signals are not presented and dicussed. 

 

In the method: 

 

How did you define white Europeans and non-white Europeans? 

 

The method they used to quantify different fat and muscle measures from MRI scan is not clear. How 

reliable are these measures? How did they train their algorithm to generate these measures? 

 

It is not clear why some measures are corrected for BMI (e.g. TTMV) and some measures are not. 

 

The GWAS method section does not address how they have excluded related participants and if not, 

how they corrected for relatedness. 

 

Genotyping arrays should be used as a covariate in the GWAS model. 

 

There is no information on how the GWAS of metabolic biomarkers and anthropometric traits were 

performed. 

 

In the discussion: 

 

Some statements are not correct and need to be modified. For example a genetic correlation between 

liver fat and type 2 diabetes does not mean that liver fat has a causal role in type 2 diabetes 

development. This conclusion cannot be driven from the results of this study. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The manuscript by van der Meer et al reports GWAS on 14 MRI-derived measures of adipose and 

muscle tissue distribution in a large population of participants from. The UKBB (34K). The authors 

report an important data processing of imaging to estimate body composition of participants including 

various locations of fat and muscle in the abdomen and thighs. They also estimated fat infiltration in 

muscles and liver and extracted weight to muscle ratio and abdominal fat ratio from UKBB repository. 

The authors complemented their work by conducting multivariate analyses including these measures 



combined with cardiometabolic traits of the same cohort, which were available in much larger samples 

(>10 times the MRI-derived samples). The authors report a large number of loci from this multivariate 

analysis, which is expected from such large samples. Overall, this is a well conducted study, especially 

for phenotype definition based on imaging, and this is where the most original data is reported. The 

genetic methods are standard GWAS methods, sound and well applied. The manuscript is overall well-

written, although the introduction could be shortened as well as the discussion. However, the study 

lacks a clear conclusion to be driven from their results about the usefulness of using these very 

complex estimations of fat liver content for instance. After reading the article, one continues to 

wonder if it worth it to perform an MRI if we can have genetic metabolic risk estimated from BMI, liver 

enzymes…etc. 

 

1. The authors are invited to explicitly indicate if there are any novel loci identifies using these 

extremely complex phenotypes, compared to classical biochemical measures of liver function using 

comparable sample sizes. Overall, the number of loci is extremely low, supporting that these MRI-

derived traits are just as imprecise as other anthropometric traits. Could the authors comment more 

explicitly on this lack of power of to identify novel loci? 

2. What about biochemical enzymes measured in blood? Do the authors find most or at least some of 

the loci identified by GWAS for ALT, GGT and AST? 

3. The authors state that heritability estimated of MRI-derived measures were higher on average 

compared to anthropometrics and biomarkers. Would be possible to provide specific estimates for 

each trait cited? Indicating average heritability is not precise enough to get the full picture about how 

heritable are these traits, especially compared to biochemically measured levels of biomarkers of liver 

function. 

4. What is the rationale of performing genetic correlations estimations with Major depression, Anorexia 

nervosa and Schizophrenia? Why, in their opinion, the shared genetics is more precisely estimated 

with MRI-measures compared to anthropometrics? One would expect that anthropometric measures of 

obesity cover also behavioral causes of high weight, including brain-controlled food intake, not better 

assessment of fat content in muscle or liver. Please comment on this. 

5. Do the authors see any differences between estimations of fat content between mem and women? 

If they have access to this data, stratified analyses by sex, and /or interaction with sex would be 

informative given how fat content is different according to sex. 

6. As they mention strength of the study, the authors are invited to provide a limitation section of 

their study, with mention of the overall lack of power to identify additional loci different from those 

covered by classical cardiometabolic traits. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The manuscript describes briefly the genetic architecture of 31 traits extracted from large-scale MRI 

conducted in the UK Biobank. There are now several large studies looking at some of these and 

related traits (e.g. https://www.nature.com/articles/s41591-019-0563-7 - there are many others) and 

investigating the contribution of these traits to cardiometabolic disease using genetic epidemiology. 

While several of the traits, especially those related to muscle composition, have not to my knowledge 

been studied at this scale before, I find the study overstates its novelty a little in this regard. A major 

finding is the genetic correlation between liver fat and type 2 diabetes pointing to a possible etiological 

role; this is also not a new hypothesis (e.g. https://diabetesjournals.org/care/article-

abstract/45/2/460/139118/Estimating-the-Effect-of-Liver-and-Pancreas-Volume) The novel aspects in 

my opinion are: (1) definition of several traits and indices related to body composition; (2) integration 

of many adiposity and body composition traits into a single measure and conducting a multivariate 

analysis using software previously developed by the authors; (3) semi-systematic genetic correlation 

with metabolic risk factors and several disease outcomes, establishing and exploring the relationships 

between these traits. 

 

1. Given the focus on MAFLD (is this the same as NAFLD?) in the introduction and discussion, it is 



somewhat surprising that this was not included in the genetic correlation analysis. How were the 

diseases of interest chosen? 

2. The discussion of the identified genes is very minimal. There have been several previously 

described studies in this cohort looking at related traits. How many of the loci identified in the 

univariate analysis are novel? 

3. The methods do not adequately describe the generation of the MRI-derived measurements, and the 

reference does not give a complete picture either. What “manual adjustments” were performed? Were 

they performed for all 35,000 participants? The derivation of PDFF is also not adequately described 

and no reference is given here. A description of quality control processes (if any) is also missing. 

4. On the genetics side, several sections are missing detailed methods: heritability estimation, genetic 

correlation methods, annotation of genes, etc. Also QC/sample inclusion criteria are not fully described 

- for example, were close relatives removed? 

5. A major finding of the study concerns the heritability and genetic architecture of the adiposity and 

muscle traits. The UK Biobank is known to oversample related individuals 

(https://www.nature.com/articles/s41586-018-0579-z) relative to their frequency in the general 

population. The method used does not account for this relatedness and is thus vulnerable to an 

inflation of type-1 error rate (presumably this would also affect the downstream analysis). I suggest 

that the authors check for residual confounding using one of the available standard methods (e.g. 

genomic control, LDSC regression intercept 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6758917/), or a QQ plot). In addition, correcting for 

covariates before rank normalization can re-introduce confounding 

(https://www.nature.com/articles/s41431-018-0159-6) 

6. I don’t see a data availability statement in the manuscript, although the box is checked. I 

encourage the authors to make their summary statistics available via GWAS catalog 

https://www.ebi.ac.uk/gwas/ 



We are grateful for the chance to revise our manuscript and we wish to thank the reviewers for their 
insightful feedback. Below, we provide a point-by-point response to their comments and indicate how 
we have updated the manuscript in accordance with these points. Overall, we have substantially 
improved the analytical approach, including correction for relatedness. We have also enhanced the 
description of methodological details as requested by the reviewers and increased the amount of 
information provided on the results from the GWAS. We believe these adjustments have significantly 
improved the study and the manuscript. 
 
Reviewer #1 (Remarks to the Author): 
 In this manuscript, van der Meer et al performed univariate and multivariate GWAS using MRI derived 
measures of body composition including different measures of fat deposition and muscle volume. By 
estimating the genetic correlation between these MRI derived measures of body composition and 
metabolic biomarkers and metabolic disease outcomes, they showed liver fat plays a key role in 
cardiometabolic health. 
  
In the results: 
 It says ‘The Supplementary Information (SI) contains Manhattan plots’. I could not find these plots or 
any other supplementary figures in the supplementary files. 
  
This is unfortunate, thank you for pointing out this technical error. We will work with the editorial staff 
to ensure the supplementary document containing all figures and accompanying descriptions will be 
clearly marked and available to the reviewers.  
 
Please provide confidence interval when you provide information on mean.  
 
We agree that including confidence intervals is good practice and apologize for omitting them in the 
original manuscript. We now include them in the Results section as follows: 
 
“The heritability of the MRI-derived measures (mean h2=.25, 95% CI [.22, .28]) was significantly 
higher than the body anthropometrics and other biomarkers (mean h2=.13, 95% CI [.10, .15]), p=1.8x10-

7.” 
 
The univariate and multivariate GWAS signals are not presented and dicussed.  
 
Thank you for this comment. Our choice of what analyses to describe was driven by the fact that this 
study involves the investigation of multiple sets of measures, with the goal to provide an overview of 
their overall genetic architectures. We thereby present the number of loci discovered per measure, the 
statistical power associated with these measures, and the genetic overlap between them and other traits. 
The corresponding Manhattan plots as well as lists of loci and enriched pathways are in supplementary 
material, as unfortunately there is no room to cover this in detail in the main manuscript. We have now 
further included additional information on the heritability estimates per measure, plus standard errors, 
for all individual measures in the Supplementary Material, Figure 4. 
 
 
In the method: 
How did you define white Europeans and non-white Europeans? 
  
Apologies, we should have described how we defined White Europeans. This has now been rectified 
by including the following text in the Methods section, under the ‘Participants’ header: 
 
“This ethnic grouping was based on self-report and confirmed by genetic principal component analysis 
(UKB data field 22006).” 
 
The method they used to quantify different fat and muscle measures from MRI scan is not clear. How 
reliable are these measures? How did they train their algorithm to generate these measures?  



 
Given that the focus of the current study is on the genetic architecture of these measures, we chose for 
the original manuscript to reference previous publications that describe the methodology used to obtain 
these measures and their validity. However, we agree that this is important information, and that it 
warrants a succinct description to enable readers to judge the value of the findings. Therefore, we now 
include the following text in the revised Methods section: 
 
“The methods used to generate the MRI-derived measurements has been described and evaluated in 
more detail elsewhere.1–6 Briefly, the process for fat and muscle compartments includes the following 
steps: (1) calibration of fat images using fat-referenced MRI, (2) registration of atlases with ground 
truth labels for fat and muscle compartments to the acquired MRI dataset to produce automatic 
segmentation, (3) quality control by two independent trained operators including the possibility to 
adjust and approve the final segmentation, and (4) quantification of fat volumes, muscle volumes and 
muscle fat infiltration within the segmented regions. For liver proton density fat fraction (PDFF), nine 
regions of interest (ROI) were manually placed, evenly distributed in the liver volume, while avoiding 
major vessels and bile ducts. 
 
Muscle volumes were calculated as fat-tissue free muscle volumes. Muscle fat infiltration was 
calculated as the average T2*-corrected fat fraction and converted to proton density fat fraction.4,7 Liver 
PDFF was calculated depending on the protocols implemented by UK Biobank. The liver protocol was 
initially based on a single-slice symmetric 10-point acquisition with IDEAL reconstruction, but after 
10.000 scans it was replaced by the whole-body dual echo Dixon images with an additional T2* and 
proton density correction, where the T2* values were estimated from a separate single-slice asymmetric 
6-point acquisition. The latter method has been described and validated against IDEAL-based liver 
PDFF previsouly.4 1.338 scans were acquired with both liver protocols to assess the switch, and a good 
agreement was found between the protocols - the mean difference in liver PDFF was 0.30% with a 
standard deviation of the differences of 0.80%. 
 
Test-retest reliability of the MRI-derived measures included in this study is high, with a nearly perfect 
intraclass correlation coefficient, and the automated processing performs better than manual 
segmentation of muscle and fatty tissue.8,9 A recent study, investigating both regional fat and muscle 
volumes as well as muscle fat infiltration and liver fat fraction, showed high repeatability and 
reproducibility on five different 1.5T and 3T scanners from three different vendors.4 ” 
 
It is not clear why some measures are corrected for BMI (e.g. TTMV) and some measures are not.  
 
We apologize for the lack of explanation why some measures are corrected for BMI and others are not. 
It has been shown that correcting TTMV for BMI through calculation of a normalized z-score according 
to Linge et al 2019 strengthens the association between muscle volume and function/hospitalization.10 
This measurement has also, in more recent work, been association with poor function and metabolic 
comorbidity within NAFLD, as well as all-cause mortality within general population.11 We have now 
restructured the paragraph in the Methods section about ‘Measurement protocols and definitions’ 
slightly and included the following text to clarify this: 
 
“In addition, a sex-, height-, and weight invariant normalized z-score for TTMV (TTMVz) was 
calculated. Including adjustment for sex, height, and weight has been shown to strengthen the 
association between muscle volume and hospitalization/function, and TTMVz has previously been 
associated with poor function, hospitalization, and all-cause mortality in general population, as well as 
poor function and metabolic comorbidity in MAFLD.10–12 ” 

Also worth noting based on our results is that in contrast to the other lean tissue measures, TTMVz did 
not show any genetic correlation with body anthropometrics, suggesting that this measure captures the 
genetics of lean tissue while factoring out the body size and shape. 



 
The GWAS method section does not address how they have excluded related participants and if not, 
how they corrected for relatedness.  

Thank you for pointing this out. We did not correct for relatedness in the initial analyses. We have now 
improved the analysis according to Reviewer´s comment. In the revised manuscript we now take the 
participant relatedness information (calculated via the KING software) as released by the UK Biobank 
into account and removed one of each pair of related individuals. This is described as follows in the 
revised ‘Methods’ section: 

“As a final step, we excluded one of each pair of related individuals in the remaining sample, as 
determined through KING13 and released by UKB, using a kinship coefficient threshold of 0.0884 
(n=448), leaving N=33 588…” 
 
“For the secondary analyses of measures of cardiometabolic health, we included all White Europeans 
with complete genetic and covariate data. After excluding one of each pair of related individuals 
(n=34,366), this sample consisted of 377,950 individuals…” 
 
Genotyping arrays should be used as a covariate in the GWAS model.  
 
We have rerun the analyses with genotyping array (BiLEVE versus Axiom) included as covariate, as 
described in the revised manuscript: 
 
“We pre-residualized all measures for age, sex, test center, genotyping array, and the first twenty 
genetic principal components to control for population stratification.” 
 
“We made use of the UKB v3 imputed data, collected through two genotyping arrays (UK BiLEVE 
and UKB Axiom),…” 
 
There is no information on how the GWAS of metabolic biomarkers and anthropometric traits were 
performed.  
 
These GWAS were carried out with identical procedures as the primary GWAS of body MRI data. To 
clarify this, we have edited the relevant sentence in the Methods section to explicitly state this: 
 
“We carried out GWAS through the freely available MOSTest software 
(https://github.com/precimed/mostest), with identical approaches for both the primary analyses of the 
body MRI data and the secondary analyses of cardiometabolic health metrics.”  
 
In the discussion: 
 Some statements are not correct and need to be modified. For example a genetic correlation between 
liver fat and type 2 diabetes does not mean that liver fat has a causal role in type 2 diabetes 
development. This conclusion cannot be driven from the results of this study.  
 
We apologize that our phrasing implied such a causal link. We have now rewritten the discussion 
section to minimize this implication, and have added a limitations section that calls for studies allowing 
for causal inference: 
 
“While causality needs to be established, this correlation could suggest that the amount of liver fat and 
its genetic determinants may play a central role in type 2 diabetes development” 
 
“Limitations of this study include that the analyses employed do not allow for causal claims beyond 
genetic associations. Establishing the directionality of causal effects underlying the genetic correlations 



between the studied measures and diseases will therefore require follow-up investigation, e.g., through 
Mendelian randomization.” 
 
 
 
 
 
 
 
  



Reviewer #2 (Remarks to the Author): 
 The manuscript by van der Meer et al reports GWAS on 14 MRI-derived measures of adipose and 
muscle tissue distribution in a large population of participants from. The UKBB (∼34K). The authors 
report an important data processing of imaging to estimate body composition of participants including 
various locations of fat and muscle in the abdomen and thighs. They also estimated fat infiltration in 
muscles and liver and extracted weight to muscle ratio and abdominal fat ratio from UKBB repository. 
The authors complemented their work by conducting multivariate analyses including these measures 
combined with cardiometabolic traits of the same cohort, which were available in much larger samples 
(>10 times the MRI-derived samples). The authors report a large number of loci from this multivariate 
analysis, which is expected from such large samples. Overall, this is a well conducted study, especially 
for phenotype definition based on imaging, and this is where the most original data 
is reported. The genetic methods are standard GWAS methods, sound and well applied. The manuscript 
is overall well-written, although the introduction could be shortened as well as the discussion. However, 
the study lacks a clear conclusion to be driven from their results about the usefulness of using these 
very complex estimations of fat liver content for instance. After reading the article, one continues to 
wonder if it worth it to perform an MRI if we can have genetic metabolic risk estimated from BMI, liver 
enzymes…etc. 
 
Thank you for this kind summary. We agree that the paper would benefit from a more explicit 
conclusion on the value of the studied metrics, and we have addressed this in the discussion, as listed 
here and further explained in response to the specific, numbered comments below. 
 
““However, our findings have also made clear that the majority of these measures are highly complex 
and polygenic, leading to limited yield with current sample sizes. Further, when combined, they tag 
similar sets of biological processes as widely available measures of anthropometrics and blood markers. 
This raises the question whether it is worthy to collect costly body MRI scans to obtain these measures, 
which is hard to answer firmly with current knowledge. This study does show that the individual 
measures have their own unique patterns of genetic correlations and that they lead to the identification 
of novel loci, indicating that they capture unique information, which may prove important to tease apart 
the influences of complex biological processes on body composition.” 
  
1. The authors are invited to explicitly indicate if there are any novel loci identifies using these 
extremely complex phenotypes, compared to classical biochemical measures of liver function using 
comparable sample sizes. Overall, the number of loci is extremely low, supporting that these MRI-
derived traits are just as imprecise as other anthropometric traits. Could the authors comment more 
explicitly on this lack of power of to identify novel loci? 
 
We agree that an overview of the novelty of the loci discovered for the body MRI measures is valuable. 
We therefore ran additional analyses whereby we limited the secondary measures to individuals that 
had undergone the body MRI scans, and checked the p-values of these loci in the output. In the revision 
we added the Supplementary Figure below to the supplement. This makes it clear that most of the 
discovered loci from our primary analyses were not whole-genome significant for the other included 
cardiometabolic health measures at comparable sample sizes. We now describe this in the revised 
Results section as follows. 
 
“To establish whether the loci discovered through the univariate GWAS of the body MRI measures are 
novel compared to related measures of cardiometabolism, we additionally ran univariate GWAS on 21 
secondary measures of anthropometric and cardiometabolic factors (e.g., BMI, triglycerides, 
cholesterol, blood pressure; see Table 2). This revealed that, when restricted to the same sample of 
individuals with available body MRI data (N=33,588), the large majority of loci were indeed novel. 
Supplementary Figure 3 summarizes this and shows for each discovered variant whether it was whole-
genome significant for each of the primary and secondary measures.” 



 
 
Supplementary Figure 3. Novelty of loci discovered through the univariate GWAS of body MRI 
measures. The rs-codes on the y-axis represent the lead SNPs of the discovered loci, and on the x-axis 
are all the studied measures; on the left of the vertical black line are the body MRI measures and on 
the right are the secondary measures of cardiometabolism. Red cells indicate that the SNP is associated 
with the measure beyond the genome-wide significance threshold. 
 
We acknowledge that the number of loci discovered for most of the body MRI measures is in the same 
range as those identified through anthropometric measures at comparable sample sizes. Rather than 
increased locus discovery, our message is that the body MRI measures are likely to provide 
complementary information to anthropometric measures, as suggested by differing patterns of genetic 
correlations. We also acknowledge the current limited statistical power for the body MRI measures, 
and have included the statement that these are complex measures that require larger sample sizes than 
currently available to uncover a substantial proportion of their genetic determinants as follows.  
 
“Further, the limited locus yield from the univariate GWAS and the low percentage of explained genetic 
variance for the body MRI measures, with the exception of liver fat, point towards low statistical power. 
The collection of larger sample sizes, as now underway through several large-scale initiatives such as 
the UK Biobank, and the use of more powerful statistical approaches will be required to improve 
discovery.” 
 
 
2. What about biochemical enzymes measured in blood? Do the authors find most or at least some of 
the loci identified by GWAS for ALT, GGT and AST? 
 



Please see the answer for comment 1) above, and its accompanying Supplementary Figure 3. The 
majority of loci discovered through the GWAS on our primary measures are not whole-genome 
significantly associated with the biochemical measures at comparable sample sizes. As can be deduced 
from the Supplementary Figure 3, of the 50 unique loci discovered through the univariate analyses of 
the body MRI measures, we found two loci that were also significant for ALT, one for GGT, and one 
for AST, all overlapping with those found for liver fat. As described above, information about the 
novelty of the loci is now added to the revised manuscript. 
  
3. The authors state that heritability estimated of MRI-derived measures were higher on average 
compared to anthropometrics and biomarkers. Would be possible to provide specific estimates for each 
trait cited? Indicating average heritability is not precise enough to get the full picture about how 
heritable are these traits, especially compared to biochemically measured levels of biomarkers of liver 
function.  
 
Thank you for this suggestion. We agree that an overview of the heritability estimates for each trait is 
informative. We now provide a bar plot (Supplementary Figure 4) that provides these estimates to 
clarify the difference in heritability between the categories. Please see the newly added Supplementary 
Figure 4 below. 
 

   
 
Supplementary Figure 4. Bar plot summarizing the SNP-based heritability (y-axis) for each of the 
univariate measures analyzed (x-axis), as calculated through LD score regression. The fill of the bars 
indicates the measurement category, as indicated in the legend. The error bars reflect standard error. 
 
4. What is the rationale of performing genetic correlations estimations with Major depression, Anorexia 
nervosa and Schizophrenia? Why, in their opinion, the shared genetics is more precisely estimated with 
MRI-measures compared to anthropometrics? One would expect that anthropometric measures of 
obesity cover also behavioral causes of high weight, including brain-controlled food intake, not better 
assessment of fat content in muscle or liver. Please comment on this. 
 
These brain disorders were included as they are among the most costly and debilitating conditions in 
the world, combined with the fact that our previous work has shown a strong phenotypic relation 
between brain morphology, related disorders, and body composition. Research such as conducted here, 
illustrating overlap between body and brain, may promote research that enables the development of 



effective intervention, by targeting shared pathways. This reasoning is now made more explicit as 
follows: 
 
“As shown by our work, body composition is also strongly associated with brain structure and brain 
disorders, which are among the most costly and debilitating medical conditions in the world.14–16” 
 
“We further sought to identify the extent of genetic overlap between these measures and common 
medical conditions, as such information promotes research into shared molecular pathways and 
therefore a better understanding of the underlying biology.” 
 
Genetic investigation of anthropometric measures may indeed cover behavioral influences as well as a 
range of different influences on overall body composition, i.e., these measures may represent a rather 
mixed bag of biological processes. MRI-derived measures of local adiposity or muscle volume could 
have a narrower set of influences than anthropometric measures and therefore provide complementary  
targets for investigation. For clarification, we have now rewritten the reasoning in the revised 
manuscript as follows: 
 
“Body anthropometrics such as waist circumference and body mass index (BMI) lack a direct 
connection to pathophysiology17,18 Measures of regional adipose tissue, most accurately and 
comprehensively identified through MRI,19,20 may offer sensitive proxies of cardiometabolic health and 
therefore complement these common measures.21 This is further suggested by research indicating they 
have independent associations with cardiometabolic diseases and improve risk prediction beyond body 
anthropometrics.22–24 ”  
  
5. Do the authors see any differences between estimations of fat content between mem and women? If 
they have access to this data, stratified analyses by sex, and /or interaction with sex would be 
informative given how fat content is different according to sex. 
 
Indeed, there is a large literature on sex differences in body composition, making it highly likely that 
there are substantial differences between men and women with regard to the biological determinants of 
these measures. While this is highly interesting, we chose to not make this a central topic, for sake of 
focus of the manuscript. Nonetheless, given that we have access to the data, we have decided to generate 
the GWAS summary statistics, stratified by sex, and we will make these available upon publication of 
the study through the GWAS Catalog, per the Data Availability statement. Further, we have included 
an overview of the genetic correlations between the two sets of sex-specific summary statistics, and the 
number of loci discovered for men versus for women. Please see below for this work, now added to the 
revised Results section. 
 
“Sex-specific analyses 
Given that the body composition of men and women differs substantially, we provide sex-stratified 
GWAS summary statistics besides those produced through the primary analyses. Further, 
Supplementary Table 1 lists the genetic correlations between the male and female-specific GWAS, 
ranging from 0.56 for lean muscle volume index to 0.97 for muscle fat infiltration, as well as the locus 
yield.” 
 
Supplementary Table 1. Results from sex-stratified GWAS on the body MRI measures, listing genetic 
correlations (rg) between the male and female-specific GWAS, and locus yields. 
 
Measure rg Male yield Female yield 
Abdominal Fat Ratio 0.84 0 0 
Abdominal Subcutaneous Adipose Tissue Volume index 0.79 1 1 
Abdominal Subcutaneous Adipose Tissue Volume 0.73 1 1 
Anterior Thigh Lean Muscle Volume index 0.56 0 0 
Anterior Thigh Lean Muscle Volume 0.63 3 1 
Anterior Thigh Muscle Fat Infiltration 0.89 6 6 



Liver Proton Density Fat Fraction 0.8 6 3 
Posterior Thigh Lean Muscle Volume index 0.58 0 0 
Posterior Thigh Lean Muscle Volume 0.6 2 3 
Posterior Thigh Muscle Fat Infiltration 0.97 7 11 
Total Thigh Muscle Volume normalized 0.73 0 0 
Visceral Adipose Tissue Volume index 0.76 0 0 
Visceral Adipose Tissue Volume 0.78 0 0 
Weight-to-Muscle Ratio 0.82 0 0 

 
 
6. As they mention strength of the study, the authors are invited to provide a limitation section of their 
study, with mention of the overall lack of power to identify additional loci different from those covered 
by classical cardiometabolic traits.  
 
Thank you for this suggestion. Besides the added text on the novelty of the loci, we agree that such a 
limitation section would give a good balance and highlight shortcomings to be resolved by future 
studies. We have now included such a section in the Discussion, as well as adjusted the concluding 
paragraph: 
 
“Limitations of this study include the fact that the approaches employed do not allow for causal claims 
beyond genetic associations. Establishing the directionality of causal effects underlying the genetic 
correlations between the studied measures and diseases will therefore require follow-up investigation, 
e.g., through Mendelian randomization. Further, the limited locus yield from the univariate GWAS and 
the low percentage of explained genetic variance for the body MRI measures, with the exception of 
liver fat, point towards low statistical power. The collection of larger sample sizes, as now underway 
through several large-scale initiatives such as the UK Biobank, and the use of more powerful statistical 
approaches will be required to improve discovery.” 
 
“However, our findings have made it clear that most of the body MRI measures are highly complex and 
polygenic, leading to limited yield with current sample sizes. Further, when combined, they tag similar 
sets of biological processes as widely available measures of anthropometrics and blood markers. This 
raises the question whether it is worthy to collect costly body MRI scans to obtain these measures, 
which is hard to answer firmly with current knowledge. This study does show that the individual 
measures have their own unique patterns of genetic correlations and that they lead to the identification 
of novel loci, indicating that they capture unique information, which may prove important to tease apart 
the influences of complex biological processes on body composition.” 
 
 
  



Reviewer #3 (Remarks to the Author):  
The manuscript describes briefly the genetic architecture of 31 traits extracted from large-scale MRI 
conducted in the UK Biobank. There are now several large studies looking at some of these and related 
traits (e.g. https://www.nature.com/articles/s41591-019-0563-7 - there are many others) and 
investigating the contribution of these traits to cardiometabolic disease using genetic epidemiology. 
While several of the traits, especially those related to muscle composition, have not to my knowledge 
been studied at this scale before, I find the study overstates its novelty a little in this regard. A major 
finding is the genetic correlation between liver fat and type 2 diabetes pointing to a possible etiological 
role; this is also not a new hypothesis (e.g. https://diabetesjournals.org/care/article-
abstract/45/2/460/139118/Estimating-the-Effect-of-Liver-and-Pancreas-Volume) The novel aspects in 
my opinion are: (1) definition of several traits and indices related to body composition; (2) integration 
of many adiposity and body composition traits into a single measure and conducting a multivariate 
analysis using software previously developed by the authors; (3) semi-systematic genetic correlation 
with metabolic risk factors and several disease outcomes, establishing and exploring the relationships 
between these traits.  
 
1. Given the focus on MAFLD (is this the same as NAFLD?) in the introduction and discussion, it is 
somewhat surprising that this was not included in the genetic correlation analysis. How were the 
diseases of interest chosen?  
 
MAFLD is a recent name change from NAFLD, reflecting an updated, more precise disease definition 
that promotes a better understanding and treatment, please see the cited paper by Eslam et al. for more 
information.25 The reason for not including this condition in the genetic correlation analysis is simply 
because there is no well-powered GWAS data available. At most, several hundred cases have been 
studied, which would mean any genetic correlation estimates would be extremely noisy. We have now 
mentioned this explicitly in the newly added limitations section. 
 
The diseases of interest were further chosen based on their prevalence and impact on society, as noted 
in the authoritative report on the global burden of non-communicable diseases that is cited in the 
introduction.16 Admittedly, this is a somewhat arbitrary selection, which we now also acknowledge in 
the limitations section: 
 
“Our investigation of traits was further not comprehensive, and we lacked a sufficiently powered 
GWAS of MAFLD for inclusion in the analyses of genetic correlation.”   
 
 
2. The discussion of the identified genes is very minimal. There have been several previously described 
studies in this cohort looking at related traits. How many of the loci identified in the univariate analysis 
are novel?  
 
We acknowledge that the discussion of identified genes is minimal. This is a choice that follows from 
our main goal to provide an overview of the overall genetic architecture of multiple sets of measures, 
prioritizing the description of their overall characteristics over that of a selection of identified genes. 
We do however provide extensive overviews of these genes, and associated pathways, in the 
Supplementary Data, for those interested in specific associations.  
 
Regarding locus novelty, we have now added Supplementary Figure 3 (please see above), which shows 
that the majority of the loci discovered for the body MRI measures were not significant for the 
cardiometabolic measures at comparable sample sizes. Please see the answer to the first comment of 
Reviewer #2 for this figure and for more information.  
 
3. The methods do not adequately describe the generation of the MRI-derived measurements, and the 
reference does not give a complete picture either. What “manual adjustments” were performed? Were 
they performed for all 35,000 participants? The derivation of PDFF is also not adequately described 
and no reference is given here. A description of quality control processes (if any) is also missing.  



 

We thank the reviewer for these questions. We agree that the generation of the MRI-derived 
measurements are not adequately described. In the online methods we have therefore added the 
following:   

“The methods used to generate the MRI-derived measurements has been described and evaluated in 
more detail elsewhere.1–6 Briefly, the process for fat and muscle compartments includes the following 
steps: (1) calibration of fat images using fat-referenced MRI, (2) registration of atlases with ground 
truth labels for fat and muscle compartments to the acquired MRI dataset to produce automatic 
segmentation, (3) quality control by two independent trained operators including the possibility to 
adjust and approve the final segmentation, and (4) quantification of fat volumes, muscle volumes and 
muscle fat infiltration within the segmented regions. For liver proton density fat fraction (PDFF), nine 
regions of interest (ROI) were manually placed, evenly distributed in the liver volume, while avoiding 
major vessels and bile ducts. 
 
Muscle volumes were calculated as fat-tissue free muscle volumes. Muscle fat infiltration was 
calculated as the average T2*-corrected fat fraction and converted to proton density fat fraction.4,7 Liver 
PDFF was calculated depending on the protocols implemented by UK Biobank. The liver protocol was 
initially based on a single-slice symmetric 10-point acquisition with IDEAL reconstruction, but after 
10.000 scans it was replaced by the whole-body dual echo Dixon images with an additional T2* and 
proton density correction, where the T2* values were estimated from a separate single-slice asymmetric 
6-point acquisition. The latter method has been described and validated against IDEAL-based liver 
PDFF previsouly.4 1.338 scans were acquired with both liver protocols to assess the switch, and a good 
agreement was found between the protocols - the mean difference in liver PDFF was 0.30% with a 
standard deviation of the differences of 0.80%. 
 
Test-retest reliability of the MRI-derived measures included in this study is high, with a nearly perfect 
intraclass correlation coefficient, and the automated processing performs better than manual 
segmentation of muscle and fatty tissue.8,9 A recent study, investigating both regional fat and muscle 
volumes as well as muscle fat infiltration and liver fat fraction, showed high repeatability and 
reproducibility on five different 1.5T and 3T scanners from three different vendors.4 ” 
 
4. On the genetics side, several sections are missing detailed methods: heritability estimation, genetic 
correlation methods, annotation of genes, etc. Also QC/sample inclusion criteria are not fully described 
- for example, were close relatives removed? 
 
Our apologies for the lack of information on the application of these methods. We have now expanded 
the Methods as follows: 
 
“We made use of the Functional Mapping and Annotation of GWAS (FUMA) online platform 
(https://fuma.ctglab.nl/) to map significant SNPs from the MOSTest analyses to genes. For this, we 
combined the default positional mapping with eQTL and 3D chromatin interaction mapping, 
including all available tissue types.” 
 
“LD score regression 
For estimates of SNP-based heritability (h2), we applied LD score regression (LDSR)26 to the univariate 
GWAS summary statistics. For this, each set of summary statistics underwent additional filtering, 
including the removal of all SNPs in the extended major histocompatibility complex region (chr6:25–
35 Mb). We further used these munged summary statistics to perform cross-trait LDSR to estimate 
genetic correlations between the measures.27”  
 
In addition, please see the answer to the next point regarding our revised approach to dealing with close 
relatives in the sample.  



  
5. A major finding of the study concerns the heritability and genetic architecture of the adiposity and 
muscle traits. The UK Biobank is known to oversample related individuals 
(https://www.nature.com/articles/s41586-018-0579-z) relative to their frequency in the general 
population. The method used does not account for this relatedness and is thus vulnerable to an inflation 
of type-1 error rate (presumably this would also affect the downstream analysis). I suggest that the 
authors check for residual confounding using one of the available standard methods (e.g. genomic 
control, LDSC regression intercept (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6758917/), or a 
QQ plot). In addition, correcting for covariates before rank normalization can re-introduce 
confounding (https://www.nature.com/articles/s41431-018-0159-6)  
 
We indeed failed to consider participant relatedness in the original analyses, and we thank the reviewer 
for identifying this mistake. This has now been corrected by removing one of each pair of (second-
degree or closer) related individuals, based on kinship coefficients as calculated through KING and 
released by the UK Biobank. We carried out this exclusion as the final step to minimize the number of 
pairs remaining. This is now described in the revised Methods section as follows: 
 
“As a final step, we excluded one of each pair of related individuals in the remaining sample, as 
determined through KING13 and released by UKB, using a kinship coefficient threshold of 0.0884 
(n=448), leaving N=33 588…” 
 
“For the secondary analyses of measures of cardiometabolic health, we included all White Europeans 
with complete genetic and covariate data. After excluding one of each pair of related individuals 
(n=34,366), this sample consisted of 377,950 individuals…” 
 
Regarding residual confounding, we followed our (admittedly undescribed) standard procedure of 
checking all the QQ plots and have found no evidence for this, in line with the extensive validation 
work we carried out for our GWAS pipeline, as described in Van der Meer et al. 2020.28 Our phenotypes 
further showed low skew before normalization, as checked through histograms. We have further 
calculated the correlation between age and the normalized measures, which was negligible, ranging 
from -0.009 (for ATMFI) to 0.023 (for ASAT). 
 
6. I don’t see a data availability statement in the manuscript, although the box is checked. I encourage 
the authors to make their summary statistics available via GWAS catalog https://www.ebi.ac.uk/gwas/  
 
We fully agree that data availability, encompassing the used software as well as GWAS summary 
statistics, is important to promote Open Science. The statement is present under ‘Materials & 
Correspondence’, following the Methods section, and includes a link to the mentioned catalog. 
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Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

Many thanks for revising your manuscript. 

 

In the abstract: 

 

The authors claim ‘conducting the first genome-wide association study (GWAS) of these MRI-derived 

measures’. The GWAS of many of these traits has been published before (PMID: 34128465). 

 

In the results: 

 

Line 233 says ‘Univariate GWASs on the individual measures revealed a total of 82 loci’; line 243 it 

says ‘Of the 79 lead SNPs’. Please clarify why there is a mismatch. 

 

Line 313, what is SI? 

 

Figure legend for figure 2 is incomplete. 

 

Please provide explanation on why you performed Multivariate test and how to interpret the results. 

What is the logic for which traits to include? 

 

Lines 345-351, it is not clear to me why you limited the GWAS of cardiometabolic traits to 33,588 

individuals if your aim was to see how many variants were novel? In the next paragraph, you have 

used the full set in the multivariate test. Please provide justification. 

 

In the discussion: 

 

Line 485, I am not sure how the Multivariate GWAS leads to this conclusion “The findings allow for 

numerous follow-up investigations; for instance, further studies are needed to clarify the role of 

putative moderators such as sex,76 age, and ethnicity.” Please clarify. 

 

Line 496, could you give an example for “more powerful statistical approaches”? 

 

General: 

 

I still did not find the supplementary figures, and the supplementary tables do not have legends. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

I thank the authors for addressing all my main points and I agree that the current version is 

substantially improved. I have no further comments. 

 

 

Reviewer #3 (Remarks to the Author): 

 

Thank you for the responses and the updates to the manuscript and methods. I have no further 

comments. 



We are happy that our revisions were appreciated by the reviewers, and we wish to thank reviewer #1 
for their remaining comments. Below, we provide a point-by-point response to these comments and 
indicate how we have updated the manuscript in accordance. 
 
Reviewer #1 (Remarks to the Author): 
Many thanks for revising your manuscript. 
 
In the abstract:  
 
The authors claim ‘conducting the first genome-wide association study (GWAS) of these MRI-derived 
measures’. The GWAS of many of these traits has been published before (PMID: 34128465).  
 
Indeed, the listed study included three of the measures also investigated in the present study. The overall 
sets of measures studied did differ substantially, with a focus on organ tissue traits by Liu et al. versus 
our focus on body composition, as stated in the first part of the quoted sentence. Nonetheless, we agree 
that this statement can be misconstrued and we have therefore altered the statement as follows: 
 
“Here, we aimed to elucidate the genetic architecture of body composition, by conducting genome-wide 
association studies (GWAS) of these MRI-derived measures.”  
    
In the results: 
  
Line 233 says ‘Univariate GWASs on the individual measures revealed a total of 82 loci’; line 243 it 
says ‘Of the 79 lead SNPs’. Please clarify why there is a mismatch. 
 
Please note that the sentence reads “Of the 79 lead SNPs available in this set,”. Preprocessing of genetic 
data includes filters for e.g. Hardy-Weinberg equilibrium and excessive missingness, which will vary 
depending on sample composition, explaining why a small subset of SNPs are not available in the 
additional (non-White European) sample. These processing steps are listed in the Methods section, and 
we believe that listing them in the Results section is not favorable for the manuscript.  
 
Line 313, what is SI? 
 
SI stands for Supplementary Information. This abbreviation has been introduced in the second 
paragraph of the Results section. The SI contains the supplementary figures and legends. 
 
Figure legend for figure 2 is incomplete. 
 
Thank you for pointing this out. It appears indeed that the textbox extended beyond the bottom of the 
page, making the text illegible in the pdf file. This has now been corrected. 
  
Please provide explanation on why you performed Multivariate test and how to interpret the results. 
What is the logic for which traits to include? 
 
A multivariate test enables us to jointly analyze all measures of interest, taking advantage of overlapping 
effects to boost statistical power and discover shared determinants. How to interpret the results is guided 
by what is tagged by the set of measures. In this case, the identified genetic variants can therefore be 
interpreted as contributing to  body composition as a whole. The logic for which traits to include is in 
line with this, we aimed to investigate body composition, and therefore included traits that contribute 
to body composition. We have now revised the first sentence of the paragraph on the multivariate 
analyses: 
 
“Gene variants are likely to have distributed effects across these measures of body composition, as they 
are correlated components of the same biological system. To identify variants influencing body 
composition as a whole, we also jointly analyzed all measures through the Multivariate Omnibus 



Statistical Test (MOSTest),49 which increases statistical power in a scenario of shared genetic signal 
across the univariate measures.49–51” 
    
 
Lines 345-351, it is not clear to me why you limited the GWAS of cardiometabolic traits to 33,588 
individuals if your aim was to see how many variants were novel? In the next paragraph, you have used 
the full set in the multivariate test. Please provide justification.  
 
This approach was taken following the request of another reviewer to indicate whether our analyses 
allowed for the identification of novel loci, compared to classical biochemical measures, at comparable 
sample sizes. This came from a general interest in knowing whether these body MRI measures truly 
allow for more discovery, without being confounded by differences in sample sizes. We have now 
clarified this in the manuscript: 
 
“To ascertain whether the body MRI measures truly allow for more discovery, without being 
confounded by differences in sample size, we restricted these analyses to the same sample of individuals 
with available MRI data (N=33,588). These analyses showed that the large majority of loci were indeed 
novel;” 
 
 
In the discussion: 
  
Line 485, I am not sure how the Multivariate GWAS leads to this conclusion “The findings allow for 
numerous follow-up investigations; for instance, further studies are needed to clarify the role of putative 
moderators such as sex,76 age, and ethnicity.” Please clarify.  
 
We apologize for this poor phrasing. These specific findings indeed do not explicitly enable those 
follow-ups. Rather, we simply meant that the MOSTest findings will leave room for further influences 
to be investigated. This is now rephrased as follows: 
 
“However, further studies are needed to clarify the role of putative moderators such as sex,76 age, and 
ethnicity.77” 
 
Line 496, could you give an example for “more powerful statistical approaches”?  
 
The applied MOSTest approach is such an example. Other approaches could be those that make use of 
Bayesian statistics to integrate information from a secondary trait to boost the identification of loci in a 
primary trait of interest, e.g. conditional false discovery rate analysis. We have now added the 
suggestion of using MOSTest to this sentence: 
 
“and the use of more powerful statistical approaches, such as MOSTest, will be required to improve 
discovery.” 
 
General:  
 
I still did not find the supplementary figures, and the supplementary tables do not have legends.  
 
We are sorry to read that this was still the case. Please see below a screenshot of the files that were 
included with revision #1, with the supplementary information listed at number 6. We have downloaded 
and double-checked this file, it is complete, containing the figures and description of tables.  
 



 
 



REVIEWERS' COMMENTS: 

 

Reviewer #1 (Remarks to the Author): 

 

Thank you for the responses and the updates to the manuscript and methods. I have no further 

comments. 
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