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Supplementary Figures

Figure S1. The ResNet based model architecture used in this study. (a) the residual block,
taken from (1) (b) the model architecture. It takes one-hot encoded protein sequences as
input. The number of residual blocks (Res1) was treated as a hyperparameter varying from
1-3.
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Figure S2. OGT datasets for hyper-parameter optimization. (a) the distribution of OGT
values of enzymes randomly sampled from the original training dataset. (b) a uniformly
distributed dataset was sampled from the original training dataset. There are 10,000
enzymes in each dataset.
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Figure S3. Validation metrics from hyper-parameter tuning results. The upper and lower
panel are the R2 score and root mean squared error on the validation dataset. The
description under the figure is variables tuned. Distribution, if the hyper-parameter set is
achieved on a dataset with original distribution (ori) or uniform distribution as shown in
Figure S2; filters, the number of filters used in all convolution layers; lr, learning rate;
Dense2, the number of nodes in the second fully-connected layer (Figure S1). The
hyper-parameter sets of the first two bars were obtained by a random search approach on
two datasets as shown in Figure S2. Then the number of filters and the size of the Dense2
were increased to 512, respectively (3rd and 4th bar). The bad scores shown in the 3rd bar
were due to the training not being finished in 7-days. Since the model architecture optimised
on the uniformly distributed dataset shows better performance on big OGT validation
dataset, it was further tuned by increasing the batch size from 32 to 128. In the end, the
hyper-parameters used for the last bar were considered as the final hyper-parameters
(Detailed list is in Table S2).
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Figure S4. Distributions of (a) enzyme Topt from (2), protein melting temperatures from
Leuenberger P et al (3) and Jarzab A et al (4). See details in the Methods section.
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Figure S5. Significance of model performance differences. Welch’s t-test was performed
on R2 measures of the different respective model training iterations. The matrices show
p-values for the (a) TOPT test dataset (b) TM test dataset (c) MELT test dataset, matching
Figure 2a-c.
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Figure S6. Predictivity of the determinative sequence features identified through
perturbation of DeepET Topt predictions. The linear (lm) and random forest (rand_forest)
models were trained and evaluated on the same train-test split of the TM dataset as for the
deep models (Fig. 2). The combinations of model factors are: AA_all = the composition of all
amino acids, AA_enriched_all = the composition of all enriched amino acids in the sequence
relevance profiles, AA_enriched_common = the composition of the common enriched amino
acids in the sequence relevance profiles of mesophiles and thermophiles,
Struct_enriched_all = the composition of all enriched secondary structures in the sequence
relevance profiles, AA_and_Struct = combination of AA_enriched_all and
Struct_enriched_all. The highest performance (R2 = 0.36, RMSE = 16) was obtained for a
random forest model trained on all enriched factors (AA_and_Struct).
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Figure S7. Comparison of perturbation profiles using different occlusion widths, for 4
randomly selected sequences (UniProt IDs given as subfigure titles), showing the overall
large similarity when using different widths.
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Figure S8. The choice of occlusion window width has no impact on the set of protein
domains covered by significant perturbation profile positions. Indeed, the sets resulting from
different occlusion window widths overlap perfectly, as shown here by the Jaccard index of 1
between these (showing only the upper triangle, as this measure is symmetric).
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Figure S9. Temperature distribution comparison between training and test subsets of the (a)
OGT, (b) TOPT, (c) TM, and (d) MELT datasets. The random split of training and test sets
preserved the overall distribution between these two subsets. OGT subsets were
subsampled (uniformly) to 5e5 values each, to avoid numerical issues in the kernel density
estimate calculation.
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Supplementary Tables

Table S1. Hyper parameter space used for random search search

Name Space Applied to layers

filters [32, 64, 128, 256, 512] All convolution layers have the same number of
filters

kernel size [3, 7, 9, 11, 21, 31] All convolution layers, they have different kernel
sizes

dilation (ResBlock) [1, 2, 3, 5] The first conv1d layer in ResBlock

pool size [2, 4, 8, 20, 30, 40] The max pooling layer, pool size is equal to strides

Dense 1 [256, 512, 1024] First dense layer

Dense 2 [128, 256, 512] Second dense layer

Dropout (0,0.5) Two dense layers, they have different dropout
values

lr [1e-4, 5e-4, 1e-3]

mbatch [32, 64, 128, 256]

Number of Residual
blocks

[1, 2, 3]
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Table S2. Optimised hyper-parameters

OriDist (Figure S2a) UniDist(Figure S2b)

filters 128 512

Kernel size 1 7 9

Residual Block 1

Kernel size 21 7 21

Kernel size 22 7 11

dilation2 1 1

Residual Block 2

Kernel size 31 31 NA

Kernel size 32 21 NA

dilation3 3 NA

Pool size (=strides) 30 50

dense1 512 512

Drop out 1 0.35 0.17

dense2 512 64 → 512

Drop out 2 0.37 0.15

lr 5e-4 1e-4

mbatch 32 32 → 128

Total weights 5.8M 19.0M → 19.2M
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Table S3. Biological process GO slims for the most relevant domains for Topt prediction of
mesophilic and thermophilic enzymes.

GO ID Mesophiles Thermophiles

GO:0009058 biosynthetic process

GO:0044281 small molecule metabolic process small molecule metabolic process

GO:0006259 DNA metabolic process DNA metabolic process

GO:0002376 immune system process

GO:0007155 cell adhesion

GO:0034641 cellular nitrogen compound
metabolic process

GO:0006605 protein targeting

GO:0009056 catabolic process catabolic process

GO:0015031 protein transport

GO:0005975 carbohydrate metabolic process carbohydrate metabolic process

GO:0006091 generation of precursor metabolites
and energy

GO:0006950 response to stress response to stress

GO:0006629 lipid metabolic process

GO:0006520 cellular amino acid metabolic
process

cellular amino acid metabolic
process

GO:0006399 tRNA metabolic process
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Table S4. Molecular function GO slims for the most relevant domains for Topt prediction of
mesophilic and thermophilic enzymes.

GO ID Mesophiles Thermophiles

GO:0016491 oxidoreductase activity oxidoreductase activity

GO:0016779 nucleotidyltransferase activity

GO:0016791 phosphatase activity phosphatase activity

GO:0016301 kinase activity kinase activity

GO:0008233 peptidase activity peptidase activity

GO:0016829 lyase activity

GO:0016765 transferase activity, transferring
alkyl or aryl (other than methyl)
groups

GO:0043167 ion binding ion binding

GO:0003677 DNA binding

GO:0016798 hydrolase activity, acting on
glycosyl bonds

hydrolase activity, acting on
glycosyl bonds

GO:0016810 hydrolase activity, acting on
carbon-nitrogen (but not peptide)
bonds

GO:0008168 methyltransferase activity

GO:0016874 ligase activity

GO:0016853 isomerase activity
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