WILEY-VCH

Supporting Information

Injectable MAP hydrogel based on guest-host interlinked PEG microgels

Adrienne E. Widener, Senthilkumar Duraivel, Thomas E. Angelini, Edward A. Phelps*

Figure S1. (A) Guest-host and (B) host-host microspheres and fragmented gels and shear stress v. shear strain from the oscillatory strain sweep (**Figure 3C, D**). Yield stress is determined by the change in slope. (B) Yield strain rate amplitude was determined by conducting strain-rate frequency superposition for each group.

Islet Preparation	Unique Identifier	Donor Age [years]	Donor Sex [M/F]	Donor Ethnicity	Donor BMI [kg m ⁻²]	Donor HbA1c	Origin/Source of Islets	Islet Isolation Center	Donor History of diabetes?
1	SAMN20478103	30	Μ	Hispanic	25.40	5.8%	IIDP	University of Pennsylvania	No
2	SAMN21400456	54	Μ	White	29.3	5.3%	IIDP	Southern California Islet Cell Resource Center	No

Table S1. Islet Donor Information

WILEY-VCH

3	SAMN228114513	26	Μ	White	29.2	5.4%	IIDP	Southern California Islet Cell Resource Center	No
4	HP-22095-01	33	М	White	25.9	5.4%	PRODO Labs	PRODO Labs	No

Supplementary Derivation of Navier-Stokes Equations.

Case 1: 1X Phosphate Buffered Saline, 1 mL Syringe, 20 G Needle (Conical, no tapering)

- Assumptions:
 - Steady-state fully developed flow
 - No change in velocity along z or θ
 - Velocity component is only in the z-direction
 - Rheology: Newtonian
 - Neglect gravity (much smaller than pressure)

Using Navier Stokes Conservation of Momentum:

$$\rho \left[\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + v_\theta \frac{\partial v_z}{r \partial \theta} + v_z \frac{\partial v_z}{\partial z} \right] = \rho g_z - \frac{\partial P}{\partial z} + \left[\frac{1}{r} \frac{\partial (r \tau_{rz}}{\partial r} + \frac{1}{r} \frac{\partial \tau_{\theta z}}{\partial \theta} + \frac{\partial \tau_{zz}}{\partial z} \right]$$

$$Apply assumptions$$

$$\rho \left[\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial r} + v_\theta \frac{\partial v_z}{r \partial \theta} + v_z \frac{\partial v_z}{\partial z} \right] = \rho g_z - \frac{\partial P}{\partial z} + \left[\frac{1}{r} \frac{\partial (r \tau_{rz}}{\partial r} + \frac{1}{r} \frac{\partial \tau_{\theta z}}{\partial \theta} + \frac{\partial \tau_{zz}}{\partial z} \right]$$

$$- Pressure is only a function of z$$

- Shear and velocity are only a function of r

$$0 = -\frac{dP}{dz} + \left[\frac{1}{r}\frac{d(r\tau_{rz})}{dr}\right]$$
$$\frac{dP}{dz} = \left[\frac{1}{r}\frac{d(r\tau_{rz})}{dr}\right]$$
$$\frac{dP}{dz} = \left[\frac{1}{r}\frac{d(r\tau_{rz})}{dr}\right] = Constant, C_1$$
$$\frac{dP}{dz} = C_1$$
$$\int dP = \int C_1 dz$$
$$P = C_1 z + C_3$$

Apply Boundary Conditions

- B.C. $\Delta P = P_0 - P_1 @ z = 0, z = L$

Where L = length of the needle

$$P(z = 0) = P_0 = C_1(0) + C_3$$

$$P(z = L) = P_L = C_1(L) + P_0$$

$$C_1 = \frac{P_L - P_0}{L} = \frac{-\Delta P}{L}$$

$$P = \frac{-\Delta P z}{L} + P_0$$

$$\frac{dP}{dz} = \frac{-\Delta P}{L} = \frac{1}{r} \frac{d(r\tau_{rz})}{dr}$$

WILEY-VCH

$$\frac{-\Delta Pr}{L}dr = d(r\tau_{rz})$$
$$-\int \frac{\Delta Pr}{L}dr = \int d(r\tau_{rz})$$
$$\frac{-\Delta Pr^{2}}{2L} + C_{4} = r\tau_{rz}$$

General Solution for Shear Stress:

$$\frac{-\Delta Pr}{2L} + \frac{C_4}{r} = \tau_{rz}$$

Use Rheology to solve for unique solution of Shear Stress: Rheology for 1X PBS, Newtonian Fluid Model

$$\tau_{rz} = \mu \frac{dv_z}{dr} = \frac{-\Delta Pr}{2L} + \frac{C_4}{r}$$

$$C_4 = 0, \text{ because shear has to be finite at } r = 0$$

$$\frac{dv_z}{dr} = \frac{-\Delta Pr}{2\mu L}$$

$$dv_z = (\frac{-\Delta Pr}{2\mu L})dr$$

$$\int dv_z = \int (\frac{-\Delta Pr}{2\mu L})dr$$

$$v_z = \frac{-\Delta Pr^2}{4\mu L} + C_5$$

Apply Boundary Conditions:

-
$$v_z(r = R) = 0$$

 \circ Where R is the radius of the needle
- $\frac{\partial v}{\partial r}(r = 0) = 0$

$$v_z = \frac{-\Delta P R^2}{4\mu L} (1 - \frac{r^2}{R^2})$$
$$\frac{dv_z}{dr} = \frac{-\Delta P R^2}{4\mu L} + \frac{\Delta P r}{2\mu L}$$
$$\tau_{rz} = \mu \frac{dv_z}{dr} = \frac{-\Delta P R^2}{4L} + \frac{\Delta P r}{2L}$$

Plug in for wall shear stress:

$$\tau_w = \frac{\Delta PR}{2L} \left(-\frac{R}{2} + 1\right)$$

Case 2: Microspheres and Fragmented Gels General Solution for Shear Stress:

$$\frac{-\Delta Pr}{2L} + \frac{C_4}{r} = \tau_{rz}$$

Use rheology to solve for unique solution:

Rheology for Microspheres, Herschel-Bulkley Fluid Model

Using Magnon and Cayeux method we know that in turbulent flow, the wall shear stress is directly proportional to the pressure gradient:

$$\tau_w = \frac{R}{2} \frac{\Delta P}{L}$$