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COMPARISON WITH ORIGINAL KICS METHOD

As discussed in the main text, applying the original kICS method[1] to an image series

with an immobile blinking population yields oscillations in the ACF. The original technique

defined the kICS autocorrelation without the temporal fluctuations, i.e.,

ϕ̃orig(k, τ) ≡ ⟨̃i(k, t)̃i∗(k, t+ τ)⟩t. (S1)

Using this definition, one can follow the same steps used to derive Eq. (12) in the main text

to instead obtain:

ϕ̃orig(k, τ) = q2|Ĩ(k)|2×{
Nimm∑
m=n

⟨Θm,tΘn,t+τ ⟩t +
Nimm∑
m ̸=n

⟨Θm,t⟩t⟨Θn,t+τ ⟩t exp (−ik · (um − un))︸ ︷︷ ︸
immobile

+

Nmob∑
m=n

⟨Θm,tΘn,t+τ ⟩t ⟨exp (−ik · (um,t − un,t+τ ))⟩t︸ ︷︷ ︸
mobile

}
+ ϕ̃ϵδτ,0. (S2)

Notice that the cross-term in this last equation (i.e., the second term) is non-zero, in general.

Furthermore, there is no prospect of making it zero, as was the case when introducing

the time-windowed mean subtraction. Thus, the original kICS technique is affected by

oscillations caused by the individual immobile particle positions. We demonstrate this effect

in Fig. S1.

In part (a) of the figure below, oscillations are caused by the immobile particle positions

and the presence of photobleaching. Part (b) further demonstrates that it is, in general,

insufficient to define the intensity fluctuations by simply subtracting the time average, as

photobleaching will still affect the ACF, in this case. Finally, part (c) shows that using

an appropriate choice of time-windowed intensity fluctuations can significantly lessen the

oscillatory effect.

Note we are not claiming that the extended kICS technique developed in the main text

is superior to the original one. The original method allowed one to separate transport

kinetics from photophysical processes in systems without an immobile blinking population
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of fluorophores. In this work, we extended the analysis to systems with these populations

and aimed to measure diffusion coefficients, as well as photophysical rates and diffusing

particle fractions.
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FIG. S1: Comparison of ACF (a) without temporal mean subtraction (original kICS
method), (b) with temporal mean subtraction, and (c) with time-windowed mean sub-
traction. Time-window used in (c) is Tw = 200 frames. Simulation parameters:
D = 1 pixels2·frame-1, K = 1 frame-1, ρon = 0.3, pD = 0.35 and kp = 5× 10−4 frame-1.

AUTOCORRELATION FUNCTION DERIVATION

Diffusing and immobile populations (2D)

Here we explicitly provide the ACF for a combination of immobile and diffusing particles.

We assume the fluorophores are undergoing a simple two-state, on-off photoblinking process,

in the absence of photobleaching. However, we will use the expression derived here to fit

for ACFs computed from systems with photobleaching. This can be a good approximation

for such systems when using the time-windowed subtraction in Eq. (13) to compute the

fluctuations, as discussed in the main text. In the later subsection titled “Time-windowed

correction”, we present a derivation that explicitly accounts for photobleaching. The fit

function for the expression supplied here will also be included in the provided GitHub

repository as Matlab code.

Accounting for the effect of detector time-integration in Eq. (4), the autocorrelation in
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Eq. (7) is re-expressed as:

ϕ̃(k, τ) ≡


∫ τ+1

τ
dt2
∫ 1

0
dt1⟨δtĩ(k, t1)δtĩ∗(k, t2)⟩t τ ̸= 0

2×
∫ 1

0
dt2
∫ t2
0

dt1⟨δtĩ(k, t1)δtĩ∗(k, t2)⟩t τ = 0
. (S3)

Using the mobile component from Eq. (12), the autocorrelation for a diffusing particle is

then (see Sehayek et al.[2] for photophysical autocorrelation details; also see Kolin et al.,[1]

as well as Berne and Pecora[3] for the Fourier autocorrelation of diffusing particles),

ϕ̃diff(Q, τ) ≡ ρon


e−Q(τ−1)

(
(1−e−Q)

2
ρon

Q2 +
(1−ρon)(1−e−(Q+K))

2
e−K(τ−1)

(Q+K)2

)
τ ̸= 0

2 1
Q(Q+K)

×(
Q− Q(1−ρon)(1−e−(Q+K))

Q+K
+

(Q+e−Q−1)Kρon

Q
−
(
1− e−Q

)
ρon

)
τ = 0

,

(S4)

where we define,

Q ≡ D|k|2. (S5)

Note that in Eq. (S4), we have left out dependence on the PSF and q, as they are ultimately

divided out by the normalization in Eq. (14).

Likewise, we obtain the autocorrelation for an immobile particle by explicitly expressing

the immobile component in Eq. (12),[2]

ϕ̃imm(τ) ≡
1

K2
ρon(1− ρon)×


(
1− e−K

)2
e−K(τ−1) τ ̸= 0

2×
(
e−K +K − 1

)
τ = 0

, (S6)

where we again omit PSF and q dependence.

It follows that the ACF, defined in Eq. (14) (including camera time-integration), for a

mixture of diffusing and immobile particles is:

ϕ̃(Q, τ) =
pDϕ̃diff(Q, τ) + (1− pD)ϕ̃imm(τ)

pDϕ̃diff(Q, 0) + (1− pD)ϕ̃imm(0)
. (S7)

Diffusing and immobile populations (3D)

Here we discuss the analysis of 3D systems. We again consider the combination of im-

mobile and diffusing populations. A full expression for the 3D ACF will be included in the
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provided GitHub repository as Matlab code. In the work of Kolin et al.,[1] it was shown

that for an LSM, the 3D contribution to the kICS autocorrelation appears as a multiplying

factor to its 2D counterpart. Namely, for a diffusing population, the factor is:

z20

4
√
π
√
4Dτ + z20

, (S8)

where z0 is the e−2 PSF radius in the axial direction.

Considering detector time-integration in the autocorrelation, as in Eq. (S3), the autocor-

relation of a blinking, diffusing particle in 3D then has the form (in the absence of bleaching):

ϕ̃diff,3D(A, τ) ∝
∫ τ+1

τ

dt2

∫ 1

0

dt1
1√

4D(t2 − t1) + z20
e−A(t2−t1) (τ ̸= 0). (S9)

This integral can be done by substituting:

u =
√

4D(t2 − t1) + z20 . (S10)

Eq. (S9) is then reduced to:

ϕ̃diff,3D(B, τ) ∝ 1

2
eBz20

∫ τ+1

τ

dt2

∫ √
4Dt2+z20

√
4D(t2−1)+z20

du e−Bu2

(τ ̸= 0), (S11)

with

B ≡ A/4D. (S12)

A similar calculation can be performed when τ = 0.

For immobile populations, the 3D multiplying factor is simply 1/z0, as can be seen by

setting D = 0 in Eq. (S8).

Time-windowed correction

Here we derive the theoretical expression for the ACF while considering the effect of

the time-windowed mean subtraction. A full expression will be made available in the pro-

vided GitHub code repository. For generality, we assume the processes considered are non-

stationary in time (as is the case with photobleaching, for example). Given the complexity

of this expression, it is best used when the photobleaching is prominent and when Eq. (S7)

cannot produce a reasonable fit to the data.

S-5



We begin by averaging the autocorrelation in Eq. (7) of the main text over all frame pairs

for lag τ while using the definition of the local temporal fluctuation in Eq. (13) to obtain:

ϕ̃(k, τ) =
1

T − τ

T−τ−1∑
t=0

{
g̃i(k; t, t+ τ)

− 1

Tw

t+Tw−1∑
s=t

[
g̃i(k; t, s+ τ) + g̃i(k; s, t+ τ)− 1

Tw

t+Tw−1∑
s′=t

g̃i(k; s, s
′ + τ)

]}
,

(S13)

where we have defined (accounting for detector time-integration in Eq. (4)):

g̃i(k;u, v) ≡


∫ v+1

v
dv′
∫ u+1

u
du′ 〈̃i(k, u′)̃i∗(k, v′)

〉
t

u ̸= v

2×
∫ u+1

u
dv′
∫ v′

u
du′ 〈̃i(k, u′)̃i∗(k, v′)

〉
t

u = v
. (S14)

The simplest way to carry out the sums in Eq. (S13) is to rewrite them using time-lags (see

Fig. S2). We can then rewrite the first term in the square brackets of Eq. (S13) as:

T−τ−1∑
t=0

t+Tw−1∑
s=t

g̃i(k; t, s+ τ) =
T−τ−1∑
t=0

Tw−1∑
ν=0

ϕ̃i(k, τ + ν; t), (S15)

where we define:

ϕ̃i(k, τ ; t) ≡ g̃i(k; t, t+ τ). (S16)
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FIG. S2: Illustration of sums in square brackets of Eq. (S13). Diagonal lines within regions
represent fixed time-lags, i.e., constant |u − v| in Eq. (S14). Sums are, therefore, simpler
when carried out over and along diagonals. Time ordering of u and v is also shown within
different subregions. Depiction of third term in (c) only shows the two innermost sums from
Eq. (S13).
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Using this last definition, the time-index, t, must follow t ≡ min(u, v), such that,

g̃i(k;u, v) → ϕ̃i (k, τ ≡ |u− v|; t ≡ min(u, v)) . (S17)

We continue to rewrite the second term (according to the subregions depicted in Fig. S2),

T−τ−1∑
t=0

t+Tw−1∑
s=t

g̃i(k; s, t+ τ) =
τ∑

ν=0

T−ν−1∑
t=τ−ν

ϕ̃i(k, ν; t)︸ ︷︷ ︸
I

+
Tw−τ−1∑

ν=1

T−1∑
t=τ

ϕ̃i(k, ν; t)︸ ︷︷ ︸
II

. (S18)

Finally, the third term in the square brackets of Eq. (S13) can be re-expressed as:

T−τ−1∑
t=0

t+Tw−1∑
s=t

t+Tw−1∑
s′=t

g̃i(k; s, s
′ + τ) =

T−τ−1∑
t=0

(
Tw−1∑
ν=0

t+Tw−ν−1∑
t′=t

ϕ̃i(k, τ + ν; t′)︸ ︷︷ ︸
I

+
τ∑

ν=1

t+Tw−1∑
t′=t+ν

ϕ̃i(k, τ − ν; t′)︸ ︷︷ ︸
II

+
Tw−1∑
ν=τ+1

t+Tw−ν−1∑
t′=t

ϕ̃i(k, ν − τ ; t′ + τ)︸ ︷︷ ︸
III

)
. (S19)

Notice the number of terms in different diagonals is not constant for the third term, as was

the case with the other terms.

For a mixture of immobile and diffusing populations with the same photophysical

properties,[1–3]

〈̃
i(k, u)̃i∗(k, v)

〉
t
≡ e−kp max(u,v)ρon

(
ρon + (1− ρon)e

−K|u−v|) (Nimm +Ndiffe
−|k|2D|u−v|

)
,

(S20)

where kp is the photobleaching rate, assumed to be equal from both on- and off-states.

Note the last equation assumes the cross-terms due to non-identical particles in Eq. (12) are

effectively zero for reasonable choice of Tw. We also omit the PSF and q from this equation

as they cancel out when using the normalization in Eq. (14).

The time-window correction to the ACF must be used when the diffusion is relatively slow,

as was demonstrated in Figure 2 (C). Using the time-window correction can also allow for

choosing smaller windows, which is necessary when the photobleaching is more prominent.

See the main text for more details.
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We compare fits with and without the time-window correction in Fig. S3 and Table S1

below. Photobleaching was not accounted for in either fit model. As we expect, the fits are

more accurate when using the time-window correction. Furthermore, from this figure, one

can see the effect of choosing a small time-window on the ACF at small |k|2.
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with correction
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FIG. S3: Comparison of fits (a) with and (b) without time-window correction. The “bump”
seen at early |k|2 is caused by the correlation of the time-window. Time windows used were
(a) 50 frames and (b) 100 frames. Fit was done over first 25 time-lags, in both cases; only
first 5 are shown. Photobleaching rate was set to kp = 5× 10−4 frame-1.

With correction Without correction Simulation

D (pixels2·frame-1) 0.447± 0.007 0.39± 0.02 0.5

K (frame-1) 0.60± 0.02 0.474± 0.003 0.6

ρon 0.84± 0.02 0.29± 0.03 0.833

fD 0.27± 0.03 0.73± 0.03 0.3

TABLE S1: Comparison of fitted and simulated parameters for fits shown in Figure S3.

Simulation was generated with T = 2048 frames on a 128× 128 pixel grid with 4813 total particles. Fitted

parameters and errors were obtained by splitting the simulation spatially into 4 equally sized and independent

ROIs, and then calculating the mean and its standard error from their analyses.

SIMULATION DETAILS

This section provides the default parameters used in our simulations (see Table S2). More

details about the noise model and how we assign synthetic intensity values to the pixels in

our simulations can be found in Sehayek et al. (2019).[2]
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Parameter description Value

Analogue to digital conversion factor 12

Autofluorescent photon rate 5% of mean simulated image series intensity

Average photon rate per molecule 5, 000 frame-1

Clock induced charge 5× 10−3 frame-1 pixel-1

Dark noise photon rate 8× 10−4 frame-1 pixel-1

Detector quantum efficiency 0.9

EM Gain 200

Exposure time (τi) 0.05 s frame-1

Image dimensions 128× 128 pixels2

Laser e−2 radius 2×
√
number of pixels

PSF e−2 radius 3 pixels

Probability of aggregation 0.3

Mean number of monomers per aggregate 2

Number of filaments (where applicable) 20

Standard deviation of distance 0.3 pixels

between aggregate center and monomers

TABLE S2: Default simulation parameters.
These parameters were used in our simulations, unless otherwise stated. Some synthetic noise parameter

values are negligible, but are included for the purpose of completeness.

NOISE AUTOCORRELATION

Here we derive an expression for the autocorrelation of the Fourier transform of the noise.

Assuming ⟨ϵ(r, t)⟩t ≡ µϵ, it follows that:

⟨ϵ̃(k, t)⟩t =
∫
ROI

dr ⟨ϵ(r, t)⟩t︸ ︷︷ ︸
µϵ

e−ik·r AROI→∞∝ δ(k). (S21)

In this last equation, AROI denotes the area of the chosen ROI. Therefore, we have:

⟨δtϵ̃(k, t)δtϵ̃∗(k, t+ τ)⟩t = ⟨ϵ(k, t)ϵ̃∗(k, t+ τ)⟩t, for |k| ≠ 0. (S22)

Furthermore, by definition of white-noise:

⟨ϵ̃(r′, t)ϵ̃∗(r′′, t+ τ)⟩t ≡ σ2
ϵ δτ,0δ(|r′′ − r′|), (S23)
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where σ2
ϵ is the variance of the white-noise. Using Eqs. (S22) and (S23), we obtain:

⟨ϵ(k, t)ϵ̃∗(k, t+ τ)⟩t =
∫
ROI

dr′
∫
ROI

dr′′⟨ϵ̃(r′, t)ϵ̃∗(r′′, t+ τ)⟩te−ik·(r′′−r′)

= σ2δτ,0

∫
ROI

dr′
∫
ROI

dr′′δ(|r′′ − r′|)e−ik·(r′′−r′)

= AROIσ
2δτ,0. (S24)
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