SUPPLEMENTAL MATERIAL

Molecular characterization and investigation of the role of genetic variation in phenotypic variability and response to treatment in a large pediatric Marfan syndrome cohort

Josephina A.N. Meester, PhD¹, Silke Peeters, PhD¹, Lotte Van Den Heuvel, MSc¹, Geert Vandeweyer, PhD¹, Erik Fransen, PhD^{1,2}, Elizabeth Cappella, MSc³, Harry C. Dietz, MD^{4,5}, Geoffrey Forbus, MD⁶, Bruce D. Gelb, MD⁷, Elizabeth Goldmuntz, MD^{8,9}, Arvind Hoskoppal, MD¹⁰, Andrew P. Landstrom, MD, PhD¹¹, Teresa Lee, MD¹², Seema Mital, MD¹³, Shaine Morris, MD¹⁴, Aaron K. Olson, MD¹⁵, Marjolijn Renard, PhD¹⁶, Dan M. Roden, MD¹⁷, Michael N. Singh, MD¹⁸, Elif Seda Selamet Tierney, MD¹⁹, Justin T. Tretter, MD²⁰, Sara L. Van Driest, MD, PhD¹⁷, Marcia Willing, MD²¹, Aline Verstraeten, PhD¹, Lut Van Laer, PhD¹, Ronald V. Lacro, MD¹⁸, and Bart L. Loeys, MD, PhD^{1,22}

¹Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium

²StatUa Center for Statistics, University of Antwerp, Antwerp, Belgium

³Ann and Robert H. Lurie Children's Hospital, Chicago, IL

⁴McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, The Johns Hopkins University, Baltimore, MD

⁵Howard Hughes Medical Institute, Baltimore, MD

⁶Department of Pediatrics, Division of Pediatric Cardiology, Medical University of South Carolina, Charleston, SC

⁷Mindich Child Health and Development Institute, Departments of Pediatrics and Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY

⁸Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA

⁹Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA

¹⁰Departments of Pediatrics and Internal Medicine, University of Utah and Intermountain Healthcare, Salt Lake City, UT

¹¹Department of Pediatrics, Duke University School of Medicine, Durham, NC

¹²Children's Hospital of New York, New York City, NY

¹³Department of Pediatrics, Division of Cardiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada

¹⁴Division of Cardiology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX

¹⁵Department of Pediatrics, Seattle Children's Hospital, Seattle, WA

¹⁶Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium ¹⁷Department of Medicine, Vanderbilt University Medical Center, Nashville, TN

¹⁸Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School,

Boston, MA

¹⁹Department of Paediatrics, Stanford University, Palo Alto, CA

²⁰Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH

²¹Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO

²²Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands

SUPPLEMENTAL CONTENT

Supplemental Tables

Supplemental Table 1A. Identified FBN1 variants.

Supplemental Table 1B. Overview of non-*FBN1* genetic variants.

Supplemental Table 2. Genes included in (extended) TAAD panel

Supplemental Table 3. Modified ACMG/AMP criteria for variant classification.

Supplemental Table 4. Criteria used for HI and DN variant classification.

Supplemental Table 5. Clinical characteristics of TAAD panel-negative patients.

Supplemental Table 6. Clinical characteristics of the PHN trial cohort, stratified by inclusion in the genetics ancillary study cohort

Supplemental Table 7. Comparison of clinical characteristics of dominant-negative neonatal and non-neonatal cohort.

Supplemental Table 8. Number of patients with a dominant-negative variant per exon.

Supplemental Table 9. Comparison of clinical characteristics of atenolol and losartan cohort

Supplemental Figures

Supplemental eFigure 1. Comparison of variant subtype distribution to literature.

Supplemental eFigure 2. Boxplots of aortic root z-score of patients with DN (likely) pathogenic variants according to exonic location.

Supplemental Tables

Supplemental Table 1A. Identified *FBN1* variants.

See separate excel file.

				U		
Sample ID	Gene	cDNA change ^a	Protein change	Classification criteria	ACMG/AMP classification	Previous FBN1 testing
354	ACTA2; TGFBR2	c.247G>A; deletion exon 7	p.(Asp83Asn); deletion exon 7	PM2, PP3; PM2, PM4	VUS; VUS	Negative
355 ^{b,e}	BGN	c.5G>A	p.(Trp2*)	PM2, PVS1	Likely pathogenic (I)	Unkown
356 ^{b,e}	BGN	c.908A>C	p.(Gln303Pro)	PM2, PP5	VUS	Negative
357	FLNA; FLNA	c.3106C>T; c.3127G>T	p.(Arg1036Cys); p.(Val1043Leu)	PM2, PP3; PP3	VUS; VUS	Negative
358	FLNA	c.1041G>C	p.(Val347lle)	PM2	VUS	Unkown
359	SMAD3	c.1211T>C	p.(Leu404Ser)	PM2, PP3, PM1	VUS	Unkown
360 ^{c,d}	TGFBR2	c.1411G>A	p.(Asp471Asn)	PM2, PS1, PM1, PP1	Likely pathogenic (II)	Unkown
361 ^{c.d}	TGFBR2	c.1411G>A	p.(Asp471Asn)	PM2, PS1, PM1, PP1	Likely pathogenic (II)	Unkown
362	TGFBR2	c.1684C>T	p.(Arg562Cys)	PM2, PS1	Likely pathogenic (II)	Unkown
363	TGFBR2	c.1091G>C	p.(Arg364Pro)	PM2, PP3, PM1	VUS	Unkown

Supplemental Table 1B. Overview of non-FBN1 genetic variants.

^a GenBank reference sequence and version number for *ACTA2*: NM_001141945.2; *BGN*: NM_001711.6; *FLNA*: NM_001110556.2; *SMAD3*: NM_005902.4; *TGFBR2*: NM_001024847.2; numbering is from +1 as A of the ATG initiation codon. ^c, this sample has already been described in Baetens *et al.*, 2011.² ^b, this sample has already been described in Proost *et al.*, 2014.³ ^d, this sample is related to one or two other individuals (with the same variant) in this cohort. ^e, this sample has already been described in Meester *et al.*, 2014.⁴

Abbreviations: DN, dominant-negative; HI, haploinsufficient.

Supplemental Table 2. Genes included in (extended) TAAD panel.

Gene	Reference
ABL1	<u>NM_007313</u>
ACTA2	NM_001141945
ARIH1	<u>NM 005744</u>
BGN	<u>NM 001711</u>
COL3A1	NM_000090
EFEMP2/FBLN4	NM_016938
<u>ELN</u>	<u>NM 001278939</u>
<u>EMILIN1</u>	<u>NM 007046</u>
FBN1	NM_000138
<u>FBN2</u>	<u>NM_001999</u>
FLNA	NM_001110556
<u>FOXE3</u>	<u>NM 012186</u>
HCN4	<u>NM 005477</u>
LMOD1	<u>NM_012134</u>
LOX	<u>NM_001178102</u>
LTBP3	<u>NM 001130144</u>
MAT2A	<u>NM 005911</u>
MFAP5	<u>NM 003480</u>
	NM_001040113
	NM_001040114 NM_053025
MYLK	NM 017617
NOICH1	NM_000302
PLUDI	<u>NM 020182</u>
PMEPA1/IMEPAI	<u>NM_001098512</u>
PRKG1	<u>NM 003036</u>
SKI	NM 030777
SLCZATU	NM_001003652
<u>SIMADZ</u>	NM 005902
SMAD3	NM_001145103
<u>SMAD4</u>	<u>NM_005359</u>
<u>SMAD6</u>	<u>NM 005585</u>
TGFB2	NM_001135599
TGFB3	<u>NM_003239</u>
TGFBR1	NM_004612
TGFBR2	NM_001024847

Bold: genes included in the standard TAAD panel. <u>Underlined</u>: genes included in the extended TAAD panel.

Supplemental Table 3. Modified ACMG/AMP criteria for variant classification. See separate excel file.

Supplemental [•]	Table 4. Criteri	a used for HI and	DN variant classification.
---------------------------	------------------	-------------------	----------------------------

Dominant-negative variants	Haploinsufficient variants
Missense variants	Complete gene deletion
In-frame (exon) deletions/duplications	Deletion of first or last exon
Premature terminaton codon (PTC) escaping nonsense mediated decay (NMD) based on standard predictive rules (e.g. PTC in last exon)	PTC with NMD
Splice variants with proven in-frame exon skipping	Frameshift
	Splice variants with proven frameshift

Abbreviations: DN, dominant-negative; HI, haploinsufficient.

Patient	Gender	Age (years)	Ectopi a lentis	Aortic root diameter z- score	Number of major Ghent criteria	FBN1 variant previously identified	Family history (first degree relative)
364	Male	12.3	No	3.46	2	No	No
365	Female	20.0	No	3.22	3	Unknown	Yes
366	Male	18.1	No	2.52	2	No	No
367	Female	2.2	No	3.14	2	Unknown	Yes
368	Male	11.5	Yes	3	3	Unknown	No

Supplemental Table 5. Clinical characteristics of TAAD panel-negative patients.

Abbreviations: TAAD, Thoracic aortic aneurysm and dissection.

Supplemental Table 6. Clinical characteristics of the PHN trial cohort, st	tratified
by inclusion in the genetics ancillary study cohort.	

Characteristic	Included in genetics ancillary study cohort (N=373)	ded in eticsNot included in genetics ancillary study cohort (N=373)(N=235)		Q
Age ± SD (years)	11.1±6.1	11.4±6.7	.49	.64
No. (%) Male	226 (61%)	140 (60%)	.80	.75
No. (%) with Family history	199 (56%)	161 (71%)	<.001	.003
No. (%) with Mitral valve prolapse	228 (62%)	140 (61%)	.85	.75
No. (%) with Ectopia lentis	162 (48%)	93 (49%)	.89	.75
No. (%) with Dural ectasia	22 (38%)	10 (27%)	.27	.46
No. (%) with Striae	146 (39%)	104 (45%)	.14	.35
No. (%) with Pneumothorax	7 (2%)	10 (4%)	.08	.25
Aortic root diameter ± SD (z-score ± SD)	3.4±.7 cm (4.3±1.2)	3.4±.8 cm (4.3±1.6)	.74 (.72)	.75 (.75)

Abbreviations: PHN, Pediatric Heart Network.

Characteristic	Dominant-negative neonatal cohort ^a (N=33)	Non-neonatal ^a (N=265)	Р	Q
Age ± SD (years)	9.4±6.2	11.2±6.1	.10	.28
No. (%) with Ectopia lentis	17 (57%)	111 (46%)	.28	.46
No. (%) with Highly arched palate	30 (97%)	226 (86%)	.15	.35
No. (%) with Pulmonary artery diameter z-score > 2.0	3 (23%)	36 (28%)	>.99	.79
No. (%) with Dural ectasia	4 (50%)	14 (33%)	.44	.62
No. (%) with Striae	7 (21%)	105 (40%)	.04	.21
No. (%) with Arachnodactyly	26 (84%)	173 (66%)	.05	.22
No. (%) with Pes plani	22 (73%)	188 (72%)	.88	.75
No. (%) with Pectus excavatum	5 (15%)	76 (29%)	.10	.28
No. (%) with Pectus carinatum	12 (36%)	115 (43%)	.45	.62
No. (%) with Scoliosis	10 (32%)	73 (29%)	.66	.75
No. (%) with Joint hypermobility	30 (94%)	213 (83%)	.11	.28
Aortic root diameter ± SD (z-score ± SD)	3.3±.7 cm (4.9±1.5)	3.4±.7 cm (4.2±1.1)	.46 (.02)	.62 (.11)
Change in aortic root diameter z- score/year ± SD	14±.28	15±.24	.61	.74

Supplemental Table 7. Comparison of clinical characteristics of dominantnegative neonatal and non-neonatal cohort.

^a The "neonatal" classification is purely based on the presence of a P/LP variant in exons 25-33 and is not based on any specific phenotypic features.

Supplemental Table 8. Number of patients with a dominant-negative variant per exon.

See separate excel file.

Supplemental Table 9. Comparison of clinical characteristics of atenolol and losartan cohort.

Characteristic	Atenolol cohort (N=184)		Losartan cohort (N=189)		Р	Q
Age ± SD (years)	11.2±6.2		11.0±6.0		.78	.75
No. (%) Male	109	(59%)	117 (62%)		.60	.74
No. (%) with Family history	79	(49%)	83 (51%)		.74	.75
No. (%) with Highly arched palate	150	(83%)	166 (166 (90%)		.22
No. (%) with Mitral valve prolapse	110	(60%)	116 (62%)	.70	.75
No. (%) with Pulmonary artery diameter z-score >2.0	29	(32%)	22 (24%)		.27	.46
No. (%) with Ectopia lentis	81	(49%)	80 (4	47%)	.79	.75
No. (%) with Striae	71	(39%)	75 (40%)		.89	.75
No. (%) with Arachnodactyly	122 (68%)		121 (65%)		.63	.74
No. (%) with Pes plani	125 (70%)		138 (74%)		.35	.54
No. (%) with Pectus excavatum	46 (25%)		54 (2	29%)	.44	.62
No. (%) with Pectus carinatum	84	(46%)	77 (4	41%)	.34	.53
No. (%) with Scoliosis	59 (34%)		46 (25%)		.09	.28
No. (%) with Joint hypermobility	155 (87%)		151 (82%)		.19	.39
Aortic root diameter ± SD (z- score ± SD)	3.4±0.7c	4±0.7cm (4.3±1.0) 3.4±0.7 cm (4.4±1.3)		.90 (.44)	.75 (.62)	
	DN: 3.3±.7 cm (4.2±1.0)	HI: 3.4±.7 cm (4.2±1.0)	DN: 3.4±.7 cm (4.5±1.4)	HI: 3.3±.7 cm (4.2±1.1)	.95 (.24)	.77 (.46)
Change in aortic root diameter z- score/year ± SD	1	9±.25	14	±.24	.06	.22

Supplemental Figures

Supplemental eFigure 1. Comparison of variant subtype distribution to literature.

A comparison of the variant subtype distribution between our MFS cohort (n=321) and the study by Faivre et al., AJHG, 2007.⁵ del, deletion; dup, duplication.

Supplemental eFigure 2. Boxplots of aortic root z-score of patients with DN (likely) pathogenic variants according to exonic location.

The thick line in the middle is the median. The blue boxes show the first and third quartiles. The whiskers show the maximum and minimum values, with the exceptions of outliers (circles) and extremes (asterisks).

REFERENCES

- 1. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med.* 2015;17(5):405-424.
- 2. Baetens M, Van Laer L, De Leeneer K, et al. Applying massive parallel sequencing to molecular diagnosis of Marfan and Loeys-Dietz syndromes. *Hum Mutat.* 2011.
- 3. Proost D, Vandeweyer G, Meester JA, et al. Performant Mutation Identification Using Targeted Next-Generation Sequencing of 14 Thoracic Aortic Aneurysm Genes. *Hum Mutat.* 2015;36(8):808-814.
- 4. Meester JA, Vandeweyer G, Pintelon I, et al. Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections. *Genet Med.* 2017;19(4):386-395.
- 5. Faivre L, Collod-Beroud G, Loeys BL, et al. Effect of mutation type and location on clinical outcome in 1,013 probands with Marfan syndrome or related phenotypes and FBN1 mutations: an international study. *Am J Hum Genet.* 2007;81(3):454-466.