Biophysical Reports, Volume 1

Supplemental information

Diagnosing and mitigating method-based avidity artifacts that confound polyubiquitin-binding assays

Allyn J. Schoeffler, Elizabeth Helgason, Nataliya Popovych, and Erin C. Dueber

Supplemental Materials

Diagnosing and mitigating method-based avidity artifacts that confound polyubiquitin binding assays

Allyn J. Schoeffler^{1,2}, Elizabeth Helgason¹, Nataliya Popovych¹, Erin C. Dueber^{1*}

¹Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco,

CA 94080

²Present address: Department of Chemistry and Biochemistry, Loyola University, New

Orleans, 6363 St. Charles Ave New Orleans, LA 70118

*Correspondence: <u>dueber.erin@gene.com</u>

Fig. S1

Fig. S2

Supplemental Figure Legends

Figure S1 Comprehensive analysis of ubiquitin binding by NEMO. (A) BLI measurements of monoubiquitin and linear di- and triubiquitin binding to monobiotinylated NEMO_{UBAN}. Curves represent fits of the bridging model (left panel) or single-site binding model (right panel) to equilibrium response data. Error bars indicate the standard deviation of three experiments. Fitting residuals, colored as in the fits, are shown below each plot. (B) BLI measurements of linear tetraubiquitin binding to monobiotinylated NEMOUBAN, as in **a**, but truncated at the intermediate plateau (< 1 μ M tetraubiquitin). The data are fit to a singlesite model and to the bridging model, and residuals are shown below the plot. (C) BLI measurements of linear tetraubiquitin binding to monobiotinylated NEMOUBAN. Curves represent fits of the bridging model or single-site binding model to equilibrium response data. In this case, the value for R_{min} has been set to zero. χ^2 values for both fitting models and measured loading densities are reported to the right of the plot, followed by fitting residuals for the highest and lowest loading density data. (D) The data from b are reproduced here, but fit to the bridging model in which R_{min} is a fittable parameter. All fitting parameters from these fits may be found in **Table S1**.

Figure S2 Comprehensive analysis of ubiquitin binding by cIAP1. (**A**) BLI measurements of linear di-, tri- and tetraubiquitin binding to monobiotinylated cIAP1-B3R. Curves represent fits of the bridging model (left panel) or single-site binding model (right panel) to equilibrium response data. Error bars indicate the standard deviation of three experiments. Fitting residuals, colored as in the fits, are shown below each plot. (**B**) BLI measurements of linear tetraubiquitin binding to monobiotinylated cIAP1-B3R. Curves represent fits of the

bridging model or single-site binding model to equilibrium response data. χ^2 values for both fitting models and measured loading densities are reported to the right of the plot. Fitting residuals for the highest and lowest loading density data are shown in the lower panel. (**C**) BLI measurements of cIAP1-B3R binding to monobiotinylated monoubiquitin or linear di-, tri- and tetraubiquitin. Curves represent fits of the bridging model (left panel) or single-site binding model (right panel) to equilibrium response data. Error bars indicate the standard deviation of three experiments. Fitting residuals, colored as in the fits, are shown below each plot. χ^2 values are shown inset. (**D**) BLI measurements of linear and K48-linked tetraubiquitin binding to monobiotinylated cIAP1-B3R. Curves represent fits of the bridging model (left panel) or single-site binding model (right panel) to equilibrium response data. Error bars indicate the standard deviation of three experiments. Fitting residuals, colored as in the fits, are shown below each plot. χ^2 values are shown inset. All fitting parameters from these fits may be found in **Table S1**.

Figure S3 Comprehensive analysis of ubiquitin binding by A20 zinc fingers, part 1. (**A**) BLI measurements of linear triubiquitin binding to monobiotinylated ZnF7, ZnF4, and ZnF4 with the C624A/C627A binding mutation at ~1 nm loading response. Curves represent fits of the bridging model (left panel) the single-site binding model (middle panel) and the single-site binding model with R_{min} set to zero (right panel) to equilibrium response data. Error bars indicate the standard deviation of three experiments. Fitting residuals, colored as in the fits, are shown below each plot. χ^2 values are shown inset. (**B**) BLI measurements, as in **a**, of K63-linked triubiquitin binding to monobiotinylated ZnF7 (blue), ZnF4 (purple), and ZnF4 with the C624A/C627A binding mutation (gray). (**C**) BLI measurements, as in **a**,

of K48-linked triubiquitin binding to monobiotinylated ZnF7 (blue), ZnF4 (purple), and ZnF4 with the C624A/C627A binding mutation (gray). All fitting parameters from these fits may be found in **Table S1**.

Figure S4. Comprehensive analysis of ubiquitin binding by A20 zinc fingers, part 2. (A) BLI measurements of linear triubiquitin binding to monobiotinylated ZnF7. Curves represent fits of the bridging model (dashed red line) or single-site binding model (solid black line) to equilibrium response data. χ^2 values for both fitting models and measured loading densities are reported to the right of the plot, followed by fitting residuals for the highest and lowest loading density data. (B) BLI measurements of linear triubiquitin binding to monobiotinylated ZnF7 (blue), ZnF4 (purple), and ZnF4 with the C624A/C627A binding mutation (gray) at ~0.1 nm loading response. Only the ZnF7 data supported nonlinear fitting. Curves represent fits of the nonequivalent two-site binding model (far left panel) the bridging model (middle left panel), the single-site binding model (middle right panel) and the Hill equation (far right panel) to equilibrium response data. Note that the nonequivalent two-site binding model fits a separate ΔR_{max} to each binding phase, as we cannot assume equal response sizes in BLI data. Error bars indicate the standard deviation of three experiments. Fitting residuals are shown below each plot; χ^2 values are shown inset. (C) BLI measurements of K63-linked triubiquitin binding to monobiotinylated ZnF7, ZnF4, and ZnF4 with the C624A/C627A binding mutation. Only the ZnF4 data supported nonlinear fitting. Curves represent fits of the bridging model (left panel) and the single-site binding model (right panel) to equilibrium response data. Error bars indicate the standard

deviation of three experiments. Fitting residuals are shown below each plot; χ^2 values are shown inset. All fitting parameters from these fits may be found in **Table S1**.

Figure S5. Assessing binding models with example BLI data. BLI measurements of diubiquitin (blue) and tetraubiquitin (orange) binding to monobiotinylated cIAP1-B3R. Curves through the points represent the fit of the following models to the data. First column: single site binding model; second column: single site binding model with a linear non-specific binding component; third column: cooperative model (Hill equation); fourth column: bridging model presented here. Equations are shown below the fits. In all cases, the data are fit using a signal offset (R_{min}) to account for the slight background signal in the absence of analyte, but this term may be removed if data are blanked. The top row shows the data with linear x-axes; the middle row displays the same data and fits with logarithmic x-axes. The bottom row shows residuals from the nonlinear fits. χ^2 values and n (for the Hill equation) are indicated in the middle row. Error bars indicate the standard deviation of three experiments. Note that the fit to the cooperative model returns a Hill coefficient of less than 1, indicating negative cooperativity. While the fit is reasonable, in this system, bridging is a more plausible explanation for the data than negative cooperativity. Note also that fits to linear diubiquitin data are uniformly good across all models, essentially collapsing to a single-site binding model, while fits to the tetraubiquitin data are best with the bridging model.

Figure S6. Example raw sensograms showing association and dissociation phases of BLI response. Monobiotinylated cIAP1-B3R was affixed to streptavidin BLI tips at a standard

~1 nm loading density. Tips were washed to remove unbound protein and the immersed in wells with varying concentrations of either linear tetraubiquitin (**A**) or K48-linked tetraubiquitin (**B**). Data have been normalized to the post-loading wash step. Note that in the case of linear tetraubiquitin, in which bridging artifacts are apparent in the equilibrium binding data, the dissociation phase fails to return to the baseline. In contrast, the data for the more compact K48-linked tetraubquitin, which we show here displays negligible bridging artifacts in the equilibrium response data, dissociation phases return to near baseline even at the highest ubiquitin concentrations.

×			bridging model *						single site model *				
	immobilized protein	analyte	fraction	KDb, μM (bridging)	KDm, μM (monovalent)	∆Rmax	Rmin	χ2	KD, μM	∆Rmax	Rmin	χ2	
Fig. 2 B	NEMOUBAN	linear Ub4	0.69 ± 0.03	0.004 ± 0.001	4 ± 2	1.98 ± 0.12	-0.31 ± 0.11	0.0246	0.009 ± 0.004	1.36 ± 0.17	-0.077 ± 0.18	0.3160	
	NEMOUBAN	linear Ub4 (data to < 1μM)	0.57 ± 41	0.004 ± 0.001	18 ± 3000	2.4 ± 170	-0.30 ± 0.14	0.0215	0.004 ± 0.001	1.38 ± 0.10	-0.29 ± 0.11	0.0225	
Ì	NEMOUBAN	linear Ub2	0.02 ± 0.02	0.01 ± 0.05	1.0 ± 0.1	0.96 ± 0.02	-0.004 ± 0.018	0.0014	0.97 ± 0.03	0.94 ± 0.01	0.005 ±0.005	0.0016	
	NEMOUBAN	Ub	0.52 ± 1e4	-5e-6 ± 0.2	101 ± 14	0.73 ± 2e4	-0.37 ± 2e4	0.0002	102 ± 12	0.35 ± 0.02	0.006 ± 0.001	0.0002	
Fig. 2 C	NEMOUBAN 1nm load	linear Ub4	0.47 ± 0.05 (0.53 ± 0.03)	0.005 ± 0.002 (0.0025 ± 0.0003)	10 ± 4 (8 ± 3)	1.03 ± 0.09 (1.13 ± 0.06)	0.13 ± 0.07 (set to 0)	0.0063 (0.0073)	0.6 ± 0.4 (0.006 ± 0.002)	0.49 ± 0.07 (0.76 ± 0.04)	0.43 ± 0.04 (set to 0)	0.0998 (0.1726)	
	NEMOUBAN 0.73 nm load	linear Ub4	0.38 ± 0.05 (0.44 ± 0.03)	0.004 ± 0.002 (0.0024 ± 0.0003)	13 ± 4 (11 ± 3)	0.77 ± 0.07 (0.82 ± 0.05)	0.07 ± 0.05 (set to 0)	0.0024 (0.0026)	2.2 ± 1.3 (0.007 ± 0.003)	0.39 ± 0.06 (0.47 ± 0.03)	0.27 ± 0.02 (set to 0)	0.0393 (0.1030)	
	NEMOUBAN 0.44 nm load	linear Ub4	0.36 ± 0.06 (0.41 ± 0.04)	0.007 ± 0.003 (0.004 ± 0.001)	14 ± 7 (12 ± 5)	0.48 ± 0.06 (0.49 ± 0.05)	0.03 ± 0.03 (set to 0)	0.0019 (0.0021)	1.5 ± 0.9 (0.01 ± 0.01)	0.24 ± 0.04 (0.28 ± 0.02)	0.13 ± 0.02 (set to 0)	0.0175 (0.0371)	
ĺ	NEMOUBAN 0.09 nm load	linear Ub4	-0.31 ± 160 (0.004 ± 0.05)	0.0001 ± 0.06 (-0.001 ± 0.001)	0.5 ± 0.3 (0.5 ± 0.2)	0.05 ± 6 (0.07 ± 0.01)	0.02 ± 6 (set to 0)	0.0009	0.5 ± 0.2 (0.5 ± 0.2)	0.069 ± 0.006 (0.07 ± 0.01)	0.002 ± 0.004 (set to 0)	0.0009	
Fig. 3 A	CIAP1-B3R	linear Ub4	0.56 ± 0.04	0.03 ± 0.01 ^b	3 ± 1 ^b	0.60 ± 0.03	-0.01 ± 0.03	0.0033	0.3 ± 0.1 ^b	0.45 ± 0.03	0.09 ± 0.03	0.0253	
	CIAP1-B3R	linear Ub3	0.60 ± 0.06	0.15 ± 0.04 ^b	5 ± 2 ^b	0.49 ± 0.01	-0.01 ± 0.01	0.0013	0.6 ± 0.1 ^b	0.43 ± 0.02	0.03 ± 0.02	0.0086	
	CIAP1-B3R	linear Ub2	0.02 ± 0.29	0.3 ± 5 ^b	2 ± 1 ^b	0.32 ± 0.01	-0.01 ± 0.01	0.0005	2.3 ± 0.2 ^b	0.314 ± 0.005	-0.011 ± 0.003	0.0005	
Fig. 3 <i>B</i>	CIAP1-B3R 1.4 nm load	linear Ub4	0.63 ± 0.08	0.05 ± 0.03 ^b	3 ± 2 ^b	0.59 ± 0.04	0.07 ± 0.04	0.0073	0.2 ± 0.1 ^b	0.48 ± 0.03	0.13 ± 0.03	0.0220	
	CIAP1-B3R 0.73 nm load	linear Ub4	0.46 ± 0.11	0.05 ± 0.04 ^b	2 ± 1 ^b	0.46 ± 0.03	-0.01 ± 0.03	0.0039	0.5 ± 0.1 ^b	0.39 ± 0.02	0.04 ± 0.02	0.0100	
	CIAP1-B3R 0.41 nm load	linear Ub4	0.62 ± 0.19	0.4 ± 0.2^{b}	5 ± 5^{b}	0.20 ± 0.01	0.005 ± 0.004	0.0003	0.8 ± 0.1 ^b	0.18 ± 0.01	0.010 ± 0.004	0.0007	
İ	CIAP1-B3R 0.19 nm load	linear Ub4	0.20 ± 0.08	0.1 ± 0.1 ^b	4 ± 1 ^b	0.17 ± 0.01	-0.03 ± 0.01	0.0006	2.5 ± 0.5 ^b	0.15 ± 0.01	-0.017 ± 0.004	0.0011	
Fig. 3 <i>E</i>	linear Ub4	CIAP1-B3R	-0.2 ± 0.5	0.1 ± 0.5	32 ± 3	7.16 ± 3.20	0.79 ± 3	0.1622	36 ± 3	8.26 ± 0.16	-0.19 ± 0.06	0.2406	
	linear Ub3	CIAP1-B3R	-0.3 ± 2	0.1 ± 0.4	35 ± 3	5.95 ± 10	1.24 ± 10	0.1346	38 ± 3	7.44 ± 0.15	-0.15 ± 0.06	0.1965	
	linear Ub2	CIAP1-B3R	-0.3 ± 5	0.03 ± 0.5	39 ± 3	4.98 ± 19	1.20 ± 19	0.0941	41 ± 3	6.38 ± 0.13	-0.13 ± 0.04	0.1224	
	Ub	CIAP1-B3R	-0.05 ± 0.03	1 ± 2	42 ± 5	5.43 ± 0.19	-0.14 ± 0.18	0.0637	47 ± 3	5.65 ± 0.11	-0.25 ± 0.04	0.0854	
Fig. 3 <i>F</i>	CIAP1-B3R	linear Ub4	0.56 ± 0.04	0.03 ± 0.01 ^b	3 ± 1ª	0.60 ± 0.03	-0.01 ± 0.03	0.0033	0.3 ± 0.1^{b}	0.45 ± 0.03	0.09 ± 0.03	0.0253	
	CIAP1-B3R	K48 Ub4	0.9 ± 2e11	5 ± 2e7 ^b	5 ± 2e8ª	0.48 ± 0.02	0.01 ± 0.01	0.0033	5 ± 1 ^b	0.48 ± 0.01	0.01 ± 0.01	0.0033	
Fig. 4 A	ZnF4	linear Ub3	0.26 ± 0.12	2 ± 1	18 ± 6	1.89 ± 0.07	0.01 ± 0.01	0.0048	9 ± 1 (8 ± 1)	1.72 ± 0.05 (1.72 ± 0.05)	0.02 ± 0.01 (set to 0)	0.0177 (0.0218)	
	ZnF4	K63 Ub3	0.53 ± 0.03	0.026 ± 0.005	1.5 ± 0.3	1.73 ± 0.03	-0.001 ± 0.02	0.0087	0.16 ± 0.04	1.50 ± 0.07	0.10 ± 0.05	0.1579	
	ZnF4	K48 Ub3	0.02 ± 0.01	0.04 ± 0.09	18 ± 2	2.53 ± 0.07	-0.002 ± 0.02	0.0103	17 ± 1	2.48 ± 0.06	0.02 ± 0.01	0.0134	
	ZnF7	linear Ub3	0.58 ± 0.04	0.002 ± 0.001	0.4 ± 0.1	2.00 ± 0.14	-0.11 ± 0.13	0.0521	0.04 ± 0.02 (0.010 ± 0.003)	1.42 ± 0.12 (1.69 ± 0.08)	0.35 ± 0.11 (set to 0)	0.4234 (0.5882)	
	ZnF7	K63 Ub3	0.32 ± 0.01	1.1 ± 0.1	40 ± 6	2.82 ± 0.09	0.01 ± 0.01	0.0019	6 ± 1	2.10 ± 0.10	0.06 ± 0.03	0.1088	
	ZnF7	K48 Ub3	0.12 ± 0.02	0.06 ± 0.05	13 ± 2	2.11 ± 0.09	0.01 ± 0.03	0.0233	9 ± 2	1.92 ± 0.11	0.09 ± 0.03	0.0866	
	ZnF4 C624A/C627A	K48 Ub3	0.03 ± 0.01	0.01 ± 0.02	12 ± 1	2.19 ± 0.05	0.004 ± 0.02	0.0071	12 ± 1	2.13 ± 0.05	0.03 ± 0.01	0.0116	
Fig. 4 B	ZnF7 1.0 nm load	linear Ub4	0.57 ± 0.02	0.005 ± 0.001	0.8 ± 0. 2	1.19 ± 0.03	0.02 ± 0.03	0.0066	0.04 ± 0.02	0.92 ± 0.07	0.18 ± 0.06	0.1155	
	ZnF7 0.9 nm load	linear Ub4	0.56 ± 0.03	0.006 ± 0.001	0.7 ± 0.2	0.89 ± 0.02	0.02 ± 0.02	0.0032	0.05 ± 0.02	0.71 ± 0.05	0.12 ± 0.04	0.0593	
	ZnF7 0.6 nm load	linear Ub4	0.48 ± 0.04	0.013 ± 0.003	0.6 ± 0.2	0.51 ± 0.01	0.01 ± 0.01	0.0010	0.10 ± 0.03	0.44 ± 0.02	0.05 ± 0.02	0.0124	
	ZnF7 0.3 nm load	linear Ub4	0.34 ± 0.05	0.02 ± 0.01	1.1 ± 0.3	0.26 ± 0.01	0.005 ± 0.004	0.0004	0.3 ± 0.1	0.22 ± 0.01	0.02 ± 0.01	0.0026	
	ZnF7 0.18 nm load	linear Ub4	0.20 ± 0.03	0.005 ± 0.004	1.3 ± 0.2	0.115 ± 0.004	0.011 ± 0.003	0.0001	0.8 ± 0.2	0.101 ± 0.005	0.021 ± 0.002	0.0004	
	ZnF7 0.09 nm load	linear Ub4	0.24 ± 0.10	0.001 ± 0.001	1.3 ± 0.3	0.09 ± 0.01	-0.001 ± 0.01	0.0001	1.0 ± 0.3	0.070 ± 0.004	0.014 ± 0.002	0.0003	
Fig. 4 D	ZnF4	linear Ub3	0.07 ± 2	-6e-5 ± 0.002	47 ± 24	0.25 ± 0.61	-0.02 ± 0.62	0.0002	51 ± 24	0.24 ± 0.08	-0.001 ± 0.001	0.0002	
	ZnF4	K63 Ub3	0.09 ± 0.13	0.001 ± 0.006	2.1 ± 0.3	0.09 ± 0.01	-0.001 ± 0.01	0.0003	2.0 ± 0.2	0.18 ± 0.01	0.005 ± 0.002	0.0004	
	ZnF7	linear Ub3	0.25 ± 0.03	0.003 ± 0.002	0.5 ± 0.1	0.21 ± 0.01	-0.002 ± 0.007	0.0003	0.3 ± 0.1	0.18 ± 0.01	0.020 ± 0.005	0.0014	

Table S1 Fit parameters for bridging and single-site models

^a Values that are italicized and in parenthesis are fitted parameters when R_{min} is set to 0 ^b Affinity measurements are normalized to reflect the number of ubiquitin sites in solution for the 1:1 stoichiometry of the CIAP1-B3R:monoubiquitin interaction (i.e. 4x for Ub4, 3x for Ub3 and 2x for Ub2)

			nonequivalent 2-site binding model							cooperative binding model (Hill equation)					
ĺ	immobilized protein	analyte	∆Rmax (site 1)	KD1, μM (site1)	∆Rmax (site 2)	KD1, μM (site2)	Rmin	χ2	∆Rmax	KD, μM	n (Hill coefficient)	Rmin	χ2		
ĺ	ZnF7	linear Ub3	0.16 ± 0.01	0.5 ± 0.1	0.05 ± 0.01	0.003 ± 0.002	-0.002 ± 0.007	0.0003	0.22 ± 0.02	0.5 ± 0.1	0.57 ± 0.07	0.004 ± 0.006	0.0005		

Table S2 Fit parameters for nonequivalent 2-site binding and cooperative binding models