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Injectable MAP hydrogel based on guest-host interlinked PEG microgels  

 

Adrienne E. Widener, Senthilkumar Duraivel, Thomas E. Angelini, Edward A. Phelps*  

 

Figure S1. (A) Guest-host and (B) host-host microspheres and fragmented gels and shear 

stress v. shear strain from the oscillatory strain sweep (Figure 3C, D). Yield stress is 

determined by the change in slope. (B) Yield strain rate amplitude was determined by 

conducting strain-rate frequency superposition for each group.  

 

 

Table S1. Islet Donor Information 

Islet 

Preparation 

Unique Identifier Donor 

Age 

[years] 

Donor 

Sex 

[M/F] 

Donor 

Ethnicity 

Donor 

BMI 

[kg m
-2
] 

Donor 

HbA1c 

Origin/Source 

of Islets 

Islet Isolation 

Center 

Donor 

History of 

diabetes? 

1 SAMN20478103 30 M Hispanic 25.40 5.8% IIDP University of 

Pennsylvania 

No 

2 SAMN21400456 54 M White 29.3 5.3% IIDP Southern 

California 

Islet Cell 

Resource 

Center 

No 
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3 SAMN228114513 26 M White 29.2 5.4% IIDP Southern 

California 

Islet Cell 

Resource 

Center 

No 

4 HP-22095-01 33 M White 25.9 5.4% PRODO Labs PRODO Labs No 

 

Supplementary Derivation of Navier-Stokes Equations.  

Case 1: 1X Phosphate Buffered Saline, 1 mL Syringe, 20 G Needle (Conical, no tapering) 

 Assumptions:  

o Steady-state fully developed flow 

o No change in velocity along z or θ 

o Velocity component is only in the z-direction  

o Rheology: Newtonian  

o Neglect gravity (much smaller than pressure)  

 Using Navier Stokes Conservation of Momentum:  

𝜌 [
𝜕𝑣𝑧

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑧

𝜕𝑟
+ 𝑣𝜃

𝜕𝑣𝑧

𝑟𝜕𝜃
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
] =  𝜌𝑔𝑧 −

𝜕𝑃

𝜕𝑧
+ [

1

𝑟

𝜕(𝑟𝜏𝑟𝑧

𝜕𝑟
+

1

𝑟

𝜕𝜏𝜃𝑧

𝜕𝜃
+

𝜕𝜏𝑧𝑧

𝜕𝑧
] 

 Apply assumptions 

𝜌 [
𝜕𝑣𝑧

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑧

𝜕𝑟
+ 𝑣𝜃

𝜕𝑣𝑧

𝑟𝜕𝜃
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
] =  𝜌𝑔𝑧 −

𝜕𝑃

𝜕𝑧
+ [

1

𝑟

𝜕(𝑟𝜏𝑟𝑧

𝜕𝑟
+

1

𝑟

𝜕𝜏𝜃𝑧

𝜕𝜃
+

𝜕𝜏𝑧𝑧

𝜕𝑧
] 

- Pressure is only a function of z  
- Shear and velocity are only a function of r  

0 = −
𝑑𝑃

𝑑𝑧
+ [

1

𝑟

𝑑(𝑟𝜏𝑟𝑧

𝑑𝑟
] 

𝑑𝑃

𝑑𝑧
= [

1

𝑟

𝑑(𝑟𝜏𝑟𝑧

𝑑𝑟
] 

𝑑𝑃

𝑑𝑧
= [

1

𝑟

𝑑(𝑟𝜏𝑟𝑧

𝑑𝑟
] = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝐶1 

𝑑𝑃

𝑑𝑧
= 𝐶1 

∫ 𝑑𝑃 = ∫ 𝐶1𝑑𝑧 

𝑃 = 𝐶1𝑧 + 𝐶3 
 Apply Boundary Conditions  

- B.C. ∆𝑃 =  𝑃0 − 𝑃1 @ 𝑧 = 0, 𝑧 = 𝐿 

Where L = length of the needle  

𝑃(𝑧 = 0) = 𝑃0 = 𝐶1(0) + 𝐶3 

𝑃(𝑧 = 𝐿) = 𝑃𝐿 =  𝐶1(𝐿) +  𝑃0 

𝐶1 =
𝑃𝐿 − 𝑃0

𝐿
=

−∆𝑃

𝐿
 

𝑃 =  
−∆𝑃𝑧

𝐿
+ 𝑃0 

𝑑𝑃

𝑑𝑧
=

−∆𝑃

𝐿
=

1

𝑟

𝑑(𝑟𝜏𝑟𝑧)

𝑑𝑟
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−∆𝑃𝑟

𝐿
𝑑𝑟 = 𝑑(𝑟𝜏𝑟𝑧) 

− ∫
∆𝑃𝑟

𝐿
𝑑𝑟 = ∫ 𝑑(𝑟𝜏𝑟𝑧) 

−∆𝑃𝑟2

2𝐿
+ 𝐶4 = 𝑟𝜏𝑟𝑧 

 General Solution for Shear Stress: 
−∆𝑃𝑟

2𝐿
+

𝐶4

𝑟
= 𝜏𝑟𝑧 

 Use Rheology to solve for unique solution of Shear Stress:  

 Rheology for 1X PBS, Newtonian Fluid Model 

𝜏𝑟𝑧 = 𝜇
𝑑𝑣𝑧

𝑑𝑟
=

−∆𝑃𝑟

2𝐿
+

𝐶4

𝑟
 

  C4 = 0, because shear has to be finite at r = 0  
𝑑𝑣𝑧

𝑑𝑟
=

−∆𝑃𝑟

2𝜇𝐿
 

𝑑𝑣𝑧 = (
−∆𝑃𝑟

2𝜇𝐿
)𝑑𝑟 

∫ 𝑑𝑣𝑧 = ∫(
−∆𝑃𝑟

2𝜇𝐿
)𝑑𝑟 

𝑣𝑧 =
−∆𝑃𝑟2

4𝜇𝐿
+ 𝐶5 

 Apply Boundary Conditions:  
- 𝑣𝑧(𝑟 = 𝑅) = 0  

o Where R is the radius of the needle  

- 
𝜕𝑣

𝜕𝑟
(𝑟 = 0) = 0 

𝑣𝑧 =
−∆𝑃𝑅2

4𝜇𝐿
(1 −

𝑟2

𝑅2
) 

𝑑𝑣𝑧

𝑑𝑟
=

−∆𝑃𝑅2

4𝜇𝐿
+

∆𝑃𝑟

2𝜇𝐿
 

𝜏𝑟𝑧 = 𝜇
𝑑𝑣𝑧

𝑑𝑟
=

−∆𝑃𝑅2

4𝐿
+

∆𝑃𝑟

2𝐿
 

 Plug in for wall shear stress:  

𝝉𝒘 =
∆𝑷𝑹

𝟐𝑳
(−

𝑹

𝟐
+ 𝟏) 

Case 2: Microspheres and Fragmented Gels  

General Solution for Shear Stress:  
−∆𝑃𝑟

2𝐿
+

𝐶4

𝑟
= 𝜏𝑟𝑧 

Use rheology to solve for unique solution:  

 

Rheology for Microspheres, Herschel-Bulkley Fluid Model  

Using Magnon and Cayeux method we know that in turbulent flow, the wall shear 

stress is directly proportional to the pressure gradient:  

𝝉𝒘 =
𝑹

𝟐

∆𝑷

𝑳
 

 

 

 


