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S1 Materials and Methods

In all the experiments performed, the few-femtosecond extreme-ultraviolet (XUV) pulses are

generated by focusing 800-µJ infrared (IR) pulses with time duration of about 35-40 fs and

central wavelength of 811 nm onto a static gas cell filled with Ar. The 23rd harmonic (H23),

centered around 35 eV, is selected by a time-delay compensated monochromator (TDCM) (1)

while preserving its time duration (2). Another portion of the same IR beam (about 1 mJ) is

sent to a fiber compression system (3), composed by a hollow-core fiber filled with Ne and a set

of broad-band chirp mirrors. After compression the IR beam passes through a λ/2-waveplate
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before being reflected by a wide-band polarizer. In this way the pulse duration can be adjusted

by changing the Ne pressure in the fiber, while its energy is set by controlling the orientation of

the λ/2-waveplate and thus the fraction of the beam that is reflected by the wide-band polarizer.

Before recombining the IR and XUV beams with a drilled mirror, the IR pulses are sent to a

delay line controlled by a piezo stage which assures sub-fs precision. Both beams are indepen-

dently focused onto the target area of a time-of-flight (TOF) spectrometer used to collect the

photoelectrons which result by the two-color photoionization of Ne atoms. In the following we

address in detail the procedures and data analysis used with quasi-monochromatic pulses for

the static measurements, and with short pulses for the pump-probe experiments.

S1.1 Quasi-monochromatic IR pulses

Such pulses are obtained by applying an interferometric filter directly at the IR pulses generated

by the laser source, bypassing the fiber-compression setup. The filter has a bandwidth of 10 nm,

centered around a wavelength of 800 nm. Temporal characterization with a second-harmonic

FROG (4) revealed a time duration of about 150 fs (red curve in Fig. 1e of the main manuscript)

and negligible spectral chirp. To obtain the data of Fig. 2 of the main manuscript, we first per-

form a quick pump-probe experiment to find the zero delay between the quasi-monochromatic

IR and XUV pulses. Once the temporal overlap has been achieved, the IR pulse energy is var-

ied by changing the angle of the λ/2-waveplate to control the pulse intensity in the focus. This

latter is estimated starting from the IR temporal intensity profile obtained with the FROG, mea-

suring the beam spatial profile at the focus and the power transmitted by the waveplate-polarizer

assembly with a powermeter.

Each set of data is acquired by varying the IR intensity in a random order to avoid a sys-

tematic error. At a fix intensity, after electrical background removal, the total count of electrons

in each SB (i.e. the SB signal) is obtained by integrating the photoelectron spectrum in a 1-eV
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Figure S1: (a) Raw SB normalized intensities as extracted from the photoelectron spectra ob-
tained with a quasi-monochromatic IR pulse. (b) Absolute electron counts calibration factor for
the two different sets of TOF voltages used in the experiment.

energy region around the corresponding SB peak. It is important to notice that since the photo-

electron spectra are acquired with a TOF spectrometer, the absolute value for the photoelectron

counts is not given. To circumvent this problem we normalized the SB signal by the total area of

the XUV-only photoelectron spectrum, I0. The results reported in Fig. S1(a) show the expected

behaviour with IIR, even if the absolute value of the SB normalized intensity is lower than what

predicted by the theory. This discrepancy originates from a non-flat energy transfer function of

the TOF spectrometer which usually depends on the actual voltages applied to its electrostatic

lenses and on the geometry of the interaction. To estimate the non-flat response of the TOF

we proceeded as follows. For a chosen SB order n, we considered separately the raw data in

Fig. S1(a) which have been taken under the same experimental conditions. Then, using a fitting

procedure, we calculated the parameter αn which minimizes the rms distance between the raw

data and the theoretical prediction A2
n = J̃n

(
−pnE0

ω2
0
,− Up

2ω0

)
. The values of αn as a function of

the SB order for the two sets of lenses used in the experiment are reported in Fig. S1(b). The

vertical error bars indicate the confidence interval associated with the estimation of αn. We find
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that the calibration factor αn grows almost linearly with n between 0.5 and 4. Once the calibra-

tion factor has been evaluated, the experimental data can be normalized before being directly

compared to the theoretical curves (Fig. 2c of the main manuscript). For a given SB, the total

relative error associated to the estimation of αn, represented by the shaded areas in Fig. 2c of

the main manuscript, is calculated by summing the squared confidence intervals of the two sets

reported in Fig. S1(b).

S1.2 Short IR pulses

To generate short IR pulses of controlled duration, the IR beam is sent to a hollow-core fiber

compression setup before passing through the broad-band λ/2-waveplate and the polarizer.

Also in this case, the time duration of the IR pules is measured with the FROG technique

(Fig.1e of the main manuscript) while the intensity is set to ∼ 5× 1011 W/cm2 by adjusting the

transmitted power with the λ/2-waveplate. We performed several pump-probe experiments by

collecting the photoelectron spectra while the XUV-IR delay was changed with a step of 3-4 fs

(smaller step were used with shorter IR pulses). The resulting spectrograms were mediated

to obtain the final spectrogram and reduce the experimental noise. A photoelectron spectrum

without the IR was measured each 5 delay steps by blocking the beam with a mechanical shutter

during the scan. This XUV-only spectrum is used both to normalize the SB signal as discussed

in the main text and to estimate: (i) the variation of the XUV photon flux during the measure-

ment, (ii) the electronic noise which produces a non-zero background below the SB peaks. The

raw delay-dependent SB signal was obtained by integrating the spectrogram in energy after the

effects (i) and (ii) had been corrected for. The SB intensity is then given by the maximum of the

delay-dependent signal which can be estimated, for example, with a Gaussian fit of the energy-

integrated delay-dependent SB profile. The raw results are reported in Fig. S2. While each

SB signal qualitatively follows the theoretical prediction of Eq. (4) of the main manuscript, we
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notice some discrepancies which are related to the not perfect Gaussian shape of the pulses and

to the residual variations of the IR central wavelength and intensity from the nominal values.

This effects can be accounted for as described in the next session.

Figure S2: (a) Raw SB normalized intensities as extracted from the photoelectron spectrograms
obtained with short IR pulses. (b) Theoretical prediction for perfect IR Gaussian pulses centered
around 800 nm and with IIR = 5× 1011 W/cm2.

S1.2.1 Pulse temporal reconstruction

From the shape of Eq. (4) of the main manuscript it appears to be clear that small variations of

the IR central wavelength and intensity can influence the value of Λn. Therefore, it is crucial

to estimate the exact experimental parameters to be able to recast the results over a common

nominal IR intensity and wavelength. One possibility is to use ptychographic reconstruction

algorithms to extract both the IR and XUV characteristics directly from the experimental spec-

trogram (2, 5). Before applying the reconstruction algorithms one has to characterize the fi-

nite spectral resolution of the TOF spectrometer and acquisition system, which may artificially

broaden the photoelectron spectrum. To estimate the TOF response, we changed the XUV spec-

tral bandwidth between 200 and 400 meV (full width half maximum, FWHM) by varying the

aperture of the central slit of the TDCM, and measured the associated XUV-only photoelec-
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Figure S3: Photoelectron spectral width measured with the TOF spectrometer as a function of
the radiation spectral width measured with the XUV spectrometer (black full markers). The
solid line represent the expected behavior obtained by convoluting the radiation bandwidth with
the TOF energy resolution (reported in the legend).

tron spectra (black markers in Fig. S3). For an ideal spectrometer the two quantities should

correspond (black dashed line). In our case we observe that the photoelectron FWHM is gen-

erally bigger than the FWHM measured by the XUV spectrometer at the end of the beamline,

suggesting that the TOF response can be modeled by a Gaussian bell with a FWHM width of

250 meV (yellow curve in Fig. S3). As the photoelectron spectrum significantly deviates from

the XUV spectrum for such harmonic pulses, the application of a standard reconstruction al-

gorithm, which assumes the two quantities to be identical, will strongly underestimate the time

duration of the XUV pulse and overestimate the duration of the IR pulse. To avoid this issue, we

developed a reconstruction procedure based on the SFA formulation of the photoelectron signal

(Eq. (S1)) and capable to account for the actual XUV spectrum and the TOF response function.

In brief, following a common approach used in the reconstruction of FROG-like measurements,

the photoelectron spectrum is described by the Fourier transform of the product between a pulse

(the XUV field) and a pure phase gate (the exponential which depends on the IR). Starting from

an educated guess of pulse and gate, the algorithm corrects these quantities while imposing the
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amplitude of the simulated spectrogram to be identical to the experimental one. To improve

the accuracy, in the present case we forced the code to assume the IR temporal envelope to be

the one independently measured with a second-harmonic FROG, the TOF response function

to be Gaussian with a width of 250 meV, and the XUV spectral intensity to be identical to the

one measured by the XUV spectrometer (assumed to be more reliable as this spectrometer has

a resolution ≤ 50meV in this range). Moreover, to minimize the effect of the experimental

noise, the algorithm directly runs over the differential spectrogram (pump-probe trace minus

the XUV-only spectrum). An example of reconstruction is reported in Fig. S4 for the same

data of Fig. 3b of the main manuscript. The code provides the XUV spectral phase (Fig. 1b

Figure S4: (a) Differential photoelectron spectrogram obtained with 45-fs IR pulses. (b) Dif-
ferential spectrogram reconstructed by the fitting procedure.

in the main manuscript), the IR intensity, time duration and wavelength. The parameters ex-

tracted for each data point displayed in Fig. 3c of the main manuscript are reported in Fig. S5.

As expected the IR wavelength, λIR (Fig. S5(a)), observes a non-negligible blue shift while

moving towards shorter pulses. The IR intensity on target (Fig. S5(b)) ranges between 4.6 and

10.6× 1012 W/cm2, while the reconstructed XUV FWHM time duration, σx, is constant across

the different measurements (σx = 12.3 ± 0.4 fs). In order to set the correct pulse energy, the
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IR intensity is estimated in real time before performing the pump-probe scan by measuring the

IR temporal and spatial profiles. While the temporal measurement is sufficiently accurate, the

FROG setup has been calibrate and tested against the results obtained on target, the measure-

ment of the spatial profile is affected by a considerable background due to the limitations of the

detection system. As a results, the IR intensity that is estimated in real time in the lab suffers

by a poor accuracy. Furthermore, the effective IR intensity felt by the Ne atoms depends on the

degree of spatial overlap at the target position. For these reasons the reconstruction procedure

allows us to obtain a more accurate estimation of the effective IIR and correctly calibrate the

results. It is important to stress that while both the reconstruction procedure and our model

start from the SFA description of the photoelectron spectrogram, they are not based on the same

approximations. For example, the reconstruction algorithm applies a global CMA (p → pc) in-

stead of considering the SB momenta pn. The approximations introduced in the reconstruction

algorithm have been tested and proved to hold under the experimental conditions used in this

work, thus justifying its employment.

Figure S5: (a) Central wavelength of the IR pulses used in the experiment. (b) Estimated IR
intensity for each spectrogram performed. (c) Reconstructed IR (red dots) and XUV (violet
diamonds) FWHM pulse durations.

Once the actual pulse parameters are known, it is possible to account for the effect of their

deviation from the nominal values, i.e. IIR = 5 × 1012 W/cm2, λIR = 800 nm and perfect
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Gaussian envelope. To do so, we compared the values of the SB normalized amplitudes,

Λ2
n, calculated for the actual pulses reconstructed by the fitting procedure (open triangles in

Fig. S6(a)), with the values predicted by Eq. (4) of the main manuscript when evaluated for

the same time duration of the pulses, but at the nominal values of the other parameters (solid

lines in Fig. S6(a)). In this way it is possible to correct the experimental data of Fig. S2(a) (full

Figure S6: (a) SB normalized amplitude Λ2
n calculated with the analytical model of Eq. (4) of

the main manuscript for ideal Gaussian pulses, λIR = 800 nm and IIR = 5× 1012 W/cm2, solid
curves, or calculated using the actual pulses reconstructed from the experimental spectrograms
and described by the parameters in Fig. S5, open triangles. (b) Experimental SB normalized
amplitudes as extracted from the spectrograms, open circles (same as in Fig. S2(a)), or corrected
for the theoretical deviations due to the not nominal IR and XUV parameters, full circles.

circles in Fig. S6(b)) for the theoretical deviation due to the difference between the actual and

reference experimental pulse parameters. The result for the positive SBs is displayed by the full

circles in Fig. S6(b) and shows an improved agreement with the model of Eq. (4) of the main

manuscript. Finally, before comparing the experimental data with the theoretical prediction in

Fig. 3b of the main manuscript, the TOF calibration factor αn is calculated as described for

the quasi-monochromatic results (Sec. S1.1) and the associated uncertainty is recast over the

theoretical curves (shaded ares in Fig. 3b of the main manuscript).
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S2 Theoretical methods

In this section we describe in details the numerical models used for the calculations and simu-

lations. Atomic units are used throughout the document.

S2.1 SFA model

Within the strong-field approximation (SFA), the collection of photoelectron spectra obtained

by ionizing an atom of ionization energy Ip with an XUV field Ex(t) and an IR field EIR(t) =

−dAIR(t)
dt

is (6):

S(ω, τ) =

∣∣∣∣∫ ∞

−∞
d (p+ AIR( t))Ex(t− τ)e−i

∫∞
t

1
2
(p+AIR(t′))2dt′eiIptdt

∣∣∣∣2 , (S1)

where we assumed the IR and XUV fields to be linearly polarized with parallel polarization and

we considered only the photoelectrons emitted along the polarization direction. We note that in

atomic units ω = p2/2.

If we assume the dipole to be constant in the momentum range under consideration, by exploit-

ing the relation
∫∞
t
dt′ =

∫∞
−∞ dt′−

∫ t

−∞ dt′ and given that the integral of
∫ −∞
∞

1
2
(p+ AIR( t

′))2dt′

results in a constant phase term which does not affect that final spectrogram of Eq. (S1), we can

write:

S(ω, τ) =

∣∣∣∣∣
∫ ∞

−∞
Ex(t− τ)ei

∫ t
−∞[pA(t′)+ 1

2
A(t′)2]dt′e

i

(
Ip+

p2

2

)
t
dt

∣∣∣∣∣
2

, (S2)

All the simulations performed in this work are obtained by numerical evaluation of Eq. (S1) and

assuming the IR and XUV pulses to be Gaussians of the form:

EIR(t) = E0(t) sin(ω0t) = E0e
− t2

γ2r sin(ω0t) (S3)

EX(t) = Ex0(t)(e
−iωxt + cc.) = Ex0e

− t2

γ2x (e−iωxt + cc.), (S4)

where the complex quantities γx = 2
√(

c
2

)2 − iβx

2
and γr = 2

√(
a
2

)2 − iβr

2
depend on the

group-delay dispersion (GDD) coefficients βx and βr, and the XUV and IR intensity FWHM
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time durations, σx = c
√

2 log(2) and σr = a
√

2 log(2).

S2.2 Floquet (Volkov) states

Let’s consider a free electron described by the following plane wave:

ψ0(r, t) =
1

(2π)3/2
exp

{
i

[
p · r − 1

2
p2t

]}
(S5)

In the presence of an additional monochromatic IR field,

AIR(t) =
E0

ω0

cos(ω0t) (S6)

the wave function of the free electron is described by the Volkov wave (7):

ψV (r, t) =
1

(2π)3/2
exp

{
i

[
p · r −

∫ t

0

dt′
1

2
(p + AIR(t

′))
2

]}
(S7)

where p is the electron momentum and r is the position vector. Following what reported by

Madsen (8), and assume that we collect electrons whose momentum p is parallel to the polar-

ization of the IR pulse and XUV pulses, the Volkov wave can be rewritten as:

ψV (r, t) =
1

(2π)3/2
eip·r

∞∑
n=−∞

J̃n

(
−pE0

ω2
0

,− Up

2ω0

)
e−i(p2/2+Up−nω0)t. (S8)

where J̃n indicates the generalized Bessel function defined as the following sum of products of

ordinary Bessel functions:

J̃n(x, y) =
∞∑

j=−∞

Jn−2j(x)Jj(y). (S9)

If we neglect the spatial dependence, the time-dependent part of the Volkov state can be rewrit-

ten in the form:

ψ(t) = e−iεt

∞∑
n=−∞

Ane
inω0t, (S10)
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where {
ϵ = p2/2 + Up

An = J̃n

(
−pE0

ω2
0
,− Up

2ω0

)
.

(S11)

Using the dipole approximation, the photoelectron spectrum resulting from the ionization of an

atomic state |0⟩ = eiIptϕ0(r) with a field Ex(t) into a Volkov state ψV (r, t) is then given by (8):∣∣∣∣∫ ∞

−∞
dt⟨ψV (t)|Ax(t) · p̂|0⟩

∣∣∣∣2 ≃ ∣∣∣∣∫ ∞

−∞
ψ∗
V (t)µEx(t)ϕ0(r)eiIptdt

∣∣∣∣2 . (S12)

If the Fourier transform of the spatial part of the initial atomic state ϕ0(r) does not vary signifi-

cantly in the energy region of interest, i.e. if the atomic dipole dn = ⟨ eip·r

(2π)3/2
|µ|ϕ0(r)⟩ ≃ 1, we

get:∣∣∣∣∫ ∞

−∞
dt⟨ψV (t)|dEx(t)|0⟩

∣∣∣∣2 ≃
∣∣∣∣∣
∫ ∞

−∞
Ex(t)

∞∑
n=−∞

J̃n

(
−pE0

ω2
0

,− Up

2ω0

)
ei(p

2/2+Up−nω0)teiIptdt

∣∣∣∣∣
2

,

(S13)

which yields the same result of the SFA formula, as we will discuss in the next Section.

S2.3 Link between the two models

Starting from Eq. (S2) and assuming a monochromatic IR field of the form of Eq. (S6), we can

developed integral in the phase term into two contributions of the form:

i

∫ t

−∞
pAIR(t

′)dt′ = ip
E0

ω0

∫ t

−∞
cos(ω0t

′)dt′ = ip
E0

ω2
0

sin(ω0t), (S14)

and

i

∫ t

−∞

1

2
AIR(t

′)2dt′ = i
E2

0

2ω2
0

∫ t

−∞
cos2(ω0t

′)dt′ = iUpt+ i
Up

2ω0

sin(2ω0t), (S15)

where we introduced the ponderomotive energy Up = E2
0/(4ω

2
0). We can thus rewrite Eq. (S2)

as:

S(ω) =

∣∣∣∣∣
∫ ∞

−∞
Ex(t)e

ip
E0
ω2
0
sin(ω0t)

e
i
Up
2ω0

sin(2ω0t)e
i

(
Up+Ip+

p2

2

)
t
dt

∣∣∣∣∣
2

. (S16)
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Using the Jacobi-Anger expansion, eiz sin θ =
∑∞

n=−∞ Jn(z)e
inθ, for the two sinusoidal phase

terms in the above integral we get (8):

ei(x sin θ+y sin 2θ) =
∞∑

n=−∞

J̃n(x, y)e
inθ. (S17)

where J̃n(x, y) indicates the generalized Bessel function of order n defined by Eq. (S9). It is

now possible to rewrite Eq. (S16) as:

S(ω) =

∣∣∣∣∣
∫ ∞

−∞
Ex(t)

∞∑
k=−∞

J̃k

(
p
E0

ω2
0

,
Up

2ω0

)
eikω0te

i

(
Up+Ip+

p2

2

)
t
dt

∣∣∣∣∣
2

. (S18)

Since − sin(θ) = sin(−θ), starting from the definition of Eq. (S17), it is easy to show that

J̃n (−x,−y) = J̃−n (x, y) . (S19)

Therefore, if we substitute k = −n, Eq. (S18) becomes

S(ω) =

∣∣∣∣∣
∫ ∞

−∞
Ex(t)

∞∑
n=−∞

J̃n

(
−pE0

ω2
0

,− Up

2ω0

)
e−inω0te

i

(
Up+Ip+

p2

2

)
t
dt

∣∣∣∣∣
2

, (S20)

which proves that the SFA approach and Eq. (S13) yield the same result:

S(ω) =

∣∣∣∣∣
∫ ∞

−∞
Ex(t)

∞∑
n=−∞

An(p, E0, ω0)e
−inω0tei(ε+Ip)tdt

∣∣∣∣∣
2

, (S21)

with An(p, E0, ω0) defined by Eq. (S11).

S2.4 Photoelectron SB signal

If we concentrate on the positive part of the spectrum, use the XUV field definition of Eq. (S4)

and consider that in atomic units p2/2 = ω, we can rewrite Eq. (S21) as:

S(ω) =

∣∣∣∣∣
∫ ∞

−∞

∞∑
n=−∞

Ex0(t)An(p, E0, ω0)e
i(ω−ωn)tdt

∣∣∣∣∣
2

, (S22)

where we have introduced the SB energy ωn = ωx+nω0−Up−Ip. If the XUV pulse bandwidth

is narrow enough, the square modulus of the sum in the above equation corresponds to the sum
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of the square moduli. Furthermore, within each SB the momentum dependence of An can be

neglected by substituting p → pn =
√
2ωn. Therefore, the photoelectron spectrum is given

by S(ω) =
∑∞

n=−∞ SBn(ω) where the quantity SBn(ω) is the modulus square of the Fourier

transform of the XUV field envelope, multiplied by the Floquet ladder amplitude evaluated at

the SB central momentum:

SBn(ω) =
∣∣An(pn, E0, ω0)F

{
Ex0(t)e

−iωnt
}∣∣2 . (S23)

This quantity represents the n-th SB signal which depends, for monochromatic IR fields, only

on the final photoelectron energy ω.

If the XUV bandwidth is narrow enough, from Eq. (S22) we get:

S(ω) =

∣∣∣∣∣
∞∑

n=−∞

An(pn, E0, ω0)

∫ ∞

−∞
Ex0(t)e

i(ω−ωn)tdt

∣∣∣∣∣
2

= (S24)

=

∣∣∣∣∣
∞∑

n=−∞

An(pn, E0, ω0)Êx0(ω − ωn)

∣∣∣∣∣
2

. (S25)

where Êx0(ω − ωn) = E0xδ(ω − ωn) is the Fourier transform of the XUV envelope shifted in

ωn. In this case the time evolution of the photoelectron wavepacket originating solely from the

IR dressing, s(t), can be estimated as:

s(t) = F−1{
√
S(ω)}/E0x(t) = (S26)

=
∞∑

n=−∞

An(pn, E0, ω0)F
−1{Êx0(ω − ωn)}/E0x(t) = (S27)

= ei(ωx−Up−Ip)t

∞∑
n=−∞

An(pn, E0, ω0)e
inω0t, (S28)

and therefore

|s(t)|2 ∝

∣∣∣∣∣
∞∑

n=−∞

An(pn, E0, ω0)e
inω0t

∣∣∣∣∣
2

(S29)

which represents the time evolution of the scattering amplitude without considering the XUV

temporal properties.

14



S2.5 Driving pulses of finite duration

In case of IR pulses of finite duration the vector potential is given by:

AIR(t) = A0(t) cos(ω0t), (S30)

and the associated electric field is:

EIR(t) = A0(t)ω0 sin(ω0t)−
dA0(t)

dt
cos(ω0t) (S31)

If the slowly varying envelope approximation (SVEA) can be applied, i.e. if the pulse duration

is bigger than its oscillation period σIR ≫ 2π/ω0, and dA0(t)/dt ∼ 0, then

EIR(t) ≃ A0(t)ω0 sin(ω0t) = E0(t) sin(ω0t), (S32)

where E0(t) = A0(t)ω0.

Referring to Eq. (S2), using the fact that the pulse is finite (A0(−∞) = 0) and under the SVEA

(dA0(t)/dt ∼ 0), the integral in the IR phase term yields the following two contributions:

p

∫ t

−∞
A(t′)dt′ ≃ pA0(t)

ω0

sin(ω0t) =
pE0(t)

ω2
0

sin(ω0t), (S33)

and ∫ t

−∞

A2(t′)

2
dt′ ≃ Up(t)t+

Up(t)

2ω0

sin(2ω0t
′), (S34)

where we have introduced an “instantaneous” ponderomotive energy of the form: Up(t) =

E2
0(t)/(4ω

2
0). The integral in Eq. (S2) can now be rewritten as:

S(ω, τ) ≃
∣∣∣∣∫ ∞

−∞
Ex(t− τ)e

i
pE0(t)

ω2
0

sin(ω0t)
e
i
Up(t)

2ω0
sin(2ω0t)ei(Up(t)+Ip+p2/2)tdt

∣∣∣∣2 . (S35)

If the pulse envelope E0(t) evolves on a slower time scale than the carrier period TIR = 2π/ω0,

following the two-time approach used in Ref. (9) (see Sec. S2.9), it is possible to show that:

e
i
pE0(t)

ω2
0

sin(ω0t)
=

∞∑
k=−∞

Jk

(
pE0(t)

ω2
0

)
eik(ω0t). (S36)
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If we extend this approach to the second complex exponential and use the generalized Bessel

functions, the spectrogram becomes:

S(ω, τ) ≃

∣∣∣∣∣
∫ ∞

−∞
Ex(t− τ)

∞∑
n=−∞

J̃n

(
−pE0(t)

ω2
0

,−Up(t)

2ω0

)
ei(Up(t)+Ip+p2/2−nω0)tdt

∣∣∣∣∣
2

, (S37)

which is identical to Eq. (S20) besides the time dependence in the argument of the generalized

Bessel functions. Focusing only on the positive spectrum and expressing the XUV field as:

Ex(t) = Ex0(t)e
−iωxt we can write:

S(ω, τ) ≃

∣∣∣∣∣
∫ ∞

−∞
Ex0(t− τ)

∞∑
n=−∞

J̃n

(
−pE0(t)

ω2
0

,−Up(t)

2ω0

)
ei(ω−ωn)tdt

∣∣∣∣∣
2

, (S38)

where we omitted the pure phase term eiωxτ as it disappears with the | · |2. Also in this case, if

the XUV bandwidth is small when compared to the IR photon energy, the total spectrum can be

seen as the sum of spectrally separated contributions:

S(ω, τ) ≃

∣∣∣∣∣
∞∑

n=−∞

fn(ω, τ)

∣∣∣∣∣
2

≃
∞∑

n=−∞

|fn(ω, τ)|2 =
∞∑

n=−∞

SBn(ω, τ). (S39)

After applying the central momentum approximation, the SB signal is hence given by:

SBn(ω, τ) = |F{Ex0(t− τ)J̃n

(
−pnE0(t)

ω2
0

,−Up(t)

2ω0

)
}|2 , (S40)

where the symbol F denotes the Fourier transform.

S2.6 Low-intensity limit

Let’s analyze the behavior of the generalized Bessel functions J̃n(x, y), for both arguments that

tend towards zero. For a standard Bessel function of the first kind it holds:

lim
x→0

Jk(x) =
(sg(k))k

|k|!

(x
2

)|k|
(S41)
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where sg(x) donetes the sign of x. We can use the approximation of Eq. (S41) to obtain the

following limit for J̃n(x, y):

lim
x,y→0

J̃n(x, y) = lim
x→0

∞∑
k=−∞

Jn−2k(x)Jk(y) (S42)

=
∞∑

k=−∞

(sg(n− 2k))n−2k

|n− 2k|!

(x
2

)|n−2k| (sg(k))k

|k|!

(y
2

)|k|
(S43)

If the field amplitude and the electron final momentum are not too big, than Up(t)

2ω0
≪ pE0(t)

ω2
0

, and

for pE0(t)

ω2
0

→ 0 also Up(t)

2ω0
→ 0, leading to:

J̃n

(
−pE0(t)

ω2
0

,−Up(t)

2ω0

)
≃

∞∑
k=−∞

(sg(n− 2k))n−2k

|n− 2k|!
(sg(k))k

|k|!
×

(−1)|n−2k|+|k|

2|n−2k|+4|k|
p|n−2k|

ω
2|n−2k|+3|k|
0

E0(t)
|n−2k|+2|k|

(S44)

The weight of the terms in the above equation decreases rapidly with |k|, and the terms which

give the major contributions are the ones for which 0 < k < n/2 for n > 0 and with n/2 <

k < 0 for n < 0. If n ̸= 0, the time evolution of those major terms follows E0(t)
|n−2k|+2|k| =

E0(t)
|n| = E

|n|
0 g(t)|n|, where we have expressed the pulse envelope E0(t) as the product of

a normalized function g(t) and an amplitude E0. In view of this limit, we can rewrite J̃n as

follows:

J̃n ≃ g(t)|n|
∞∑

k=−∞

(sg(n− 2k))n−2k

|n− 2k|!
(sg(k))k

|k|!
(−1)|n−2k|+|k|

2|n−2k|+4|k|
p|n−2k|

ω
2|n−2k|+3|k|
0

E
|n−2k|+2|k|
0 (S45)

≃ g(t)|n|J̃n

(
−pE0

ω2
0

,− Up

2ω0

)
(S46)

where Up = E2
0/(4ω

2
0). In this limit the temporal evolution of the n-th generalized Bessel

follows the n-th power of the pulse normalized envelope times the amplitude of the n-th state

of the Floquet ladder (Eq. (S11)) for a monochromatic pulse of amplitude E0 = E0(t = 0)

(corresponding to the pulse maximum amplitude).
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Figure S7: (a) Square of the first order generalized Bessel function calculated with the different
approximations discussed in the text for a field average intensity of 1× 109 W/cm2. (b) Differ-
ence between the approximated formulas used in (a) and the exact computation. (c), (d), same
as (a) and (b) but for an average intensity of 5× 1011 W/cm2. (e), (f) and (g), (h), refer instead
to a field average intensity of 1× 1012 W/cm2 and 2× 1012 W/cm2, respectively.

For n = 0 the generalized Bessel can instead be approximated with:

J̃0 ≃ 1−
(
1− J̃0

(
−pE0

ω2
0

,− Up

2ω0

))
g(t)2 = A′

0(t) (S47)

While Eq. (S45) has been derived for pE0(t)/ω
2
0 → 0, we found Eq. (S46) to be a good

approximation on a broader range, i.e. until the Bessel functions in Eq. (S42) are monotoni-

cally increasing in their arguments. Figure S7 shows the square of the first order generalized

Bessel function J̃1
(
−pE0(t)

ω2
0
,−Up(t)

2ω0

)2

, calculated for ionization of Neon with H23, an 800-nm

IR field with 5-fs FWHM pulse duration, and different field intensities IIR = 1
2
ε0cE

2
0 . As it is

possible to notice, Eq. (S44) and Eq. (S45) give almost identical results which nicely predict

the temporal behavior of J̃1 at low intensities (below 1010 W/cm2, Figs. S7(a), (b)). The error

introduced by the approximation of Eq. (S46) is comparable or smaller. This latter approxima-

tion is reasonable up to IIR = 1× 1012 W/cm2 (Figs. S7(c)-(f)). Above, the Bessels composing

J̃1 are not all monotonic with their arguments and the function maximum is no longer at t = 0.
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Therefore the approximation gets worse (Figs. S7(g), (h)).

It is important to underline that if the approximation holds for J̃1, all the more reasons it will

hold for the other orders. Indeed, with increasing order the maximum of the generalized Bessel

function is reached later in intensity (Fig. S8(a)). For n = −1, instead, the central SB mo-

mentum p−1 is lower (corresponding to the 22nd harmonic instead of the 24th). Figures S8(b),

(c) show the square of J̃1 as a function of time IIR, calculated for the same pulse as in Fig S7

with the exact formula (Fig. S8b) and with the approximated expression of Eq. (S46) (Fig. S8c).

Figure S8(d) displays their difference. As it is possible to notice, up to a field average intensity

of 1× 1012 W/cm2 the approximation of Eq. (S46) is reasonable.

Figure S8: (a) Square of the generalized Bessel function calculated for different orders. The
electron momentum p is properly adjusted to the Bessel order in the calculations. (b) J̃2

1 cal-
culated with the exact formula or, (c), with the approximation of Eq. (S46). (d) Point-by-point
difference between (b) and (c).

In the range where the approximation is valid, Eq. (S38) thus becomes:

S(ω, τ) ≃

∣∣∣∣∣
∫ ∞

−∞
Ex0(t− τ)

[ ∞∑
n=−∞
n̸=0

J̃n

(
−pE0

ω2
0

,− Up

2ω0

)
g(t)|n|ei(ω−ωn)t+

+1−
(
1− J̃0

(
−pE0

ω2
0

,− Up

2ω0

))
g(t)2ei(ω−ω0)t

]
dt

∣∣∣∣∣
2

,

(S48)

If the XUV bandwidth is small compared to the IR photon energy then the SB signal (n ̸= 0) of
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Eq. (S40) is now given by:

SBn(ω, τ) =

∣∣∣∣J̃n (−pnE0

ω2
0

,− Up

2ω0

)
F
{
Ex0(t− τ)g(t)|n|

}∣∣∣∣2 , (S49)

which is the same as Eq. (3) of the main manuscript.

In this limit, the time evolution of the scattering amplitude without considering the XUV tem-

poral properties goes as:

|s(t)|2 ∝

∣∣∣∣∣∣∣
∞∑

n=−∞
n ̸=0

An(pn, E0, ω0)g(t)
|n|einω0t + A′

0(t)

∣∣∣∣∣∣∣
2

(S50)

where A′
0(t) is given by Eq. (S47). Figure S9(a) shows the behavior of |s(t)|2 calculated for a

Floquet state (light grey, Eq. (S29)) and for driving pulses of different duration σIR (Eq. (S50)):

146 fs, dashed-blue, 43.3 fs ciano, 21.1 fs green and 9.2 fs red. The IR intensity used is 5 ×

1011 W/cm2. Hence the curves coincide with the second inset of Fig. 2c, grey curve, and the

four insets of Fig. 3c, coloured curves. Figure S9(b) shows the difference between |s(t)|2 of

a Floquet state and the that induced of a pulsed driving (same color coding as in Fig. S9(a)),

visually representing how Eq. (S50) deviates from the Floquet behaviour of Eq. (S29).

S2.7 Gaussian pulses

If both pulses have a Gaussian envelope of the form of Eqs. (S3) and (S4), the SB signal of

Eq. (S49) becomes:

SBn(ω, τ) =

∣∣∣∣Ex0J̃n

(
−pnE0

ω2
0

,− Up

2ω0

)∫ ∞

−∞
e
− (t−τ)2

γ2x e
− t2

γ2r,n ei(ω−ωn)tdt

∣∣∣∣2 , (S51)

where γr,n = γr/
√

|n|. The sideband signal in the experimental spectrogram is given by

|S(ω, τ)n|2 and it is thus related to the square modulus of the Fourier transform of the prod-

uct between the two Gaussian bells, G(t, τ) = e
− (t−τ)2

γ2x e
− t2

γ2r,n . It is possible to show that G(t, τ)

is another Gaussian function of the form:

G(t, τ) = e
− τ2

γ2r,n+γ2x e
− (t−µxr)

2

γ2xr = G′(t− µxr, τ) (S52)
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Figure S9: (a), time evolution of scattering amplitude related to the IR pump only, |s(t)|2,
calculated for an IR intensity of 5× 1011 W/cm2. The grey curve represents the monochromatic
case (Floquet state, Eq. (S29)), while the colored curves show the prediction of Eq. (S50) for
σIR equal: 146 fs, dashed-blue, 43.3 fs ciano, 21.1 fs green and 9.2 fs red. These conditions
correspond to the experimental points in Figs. 2c and 3c of the main manuscript. (b), Deviations
of the pulsed case from the monochromatic scenario. Same color coding as in (a).

where

γxr =

√
γ2r,nγ

2
x

γ2r,n + γ2x
(S53)

µxr =
τγ2r,n

γ2r,n + γ2x
(S54)

The Fourier transform in Eq. (S51) can now be solved to obtain (10):

SBn(ω, τ) = πE2
x0J̃n

(
−pnE0

ω2
0

,− Up

2ω0

)2 γ2r,nγ
2
x

γ2r,n + γ2x
e
− 2τ2

γ2r,n+γ2x e−
γxr
2

(ω−ωn)
2

, (S55)

which integrated in energy yields:

SBω,n(τ) =

∫ ∞

−∞
SBn(ω, τ)dω = πE2

x0J̃n

(
−pnE0

ω2
0

,− Up

2ω0

)2 √
2πγx√
γ2
x

γ2
r,n

+ 1
e
− 2τ2

γ2r,n+γ2x . (S56)
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If we now evaluate its maximum (i.e. compute the value at τ = 0), and normalize the result by

the area of the XUV-only photoelectron spectrum,

I0 =

∫ ∞

−∞
|Êx(ω)|2dω =

∫ ∞

−∞
E2

x0πγ
2
xe

− γ2x
2
(ω−ωx)

2

dω = E2
x0π

√
2πγx, (S57)

we find the expression of Eq. (4) of the main manuscript:

Λ2
n =

SBω,n(0)

I0
= J̃n

(
−pnE0

ω2
0

,− Up

2ω0

)2
1√

|n|γ2
x

γ2
r

+ 1
=

A2
n√

|n|σ2
x

σ2
r

+ 1
. (S58)

This proves that it is possible to extract the Floquet ladder amplitude An (Eq. (S11)) directly

from the measurements if we correct the normalized SB intensity for the XUV and IR time

durations. The higher the SB order, i.e. the higher n in Eq (S58), the stronger the amplitude

reduction. Therefore high-order ladder states are more affected by the finite time duration of

the IR pulse. As expected, at the long-pulse limit we get:

lim
∆σr→∞

Λ2
n = A2

n (S59)

and the ladder amplitudes coincide with the ones of Eq. (S11) for the monochromatic case.

Please notice that the same limit is reached with σx → 0, but in this case XUV spectral band-

width goes to infinity and Eq. (S39) is no longer valid.

S2.8 Comparison with SFA calculations

To test the result of Eq. (S58), we performed SFA calculations as described in Sec. S2.1 and

compare the value of Λ2
n predicted by the model with the one directly extracted from the sim-

ulated spectrogram. To mimic the experimental conditions we simulated the single harmonic

spectrogram (SHS) generated by harmonic 23 in Neon with an XUV time duration σx = 11 fs

and an IR time duration, σr, that varies between TIR and 22TIR with TIR = 2.6685 fs (i.e. cor-

responding to a wavelength of 800 nm). We repeated the calculations for different IR intensities
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in the range between 108 and 1012 W/cm2. An example of different SHSs at the experimental

IR intensity of 5×1011 W/cm2 and for transform limited (TL) IR and XUV pulses is reported in

Fig. S10. As expected, the numerical simulations confirm that the strength of the SBs depends

on the IR time duration. The quantity Λ2
n is extracted from the simulated spectrograms by inte-

Figure S10: SHSs calculated for H23 in Neon with σx = 11 fs (TL). The IR average intensity
is set to IIR = 5× 1011 W/cm2 while σIR = 1TIR (a), 2TIR (b), 4TIR (c) and 22TIR (d).

grating the n-th SB signal around its nominal energy position in a 1.1-eV energy window and

evaluating the maximum of the resulting delay-dependent curve. At low intensity, the maximum

is located at τ = 0 fs. As done for the experimental data, the extracted value is normalized by

the area of the XUV spectrum, following what defined in Eq. (S58). Figure S11 reports a com-

parison between the amplitudes Λ2
n extracted from the SFA calculations and calculated with the
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Figure S11: Comparison between the normalized SB amplitude Λ2
n/A

2
n calculated with SFA

or with Eq. (S58) for σr/σx between 0.5 and 5.33 and 108 < IIR < 1012 W/cm2. In all the
calculations σx = 11 fs while the IR duration is scanned between 2TIR and 22TIR. Each couple
of figures corresponds to a SB order. (a) and (b) are for n = −2, in (c) and (d) n = −1, in (e)
and (f) n = 1 and (g) and (h) for n = 2. The first figure of each couple presents the Λ2

n/A
2
n

obtained with Eq. (S58) (black surface) and with the SFA model (colored surface). The color
scale indicates the difference between the two curves, ∆n, depicted also by the contour plot at
the bottom of the figure. The lines in the rear plane represent the Λ2

n/A
2
n at selected intensities as

extracted from the SFA simulations. The second figure in the couple shows the corresponding
relative difference defined as (Λ2

n − A2
n)/A

2
n. The curves at the bottom show the contour lines

of the represented surface while the lines in the rear vertical panels show the projections at fix
intensities or durations. Both for the surface and for the lines in the right rear panel, false colors
represent log10(IIR).
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analytical expression of Eq. (S58). In order to allow a direct comparison between the SB ampli-

tudes obtained at different intensities, we decided to plot the quantity Λ2
n/A

2
n (Figs. S11(a), (c),

(e), (g)). As it is possible to notice the SFA calculations (colored surfaces and curves) nicely

agree with the theoretical model (black surface and curve) at the low intensity and long pulse

limit. For short IR pulse durations or for IR intensities higher than 1011 W/cm2 the SFA results

are generally higher than what predicted by the analytical model. The larger error between SFA

and theory is observed for the first SB (n = 1, Figs. S11(e) and (f)). Nevertheless, at the aver-

age IR intensity (5 × 1011 W/cm2) and for the σr/σx range used in the experiment, the relative

error, (Λ2
n − A2

n)/A
2
n, stays below 8% (Fig. S11(f)). For the second SB (n = 2, Fig. S11(g))

the error stays below 5% (Fig. S11(h)). While all the above calculations have been performed

with transform-limited pulses, the validity of Eq. (S58) has been tested against a finite GDD of

both pulses. The degree of agreement found is comparable to what reported in Fig. S11 for TL

pulses. If the actual time duration of the pulse is considered, the model predicts the correct SB

strength behavior also for higher chirp orders, unless the spectral chirp is so severe to cause a

clear deviation of the pulse temporal envelope from a Gaussian shape.

S2.9 Two-time approach

We here show how the approach used in Ref. (9) can be used to justify Eq. (S36). Let’s start by

introducing the function

V (t) = e
i
pE0(t)

ω2
0

sin(ω0t+φ)
. (S60)

If the pulse envelope evolves on a slower time scale than the sinusoidal part, then we can

introduce a second time t′ which defines a new quantity

V̄ (t, t′) = e
i
pE0(t)

ω2
0

sin(ω0t′+φ)
. (S61)
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With this, we can write the Fourier expansion of V (t) where the amplitudes of the expansion

are calculated by considering the periodicity of V̄ (t, t′) in t′. We get:

V (t) =
∑
m

Ṽm(t)e
imω0t (S62)

Ṽm(t) =
1

Tω0

∫ Tω0

0

dt′V̄ (t, t′)e−imω0t′ (S63)

where indeed

V (t) =
∑
m

Ṽm(t)e
imω0t =

∑
m

(
1

Tω0

∫ Tω0

0

dt′V̄ (t, t′)e−imω0t′
)
eimω0t = (S64)

=
1

Tω0

∫ Tω0

0

dt′V̄ (t, t′)
∑
m

e−imω0(t′−t) =
1

Tω0

∫ Tω0

0

dt′V̄ (t, t′)δ(t′ − t) = V (t). (S65)

Using Eq. (S61) and Eq. (S63) we can now write

Ṽm(t) =
ω0

2π

∫ 2π
ω0

0

dt′e
i
pE0(t)

ω2
0

sin(ω0t′+φ)
e−imω0t′ , (S66)

from which, using the Jacoby-Anger expansion we get

Ṽm(t) =
ω0

2π

∫ 2π
ω0

0

dt′
∞∑

n=−∞

Jn

(
pE0(t)

ω2
0

)
ein(ω0t′+φ)e−imω0t′ = (S67)

=
ω0

2π

∞∑
n=−∞

Jn

(
pE0(t)

ω2
0

)
einφ

∫ 2π
ω0

0

dt′ei(n−m)ω0t′ . (S68)

The last integral in the above equation differs from zero only if m = n where it equals the

period. Therefore we get

Ṽm(t) =
ω0

2π
Jm

(
pE0(t)

ω2
0

)
eimφ2π

ω0

. (S69)

If now we insert this into Eq. (S62) we get:

V (t) =
∑
m

Ṽm(t)e
imω0t =

∑
m

Jm

(
pE0(t)

ω2
0

)
eimφeimω0t (S70)
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which says that in the SVEA we can approximate

e
i
pE0(t)

ω2
0

sin(ω0t+φ)
=

∞∑
m=−∞

Jm

(
pE0(t)

ω2
0

)
eim(ω0t+φ) =

∞∑
n=−∞

Jn

(
−pE0(t)

ω2
0

)
e−in(ω0t+φ)

(S71)

which is the dual of the Jacobi-Anger formula for monochromatic fields:

e
i
pE0
ω2
0

sin(ω0t+φ)
=

∞∑
m=−∞

Jm

(
pE0

ω2
0

)
eim(ω0t+φ) =

∞∑
n=−∞

Jn

(
−pE0

ω2
0

)
e−in(ω0t+φ). (S72)
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