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ABSTRACT Single-molecule localizationmicroscopy techniques transcend thediffraction limit ofvisible light by localizing isolated
emitters sampled stochastically. This time-lapse imaging necessitates long acquisition times, over which sample drift can become
large relative to the localization precision. Here, we present an efficient and robustmethod for estimating drift, using a simple peak-
finding algorithm based on mean shifts that is effective for single-molecule localization microscopy in two or three dimensions.
WHY IT MATTERS Drift correction is a regular part of the analysis pipeline in super-resolution fluorescence localization
microscopy because the microscope stage typically moves farther than the localization precision over the time needed to
acquire an image. This work presents a mathematically simple mean shift (MS) algorithm that allows for accurate drift
correction with high time resolution from acquired localizations in two or three dimensions.
INTRODUCTION

Stochastic super-resolution microscopy techniques,
such as STORM (1,2) and PALM (3,4), exploit photo-
switching of fluorescent probes to enable imaging of
densely labeled samples with resolutions an order of
magnitude smaller than the diffraction limit of visible
light. Sparsely distributed point spread functions
(PSFs) of single emitters are identified in individual im-
age frames, and their centroids are determined accord-
ing to an appropriate fitting algorithm. The axial
position of molecules can be encoded in their PSFs
through engineering measures utilizing astigmatism
(5,6), multifocal plane imaging (7), or a double helix
PSF (8). The final reconstruction is typically a two-
dimensional (2D) or three-dimensional (3D) histogram
of these single-molecule positions.

Drift due to thermal expansion or mechanical insta-
bilities can degrade image quality over the course of
image acquisition, which typically occurs on the time-
scale of minutes. Drift compensation requires either
active stabilization of the microscope (9–13) or a pos-
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teriori computation of the drift curves, either using
fiducial markers (14–18) or the acquired single-mole-
cule localizations (19–26). In this report, we present
a mathematically simple approach to drift correction
using a mean shift (MS) algorithm (27–29) for static
single-molecule localization microscopy (SMLM)
data sets without fiducial markers, with some advan-
tages over past approaches that use nonlinear least-
squares (NLLS) fitting of image-based cross-correla-
tions (19–21).
RESULTS

A graphical illustration of the MS algorithm as applied
to sample 2D localizations is presented in Fig. 1. The
localizations all lie in one of two data sets which sam-
ple the same uniformly distributed emitters, but with a
constant relative shift rshift in space. The first step of
the algorithm is to extract pairwise displacements be-
tween all localizations across the two data sets. When
individual displacements are plotted as points (Fig. 1
b), displacements arising from the same labeled ob-
jects (magenta points) cluster around rshift, whereas
displacements arising from different objects (green
points) distribute randomly over space. The MS algo-
rithm determines the center of the peak of the distribu-
tion through iteration (27–29). At each iteration, all
pairs within the radius of consideration are extracted,
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FIGURE 1 Demonstration of the MS algorithm.
(a) A sample 2D image containing two mole-
cules (filled red symbols) that are each localized
one time (filled blue symbols). At a later time, the
molecules are translated 25 nm in both dimen-
sions (open red symbols) and two additional lo-
calizations are acquired (open blue symbols).
Red contours indicate one and two times the
localization precision around molecule centers.
Straight lines show displacements between lo-
calizations acquired at distinct times. Some
connect localizations from the same displaced
molecule (magenta), whereas others connect
different molecules (green). (b) Displacements
like those shown in (a) displayed as points.
Points connecting the same molecules cluster
around the displacement, whereas points con-
necting different molecules produce a uniform
background. (c) Three iterations of the MS algo-
rithm showing the displacements as histograms
in one dimension and as points in 2D in the
inset. (Left) Initially, a region of interest (circle
in inset) is centered at zero shift. The mean
displacement of this subset of points is found
(arrow inmain graph and cross in inset). (Middle)
A new region of interest is drawn around the
mean from the initial iteration. The mean
displacement from this subset of points (arrow)
is shifted to slightly more positive values than
the previous mean. (Right) At the final iteration,
the tabulated mean (arrow) is equivalent to the
starting point (dashed line) because the peak
is centered within the region of interest.
and the updated shift estimate is the centroid of these
pairs. The uniformly distributed background will tend
to bias the centroid toward the center of the observa-
tion window, whereas the peak moves the mean to-
ward rshift. The observation window is then redrawn
around the new mean and the process is repeated un-
til the peak is centered in the observation window.
Three iterations of the algorithm are visualized in
Fig. 1 c.

Although the emitters of Fig. 1 are distributed uni-
formly in space, leading to the uniform distribution
of the pairs from different emitters, the MS method
does not depend on this assumption. In samples in
which emitters are organized into structures or
randomly clustered, the pairs arising from different
emitters are also more likely to be at shorter dis-
tances, so that the distribution of green points in
Fig. 1 b will also be peaked at rshift. However, in our
experience, pairs of localizations from the same
emitter are more important for the MS and other drift
estimates. We also note that our analysis assumes
that emitters that are localized in one data set remain
within the field of view in the second data set, and
vice versa. This may not always be the case, and
could in principle lead to bias in shift estimates, but
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in practice this is typically a negligible effect.
Roughly, the contribution of fluorophores near the
edge of the field of view may be biased by up to
about the localization precision, and the fraction of
fluorophores that are affected is restricted to those
that lie within about a localization precision from
the edge of the field of view, in the direction of the
drift. So, for example, in a 100 mm field of view with
localization precision of 15 nm, we would expect
this bias to be on the order of a picometer.

To benchmark this MS approach, we evaluated the
ability of the algorithm to detect known shifts of
simulated data sets of a circular test cell, as summa-
rized in Fig. 2. Shifts were estimated by both the MS
algorithm and by NLLS fitting of a Gaussian to the
spatial cross-correlation function of the two data
sets, as implemented in the supporting software pro-
vided with (21). The performance of each algorithm
was similar for easy cases that produce a well-
defined peak at rshift. An extremely easy case is de-
picted at the top of Fig. 2 a, in which single molecules
are well spaced (surface density ¼ 5/mm2) and their
positions are well sampled in both frames (twice
per molecule on average). In this case, the shift can
be clearly identified by eye, and both algorithms



FIGURE 2 Evaluating the MS algorithm on simulated data translated in two dimensions, compared with nonlinear least-squares (NLLS) fitting
approach. Simulations and displacement determination approaches are described in Supporting methods and materials. (a) Two examples of
simulated data sets. Scatter plots on the left show a representative configuration for an extremely easy case, 5 mol/mm2, with an average of two
localizations per molecule (top) and a relatively hard case 20mol/mm2, with an average of 0.05 localizations per molecule (bottom). Scale bars, 2
mm (large image) and 150 nm (inset). The simulated localization precision is s¼ 15nm. Histograms on the right show errors evaluated for the MS
and NLLS approaches for the two cases considered, evaluated from 500 simulations with random displacements between 0 and 150 nm (10s).
The precision of each method (Prec.) is evaluated as the standard deviation (SD) of a Gaussian fit to the central peak of the histogram (solid
line). The “failure rate” is the fraction of simulations for which the error exceeds twice the localization precision s, indicated as a dashed line for
the hard case. (b) Performance comparison of the MS and NLLS approaches over a broad range of simulated conditions. Each point summa-
rizes 500 simulations of the indicated average density and localizations per molecule, with precision and failure rate evaluated as described in
(a), along with the average computation time per calculation. (c) The measured precision plotted as a function of an error in the displacement
estimated from data, as derived in Supporting methods and materials. MS failure rate versus error estimate shows that the MS algorithm loses
robustness when the estimated error exceeds s/4 (dashed line).
reliably and accurately identify the displacement be-
tween frames. The simulation depicted at the bottom
of Fig. 2 a represents a much harder case, in which
molecules are present at higher surface density
(20/mm2) and only 1 in 20 molecules are imaged on
average in a given data set. In this case, MS modestly
outperforms NLLS fitting, both by locating the peak
with improved precision and by more reliably finding
the peak overall. These trends hold over simulations
conducted over a broad range of molecular densities
and localizations per molecule (Fig. 2 b). We also
estimated shifts from the overall center of mass of
each data set, which yielded precisions more than
an order of magnitude worse than both the MS and
NLLS methods. Moreover, MS is more computation-
ally efficient than NLLS, largely because fast Fourier
transforms are not computed in the MS approach.
This improvement in speed is enabled through the
use of a particularly efficient algorithm from the R
package spatstat (30) to extract pairwise displace-
ments between nearby points (see Supporting
methods and materials).
For large displacements, both the MS and NLLS algo-
rithms applied in Fig. 2 require an initial step to identify
an approximate starting point for the higher accuracy
calculation. Fig. S1 shows the failure rate of each algo-
rithm as a function of the distance of the start point
from the true shift. MS robustly identifies the main
peak over a broad range of simulation conditions as
long as it resides within the initial observation window,
so large shifts can be identified simply using a large
window in the first iteration. This window is typically
100 nm for experimental localizations and 150 nm for
the simulations of Fig. 2. NLLS robustly identifies the
main peak when the starting point for the computation
falls within the localization precision of the peak of the
cross-correlation function. In many practical cases, the
peak is much farther from the origin than the localiza-
tion precision, so a separate method is needed to iden-
tify a suitable starting point. Here, this is accomplished
using a particularly effective algorithm that identifies
the global maximum in a smoothed cross-correlation
function, as described in the supporting material of
(21). The robustness of the NLLS fitting approach is
Biophysical Reports 1, 100008, September 8, 2021 3



dependent on the ability of this algorithm to identify a
suitable starting point over a broad range of simulation
conditions. Note that data sets for which the emitter
distribution is highly structured or clustered typically
lead to improved performance of the start point identi-
fication routine by introducing a broad peak in the
cross-correlation function in addition to the sharp
peak that represents repeat localizations of the same
fluorophore.

This MS approach is applied to SMLM localizations
that experience continuous drift by distributing locali-
zations into nonoverlapping temporal bins with equal
numbers of frames, and displacement estimates are
tabulated between all possible pairs of bins. The num-
ber of frames in each temporal bin is an important
parameter; short temporal bins have few localizations
per molecule, so individual displacements may be esti-
mated imprecisely. Long temporal bins have more lo-
calizations per molecule and more precise drift
estimates but reduce the time resolution of the drift
estimate. A linear least-squares fitting algorithm is
then used to generate a trajectory that passes through
control points positioned, at times, centered on each
temporal bin, as described previously (21), taking
advantage of the high redundancy to improve preci-
sion of the control points. We have slightly modified
this past approach by including weights in the linear
least-squares fitting, where weights are determined
directly from data using a relation that approximates
error in the mean displacement (described in Support-
ing methods and materials), as demonstrated in simu-
lated data sets (Fig. 2 c). Briefly, errors are reduced
when there are more pairs originating from the same
molecules (magenta points in Fig. 1) and errors in-
crease when more pairs originate from different mole-
cules within the observation window (green points in
Fig. 1). Estimated errors can also act as a proxy for
overall reliability of the algorithm. Fig. 2 c also shows
that MS reliably finds the desired peak when the esti-
mated error remains smaller than one-quarter of the
localization precision. This observation can act as a
guide when selecting the number of frames included
in temporal bins.

It is tempting to distribute frames into overlapping
temporal bins, which in principle could improve time
resolution while retaining a sufficient number of
localizations to accurately determine displacements.
However, we find that drift estimates from overlapping
time bins are subject to substantial bias, underesti-
mating the actual displacements accrued over time
(Fig. S2 a). This occurs because the same localiza-
tions are present in adjacent bins, biasing the result to-
ward rshift ¼ 0. Similar bias can arise even in the
absence of overlapping time bins because SMLM
data frequently contain time-correlated localizations
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arising from the finite off rates of fluorescent blinking
(PALM/dSTORM) or binding (PAINT). These factors
mean that pairs of localizations from the same fluoro-
phore are mostly from time separations that are
shorter than the time difference between the bin cen-
ters and therefore underestimate the average drift be-
tween the bins.

The MS approach is applied to a 2D experimental
data set of nuclear pore complexes (NPCs) in Fig. 3.
NPC assemblies are labeled with primary and second-
ary antibodies against Nup210 within the nuclear
envelope of intact primary mouse neurons, and Fig. 3,
a–d shows reconstructed images at various magnifica-
tions. Fig. 3 b is a reconstruction produced without drift
correction, in which localizations from single NPCs are
smeared over a large area, highlighting the importance
of drift correction.

The performance of the MS algorithm was tested
on this data set by generating multiple drift trajec-
tories through binning with different temporal resolu-
tions. These trajectories were each applied to the full
SMLM data set, and Fourier ring correlation (FRC)
(31,32) was used to quantify image resolution
(Fig. 3 e). For comparison, we conducted drift correc-
tions using the redundant cross-correlation NLLS
approach, as described previously (21). In this case,
MS modestly outperforms NLLS fitting, allowing for
accurate drift correction with smaller temporal bins
and modestly improving the resolution of the recon-
structed image. We used this data set to explore
possible bias introduced because of temporal correla-
tions of single-fluorophore blinking by running the
linear least-squares algorithm and including or
excluding adjacent pairs of bins on the data of
Fig. 2. We found no significant difference between
the two cases (Fig. S2 b), indicating that the impact
of this bias is negligible within experimental errors.
Additional diagnostics for the MS and NLLS ap-
proaches are shown in Fig. S3.

Drift trajectories are shown in Fig. 3 f for temporal bin
widths that produce accurate FRC metrics for the MS
and NLLS approaches. For MS, a temporal bin slightly
larger than the minimum from the FRC curve is used
because this produces smaller errors on individual con-
trol points. As expected, the drift trajectories follow the
same general shape, but the trajectory generated from
MS has improved time resolution. In parts of the trajec-
tory, the errors of the control points are smaller than the
distance between the trajectories. In these regions,
higher time resolution yields improved spatial resolu-
tion in the final reconstructed image. Although the dif-
ferences in the trajectories are significant, their impact
is not apparent when viewing reconstructed images of
entire nuclei or collections of NPCs, as in Fig. 3, a and c.
Differences become more apparent in images of



FIGURE 3 Demonstration of MS drift correc-
tion of a 2D SMLM data set of antibody-labeled
Nup210 in nuclear pore complexes (NPC)
within the nuclear envelope of primary mouse
neurons. This data set contained 15,500 image
frames acquired over 14 min, with an average
localization precision of 8 nm. (a) Recon-
structed image of a single nucleus that is a
subset of this data set. (b) Reconstruction
without drift correction of the region shown
within the white box in (a). (c) Same region
as in (b) but with drift correction. (d) An image
of a single complex demonstrates the modest
shifts in localizations due to drift corrections
estimated with MS and 6 s (green) or NLLS
and 17 s (magenta) temporal bins. Scale
bars, 2 mm (a), 200 nm (b and c), and 30 nm
(d). (e) Fourier ring correlation (FRC) resolution
after applying drift corrections estimated us-
ing the specified temporal bin widths for the
MS and NLLS methods. Error bars represent
the SD over 20 replicates of the FRC calcula-
tion. (f) Estimated drift trajectories evaluated
from using the method and temporal spacing
specified. Error bars represent 68% confidence
intervals from the weighted least-squares drift
estimation of each control point. Scale bars,
20 nm for the overall drift curve and 2 nm in
the inset.
individual pores, in which displacements of several
nanometers shift the relative positions of labeled sub-
units (Fig. 3 d).

The MS algorithm is easily extended to localizations
acquired in 3D, in which performance improvements
are more evident compared with the established
NLLS approach. Because the MS algorithm uses points
instead of reconstructed images and fast Fourier trans-
forms, it can be extended into 3D without needing
expanded memory resources that limit the practical
application of NLLS in 3D. Instead, the 3D application
of NLLS drift correction is typically accomplished by
generating 2D projections that contain less information
than the 3D localizations from which they are produced
(21). To see why, consider a pair of emitters that are
close together in x-y but far apart in z. Pairs of localiza-
tions from this pair of fluorophores will be included in
2D MS drift estimation when using data projected
into the x-y plane but excluded from the full 3D drift
estimation method by virtue of their large separation
in z. We compare the precision and robustness of 3D
MS and NLLS on simulated localizations spread over
a cylindrical volume in Fig. S4, in which the NLLS
correction is performed on projections into the x-y,
x-z, and y-z planes, as described in (21). We also
directly compare the x-y performance of the full 3D
MS method with the 2D MS method performed on
data projected into the x-y plane (Fig. S5).

Fig. 4 applies the MS approach to an experimental
SMLM data set of labeled B cell receptors on the
ventral membrane of B cells imaged using a phase
mask in the emission path to localize fluorophores in
3D (8). As was the case for simulated data sets, the dif-
ferences in the performance of the MS and NLLS fitting
methods are more pronounced than in the 2D data set
of Fig. 3. Additional diagnostics for the 3D case are
shown in Fig. S6.

In summary, a mathematically simple MS algorithm
modestly outperforms cross-correlation-based esti-
mates of drift correction in 2D and more significantly
improves the time resolution of drift corrections in
3D. The approach is computationally efficient, is
robust without sophisticated methods to estimate
starting points, and does not require image recon-
struction with memory and pixelation limitations.
The metric provided to estimate error and predict
robustness directly from data provides users with a
means to evaluate the quality of a drift correction
within an SMLM analysis pipeline. For the example
data sets explored, modest improvements in
Biophysical Reports 1, 100008, September 8, 2021 5



FIGURE 4 Demonstration of MS drift correction of a 3D SMLM data
set of B cell receptors at the ventral plasma membrane of CH27 B
cells. This data set contained more than 400,000 localizations ac-
quired over 15 min, with an average localization precision of 17 nm
in the lateral (x-y) dimension and 31 nm in the axial (z) dimension.
(a) Reconstructed image of a subset of this data set showing the
average z position within each x-y pixel, as indicated in the color
bar. x-z slice at the position drawn as a white line is shown below.
Scale bars, 5 mm for x-y and 200 nm for z. (b) Fourier ring correlation
(FRC) estimates of image resolution after applying drift corrections
estimated using the specified temporal bin widths for the MS and
NLLS methods. Error bars represent the SD over five replicates of
the FRC calculation. (c) Estimated drift trajectories evaluated with
the specified temporal spacing. Error bars represent 68% confidence
intervals from the weighted least-squares drift estimation of each
control point. Scale bars, 50 nm (10 nm in the inset).
resolution lead to adjustments of localized molecule
positions relevant for evaluating the structure of pro-
tein complexes in cells.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.
bpr.2021.100008.
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Supplemental Methods and Materials 

Simulated Datasets 

An idealized 2D SMLM dataset was simulated as a spatially random set of fluorophores on a 

20µm diameter circular cell, with each fluorophore giving rise to a Poisson-distributed number 

of localizations with isotropic Gaussian localization error 15 / 2x yσ σ= =  nm. We define 

2 2 15x yσ σ σ= + =  to denote the total root-mean-square localization error. A second dataset was 

generated from the same fluorophore locations, localization precision, and average number of 

localizations per fluorophore, and shifted between 0 and 150 nm in a random direction. 

Simulated datasets were generated over a range of densities (5 to 100 per µm2) and a range of 

localizations per molecule (.05 to .2). 

 

An idealized 3D SMLM dataset was simulated in a similar fashion. Fluorophores were 

distributed uniformly on a cylinder 20 µm in diameter and 2 µm deep. Each fluorophore 

produces a Poisson-distributed number of localizations with 15 / 2x yσ σ= = nm as before, and 

with 30 / 2zσ = nm. One dataset is translated by a random distance between 0 and 150 nm in a 

random direction in x, y, and z. 

 

Extracting Close Pairs of Coordinates Between Datasets 

Consider two point sets ( , )i ix iyu u=u  and ( , )jx jyj v v=v , for 11,...,i n=  and 21,...,j n= . We wish 

to quickly determine which pairs ( , )i j  are closer than some maximum distance maxr ; i.e. which 

pairs satisfy maxi j r<− vu . The algorithm is adapted from the code for the closepairs() 

and crosspairs() functions of the R package spatstat (1), and implemented in C with a 

MATLAB interface. We first sort each dataset with respect to its x-coordinate, so that kx lxu u≤  

whenever k l≤ . Then the algorithm proceeds as follows: 

1. Let 1i = and left 1j = .  

2. Let xleft maixx ru −= . All close pairs of iu  must satisfy leftjx xv > . 

3. Increment leftj  until 
left leftj x xv ≥  . 



4. For each 2,...,leftj j n= , if maxjx ixv u r− > , increment i  and return to step 2. Otherwise, 

compute 2 2 2( ) ( )ij ix ix iy iyr uu v v= − + −  . If 2 2
maxijr r≤ , add ( , )i j  to the list of results.  

This algorithm avoids computing pairwise distances between most pairs in the dataset, and so is 

much faster and more memory efficient than a brute force approach. It can be readily adapted to 

higher dimensions by applying the appropriate n-dimensional distance metric in step 4. For 

convenience, our implementation returns the displacements j iij∆ = −r v u , and total distance 

ij ijr = ∆r‖ ‖ for each pair ( , )i j , instead of the indices themselves. 

 

Determining Shifts between Translated Datasets Using a Mean Shift Algorithm 

Given the set of displacements ij i j= −Δr u v  between two point sets iu  and jv , a mean shift 

clustering algorithm (2–4) can be applied to search for the peak of the displacement density 

function. Briefly, let shift ,0r  be an initial guess to initialize the shift estimate, and δ  a radius of 

consideration to use in the optimization procedure. The algorithm proceeds by iteration, by 

setting 

 
shift ,

shift , 1 ,
ij t

t ij δ+ − ≤
=

r r
r r   

where the average is restricted to the subset of displacements ijr  that satisfy the subscript, i.e. 

that are within a radius δ  from the previous shift estimate shift ,tr . The algorithm terminates when 

the distance shif , 1 shift ,t t t+ − rr  between subsequent shift estimates becomes smaller than machine 

precision, or when the number of iterations exceeds a user-defined maximum number. 𝛿𝛿 must be 

sufficiently large so that the true shift resides within the explored area when centered at the 

starting-point. In practice, we apply the algorithm twice: first with a large 𝛿𝛿 to determine the rough 

shift, and then with a smaller 𝛿𝛿, using the first estimate as a starting point, to refine the estimate. 

While the above can be applied directly to 3-dimensional data by taking the average over a 3-

dimensional ball of radius δ  instead of the 2-dimensional disc, we find it is advisable to 

consider an ellipsoid that is stretched in the z-direction, to account for the larger axial 

localization errors present in our 3-dimensional simulated and experimental datasets. In the 

present work, we let the semimajor axis of the ellipsoid be 2δ , in the z direction, and the 

semiminor axes both δ , so that x-y cross-sections of the regions of consideration are discs. 



Estimates of mean shift error 

We model the distribution of pairs around the true shift as a Gaussian-distributed peak with 

standard deviation ς , centered on the true shift shiftr  on a uniformly distributed background. 

Assuming shift ,tr is sufficiently close to shiftr that most of the Gaussian peak falls within the region 

of consideration, the variance 2ξ  of the two components of shift ,tr is given by  

 
2 2

2 true false
shift , , shift , , 2

true false )
/ 4Var Var

(t x t y
n nr r

n n
ς δξ +   = =  =

+ , 

where δ  is the radius of consideration for the MS algorithm, and truen  and falsen are respectively 

the number of “true pairs” that are drawn from the Gaussian part of the distribution 

(displacements between different localizations of the same molecules) and the number of “false 

pairs” that are drawn from the uniform part (displacements between different molecules), that 

fall within the region of consideration. Furthermore, the expected value after one more step can 

be derived: 
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Suppose t  is the final step of the algorithm, i.e. shift , 1 shift , 0t t+ − =rr . Then by hypothesis, shift ,tr

deviates from its expected value by  

 true
shift , shift

true false
t

n
n n

−
+

r r . 

This deviation will typically take on values comparable to the standard deviation ξ  shown 

above. Thus, we estimate the error of the MS algorithm by: 

 
2 2

true false

true

Predicted Error 
4

= 
/n n

n
ς δ+

. 

This predicted error is to be interpreted as an estimate of the standard deviation of the shift 

estimate in each direction. 

 



In practice, the parameters truen , falsen , andς  are not known, so we estimate them from data. 

Specifically, we construct the isotropic cross-correlation function ( )c r from the pair separations 

ijr , determine the baseline of ( )c r from its long-range median value, and use the baseline to infer 

truen and falsen . Finally, we fit ( )c r to a Gaussian plus a constant to estimate ς .This error 

estimate is derived from a heuristic argument and is not exact. However, its performance is 

adequate in practice. See Figure 2c for a comparison to observed standard deviations of MS shift 

estimates. 

 

For 3D data, we compute lateral and axial predicted errors separately, by projecting the data 

from the ellipsoidal region of consideration into the x-y plane or onto the z axis, respectively. 

truen , falsen , andς are estimated separately for the lateral and axial directions from the two 

projections. 

 

Evaluating displacements using nonlinear least squares (NLLS) fitting  

Displacements shiftr between pairs of localization datasets were also estimated by NLLS fitting of 

a Gaussian to the spatial cross-correlation function of the two datasets. NLLS fitting was 

accomplished using software published as Supplemental material of (5). Images were first 

reconstructed from simulated localizations with a pixel size of 15nm for simulated localizations, 

or from acquired data with a pixel size of 8nm for Nup210 or 15nm for B cell receptor 

experimental localizations. Cross-correlations are tabulated using 2D Fast Fourier Transforms 

(FFTs) and then fit a 2D Gaussian function to a subset of the cross-correlation centered at the 

start-point of the NLLS algorithm. The software from (5) finds the start-point using an elegant 

smoothing step to reduce noise then uses the largest local maximum of the smoothed cross-

correlation as the start-point for fitting. 

 

For localizations acquired in 3D, multiple 2D projections were constructed from 3D 

localizations, then the procedures described for 2D images were applied to determine 

displacements. First, images projecting on the lateral dimension (x-y plane) were generated and 

the lateral displacement was determined. To compute the z displacement, both the xz and yz 



projections were used, and the final z displacement was the average determined from the two 

projections. 

 

Correcting continuous drift 

Continuous drift was corrected by temporally dividing the data into N bins, each having the same 

number of frames. For each of the ( 1) / 2N N −  pairs ( , )m n  of temporal bins, the mean shift or 

NLLS algorithm is applied to estimate the shift shift ,m n→r  from temporal bin m  to n , corresponding 

to the drift between the bins. Drift at each of the 𝑁𝑁 time points is calculated from the 𝑁𝑁 (𝑁𝑁 − 1) 2⁄  

pairwise shifts using a least-squares minimization algorithm (5); this takes advantage of the 

overdetermined nature of the drift calculation to improve the precision of the measurement. Outlier 

shifts, whose residual with respect to the least-squares estimate exceeds a user-defined threshold, 

can also be discarded as described in (5). These shifts typically correspond to “failures” of the shift 

estimation method. The final drift curve at each frame is determined by linear interpolation and 

extrapolation from the N basis points. 

 

Evaluating performance of displacement algorithms 

For simulated localizations, errors away from known displacements were tabulated for each 

simulated configuration. The 2D precision of each method is defined as the standard deviation of 

a centered, isotropic 2D Gaussian fit to the central peak of the histogram of these values, 

considering only values that fall within twice the localization precision (2σ) used in the 

simulation. The fit is applied directly to the absolute errors shift,est. shift−r r  with the distribution 

function 
2 2/2

2( ) rr ef r σ

σ
−= . Similarly, in the 3D case, x- and z-precision are evaluated separately 

by fitting 1D Gaussian functions to the x- and z-errors, respectively. Values that fall outside of 

the 2σ window are reported as failures of the algorithm, and contribute to the failure rates 

reported in figures. Since failures can return values with large errors, they can have an outsized 

impact on simpler precision metrics, such as the root mean square error (RMSE). Computation 

time was assessed in MATLAB using the built-in tic and toc functions. For simulated data, 

computation time was averaged over 500 simulations for each condition. For experimental data, 

computation time includes the ( 1) / 2N N −  shift estimates and the error estimates for each shift 



estimate in the MS case. Normalized residual degrees of freedom (Normalized DOF) of the 

linear least squares algorithm are calculated by the ratio of shifts that are used for the final least 

squares minimization step (after removal of outliers) to the number of time points at which drift 

is estimated (i.e. 1N − ). This serves as a diagnostic for how much redundancy is included in the 

linear least squares minimization step. 

 

Evaluating the resolution of drift-corrected datasets 

Resolutions of the final reconstructed images were compared using Fourier Ring Correlation (6, 

7). Specifically, we used code adapted from the supplementary software of (6). To compute the 

x-y resolution, nearby localizations belonging to adjacent camera frames were grouped together, 

with the position taken to be the average of the relevant coordinates. The FRC curves were 

produced by dividing the dataset into blocks of 500 frames and allocating an equal number of 

blocks randomly to each of the two sets. The pixel size was taken to be 5nm. For the B cell 

dataset, the Fourier Ring approach was applied to the xy and xz projections in turn, also using a 

pixel size of 5nm in each case. 

 

Preparation of cellular samples for imaging 

Mouse primary neurons were isolated from P0 mouse pups that were decapitated and brains were 

isolated into ice cold, filtered dissection buffer (6.85 mM sodium chloride, 0.27mM potassium 

chloride, 0.0085mM sodium phosphate dibasic anhydrous, 0.011mM potassium phosphate 

monobasic anhydrous, 33.3mM D-glucose, 43.8mM sucrose, 0.277mM HEPES, pH 7.4) as 

described in (8). After removing the cerebellum and the meninges, cortices were dissected out, 

placed into a microcentrifuge tube, and cut into small pieces with dissection forceps. Cortices 

were incubated in 50µL papain (2mg/mL; BrainBits) and 10µL DNase I (1mg/mL; Worthington 

Biochemical) for 30min at 37 °C. 500µL BrainPhys Neuronal Medium (Stemcell Technologies) 

and 10µL additional DNase I were added, and cortices were titurated using P1000 and P200 

pipet tips. Titurated cortices were centrifuged at 1000rpm for 5min. After discarding the 

supernatants, the pellets were titurated and centrifuged three more times until the supernatant 

remained clear and neuronal pellets were visible. Pelleted neurons were resuspended in 

BrainPhys Neuronal medium with SM1 supplement as previously described (9), then plated onto 

35mm #1.5 glass-bottom dishes (MatTek Life Sciences) coated with polyethlenimine 



(100 µg/ml; Polysciences). Neurons were incubated in 5% CO2 at 37 °C, and 1mL of media was 

replaced every four days. 

 

On day 10 of culture (days in vitro 10), neurons were rinsed with sterile Hank’s Balanced Salt 

Solution, then incubated for 1min with pre-warmed 2% PFA (Electron Microscopy Sciences) in 

Phosphate Buffered Saline (PBS). The neurons were then incubated in 0.4% Triton X-100 

(Millipore Sigma) in PBS for 3min, and fixed for 30min with 2% PFA in PBS. Neurons were 

then washed with PBS five times, incubated in blocking buffer containing 5% Normal Donkey 

Serum and 5% Normal Goat Serum (Jackson Laboratories) for 30min, then labeled with Nup210 

polyclonal antibody diluted in blocking buffer (1:200; Bethyl laboratories A301-795A) overnight 

in 4 °C. The following day, neurons were washed three times in PBS then stained with Goat-anti-

rabbit Alexafluor 647 secondary antibody (1:1000; Thermo Fisher) for an hour, washed three 

times with PBS, then imaged. 

 

CH27 B cells (10) were cultured, allowed to adhere to 35mm #1.5 glass-bottom dishes (MatTek 

Life Sciences) overnight, then incubated in Alexa647 conjugated fAb prior to fixation in 4% 

PFA and 0.1% gluteraldehide (Electron Microscopy Sciences), as described previously (11). The 

labeled fAb antibody was prepared by conjugating an Alexa647 NHS ester (ThermoFisher) to an 

unconjugated fAb (Goat Anti-Mouse IgM, µ chain specific; Jackson Immunoresearch) using 

established protocols (11).  

 

Single molecule imaging and localization 

Imaging was performed using an Olympus IX83-XDC inverted microscope. TIRF laser angles 

where achieved using a 60X UAPO TIRF objective (NA = 1.49), and active Z-drift correction 

(ZDC) (Olympus America) as described previously. The ZDC was not used for collection of 3D 

datasets. Alexa 647 was excited using a 647 nm solid state laser (OBIS, 150 mW, Coherent) 

coupled in free-space through the back aperture of the microscope. Fluorescence emission was 

detected on an EMCCD camera (Ultra 897, Andor) after passing through a 2x expander. Imaging 

in 3D was accomplished using a SPINDLE module equipped with a DH-1 phase mask 

(DoubleHelix LLC). 

 



Single molecule positions were localized in individual image frames using custom software 

written in Matlab. Peaks were segmented using a standard wavelet algorithm (12) and segmented 

peaks were then fit on GPUs using previously described algorithms for 2D (13) or 3D 

localizations (14). After localization, points were culled to remove outliers prior to drift 

correction. Images were rendered by generating 2D histograms from localizations followed by 

convolution with a Gaussian for display purposes.  

 

  



Supplemental Software:  

Supplemental Software can be found at https://github.com/VeatchLab/Mean-Shift-Drift-

Correction. The software contains Matlab and C code to run mean shift drift corrections on 2D 

and 3D SMLM data. We also include slightly modified versions of the NLLS and FRC codes 

published previously (5, 6). Three example scripts are also included: 

1. meanshift_example.m: determine the shift between a single pair of sets of localizations 

sampling the same structure at different times. The example uses data from the 2D 

nuclear pore complex (NPC) dataset of Fig 3. 

2. example_NPC.m: correct 2D drift from the full NPC dataset of Fig 3. 

3. example_Bcell.m: correct 3D drift from the full B cell dataset of Fig 4. 

 

  



Supplemental Figures: 

 

 
 
 
Figure S1. Evaluating the mean shift (MS) and NLLS algorithms with the start-point at the origin. 
Simulations and shift determination approaches are described in Methods. a) Shifts between 0 and 10 times the 
localization precision (σ) are applied in a random direction, and the MS and NLLS algorithms are applied to 
determine these displacements. The observation window (δ) for the MS algorithm has an extent of 3σ as indicated 
by the dashed blue line. The “failure rate” is the fraction of simulations whose error exceeds 2σ. Each point 
represents a given combination of fluorophore density and number of localizations per molecule, averaged over 50 
independent trials. Densities range from 5 to 100 molecules per µm2, and localizations per molecule range from .05 
to .2. 
  



 
 
Figure S2. Drift estimates between overlapping temporal bins are prone to bias. a) Mean shift (MS) shift 
estimates for pairs of bins that are overlapping or separated by short times. Simulations are similar to those for 
Figure 2 with a cell of radius 10 µm and randomly distributed fluorophores at a density of 20 per µm2, but with 
explicit blinking kinetics, modeled as a simple two state (fluorescent/dark) system, with activation and deactivation 
time constants τon and τoff for the dark  fluorescent and fluorescent  dark transitions, respectively. A constant 
drift rate of .1 nm per frame is applied. The drift estimates shown here are for 50 frame temporal bins, with bin starts 
separated by the bin separation times as shown. For each τoff, τon is adjusted so that the average number of 
localizations per fluorophore is approximately 0.15. Open circles represent drift estimates using all pairs of 
simulated points, including the trivial 0 displacements between points that appear in the overlap of the two temporal 
bins. Filled circles represent drift estimates using all pairs of distinct point, i.e. excluding the trivial 0 displacements 
between points that appear in the overlap of the two temporal bins. Note that overlapping bins are subject to 
substantial bias even for quite short τoff (magenta points), and that even non-overlapping bins may be subject to bias 
when τoff is long (blue points). b) FRC resolutions for the nuclear pore complex data of Figure 3, with MS drift 
corrections including or excluding drift estimates for adjacent pairs of temporal bins in the linear least squares fit. 
  



 

 

Figure S3. Drift correction diagnostics for the nuclear pore complex dataset of Figure 3. a) FRC resolutions. 
Error bars are given by the standard deviation over 20 trials. b) The number of degrees of freedom (DOF) after 
removing outliers (normalized by the number of parameters) for the redundant least square minimization calculation. 
c) RMSE of the expected errors for the mean shift method. Error bars are given by the standard error of the mean. d) 
Total computation time. 

 



 

Figure S4. Evaluating the mean shift (MS) algorithm on 3D simulated data, compared to the NLLS approach. 
Simulations and shift determination approaches are described in methods. a,b) Histograms of x-errors (a) and z-
errors (b) for the MS and NLLS approaches for the 0.01 molecules/µm3 and 0.05 localizations per molecule 
condition. The precision of each method is evaluated for each condition as the standard deviation of a Gaussian fit to 
the central peak of the histogram. The “failure rate” is the fraction of simulations whose error exceeds twice the 
localization precision σ, indicated as a dashed line. Three densities are shown in the plots: 5. 20, and 100 
molecules/µm2. c,d) Comparison of the lateral (c) and axial (d) precision of each approach, plotted versus the 
number of localizations per molecule. e) Computation times of the two approaches over the same conditions shown 
in c,d). f,g) Comparison of the failure rate of each approach in lateral (f) and axial (g) directions under the same 
range of conditions. 
 
 

 

 
 

Figure S5. 2D projections of 3D data degrade mean shift (MS) shift estimation performance. Lateral (x-y) 
precision (a) and failure rate (b) when MS shift is determined in 3D or in 2D after projecting the localizations into 
the x-y plane. The points shown each summarize 500 replicates of one simulation condition, with fluorophore 
density as shown in the legend, and localizations per molecule ranging from .05 to .2. The simulated 3D data used 
here is constructed such that its 2D projection is identical to the 2D data used for Figure 2. 
 



 

Figure S6. Drift correction diagnostics for the 3D B cell dataset of Figure 4. a) FRC resolutions. Error bars are 
given by the standard deviation over five trials. b) The number of degrees of freedom (DOF) after removing outliers 
(normalized by the number of parameters) for the least square minimization calculation. c) RMSE of the lateral (x-y) 
and axial (z) expected errors for the mean shift calculation of pairwise shifts. Error bars are given by the standard 
error of the mean. d) Total computation time. 
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