Supplementary Information

DeepPROTACs - a deep learning-based targeted degradation predictor for PROTACs

Fenglei Li^{a,b,1}, Qiaoyu Hu^{a,1}, Xianglei Zhang^{a,1}, Renhong Sun^{c,1}, Zhuanghua Liu^{b,1},

Sanan Wu^a, Siyuan Tian^{a,d}, Xinyue Ma^{a,b}, Zhizhuo Dai^d, Xiaobao Yang^{c,*}, Shenghua Gao^{b,*}, and Fang Bai^{a,b,d,e*}

^aShanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
^bSchool of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
^cGluetacs Therapeutics (Shanghai) Co., Ltd.,
99 Haike Road, Zhangjiang Hi-Tech Park, Shanghai 201210, China
^dSchool of Life Science and Technology, ShanghaiTech University,
393 Middle Huaxia Road, Shanghai 201210, China
^eShanghai Clinical Research and Trial Center, Shanghai 201210, China.

¹These authors contributed equally

* To whom correspondence should be addressed to

Fang Bai: <u>baifang@shanghaitech.edu.cn</u>, or Shenghua Gao: <u>gaoshh@shanghaitech.edu.cn</u>, or Xiaobao Yang: <u>yang.xiaobao@gluetacs.com</u>.

Contents of Supporting Information

Contents:	Page
Synthesis of toremifene derivative	S3-4
General procedure for the synthesis of ER PROTACs	S5
Characterization data of ER PROTACs	S6-16
Synthesis and characterization of PROTAC 8N	S17
Supplementary Tables	S18-S25
Supplementary Figures	S26-S55

1. Synthesis of toremifene derivative.

Step 1: The preparation of 4,4'-(4-chloro-2-phenylbut-1-ene-1,1-diyl)diphenol

A suspension of Zinc (6.5 g, 100 mmol) in THF was purged and refilled with N₂ for three times. Then TiCl₄ (9.5 g, 50 mmol) was added dropwise at 0°C. After the addition was completed, the resulting mixture was refluxed for 2 h, followed by the addition of the solution of bis(4-hydroxyphenyl)methanone (2.14 g, 10 mmol) and 3-chloro-1-phenylpropan-1-one (5.1 g, 30 mmol) in THF (80 mL). Then the mixture was refluxed in the dark for another 3 h. TLC showed the reaction was complete. The reaction mixture was cooled to room temperature, concentrated in vacuo to remove most of the solvent, and then quenched with sat. NH4Cl aq. and extracted with ethyl acetate. The combined organic layers were washed with water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (eluent: with 0%-30% (v1: v2) ethyl acetate in hexane) to afford the desired product as a yellow solid (3.0 g, 86% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.21 – 7.10 (m, 7H), 6.84 – 6.81 (m, 2H), 6.75 – 6.72 (m, 2H), 6.49 – 6.46 (m, 2H), 4.99 (s, 1H), 4.73 (s, 1H), 3.45 – 3.36 (m, 2H), 2.99 – 2.91 (m, 2H). HRMS (ESI) m/z: calcd for C₂₂H₂₀ClO₂⁺ [M + H]⁺, 351.1146; found, 351.1138.

Step 2: The preparation of 2-(4-(4-chloro-1-(4-hydroxyphenyl)-2-phenylbut-1-en-1yl)phenoxy)acetonitrile

A solution of 4,4'-(4-chloro-2-phenylbut-1-ene-1,1-diyl)diphenol (1.5 g, 4.28 mmol), K_2CO_3 (592 mg, 4.28 mmol) and 2-bromoacetonitrile (257 mg, 2.14 mmol) in acetone was purged and refilled with N_2 for three times, then was refluxed for 3.5 h. TLC showed the reaction was complete. The reaction mixture was cooled to room temperature and

concentrated in vacuo. The residue was purified by flash column chromatography (eluent: DCM) to afford the desired product as a light yellow oil (782 mg, 94% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.27 (m, 1H), 7.21-7.18 (m, 2H), 7.17 – 7.14 (m, 2H), 7.13-7.10 (m, 2H), 7.00 – 6.97 (m, 1H), 6.86-6.83 (m, 2H), 6.75 – 6.70 (m, 1H), 6.65 – 6.61 (m, 1H), 6.51 – 6.47 (m, 1H), 4.81 (s, 1H), 4.64 (s, 1H), 3.45 – 3.39 (m, 2H), 2.97-2.91 (m, 2H). HRMS (ESI) m/z: calcd for C₂₄H₂₁ClNO₂⁺[M + H]⁺, 390.1255; found, 390.1263.

Step 3: The preparation of toremifene derivative 4-(1-(4-(2-aminoethoxy)phenyl)-4chloro-2-phenylbut-1-en-1-yl)phenol

То а solution of 2-(4-(4-chloro-1-(4-hydroxyphenyl)-2-phenylbut-1-en-1yl)phenoxy)acetonitrile (782 mg, 2 mmol) in THF (25 mL) cooled to 0°C was added LiAlH₄ (228 mg, 6 mmol) in portions. The resulting mixture was purged and refilled with N₂ for three times, then stirred at room temperature overnight. After the reaction was complete, the reaction mixture was quenched with sat. NH₄Cl aq. and concentrated in vacuo. The residue was dissolved with MeOH and filtered. The filtrate was concentrated and purified by reverse ISCO (eluent: with 10%-100% (v1: v2) acetonitrile in water (containing 0.05% HCl)) to afford the desired product as a light yellow solid (473 mg, 60% yield). ¹H NMR (500 MHz, DMSO- d_6) δ 9.68 – 9.17 (m, 1H), 8.12 (d, J = 41.4 Hz, 3H), 7.24 - 7.18 (m, 3H), 7.16 - 7.12 (m, 3H), 7.06 (d, J = 8.5 Hz, 1H), 7.00 (d, J = 8.7 Hz, 1H),6.77 (t, J = 8.4 Hz, 2H), 6.65 (d, J = 8.8 Hz, 1H), 6.61 (d, J = 8.6 Hz, 1H), 6.42 (d, J = 8.6 Hz, 1H), 4.20 (t, J = 4.9 Hz, 1H), 4.03 (t, J = 4.9 Hz, 1H), 3.43 (t, J = 7.3 Hz, 2H), 3.23 (s, 1H), 3.12 (s, 1H), 2.93 – 2.83 (m, 2H). HRMS (ESI) m/z: calcd for C₂₄H₂₅ClNO₂⁺ [M + H]⁺, 394.1568; found, 394.1561.

2. General procedure for the synthesis of ER PROTACs.

A mixture of toremifene derivative (1.0 eq.), VHL-1 based acid (1.0 eq.), HOAt (2.0 eq.), EDCI (2.0 eq.), NMM (5.0 equiv) and DMF was stirred at room temperature overnight. LC-MS showed the reaction was complete. The reaction mixture was filtered and purified by prep-HPLC (eluent: with 10%-100% (v1: v2) acetonitrile in water (containing 0.05% HCl)). The collections were concentrated in vacuo to remove most of the solvent and then lyophilized to afford the desired PROTAC.

3. Characterization data of ER PROTACs.

N1-(2-(4-(4-chloro-1-(4-hydroxyphenyl)-2-phenylbut-1-en-1-yl)phenoxy)ethyl)-N4-((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrro-lidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)succinamide (PROTAC 1). (white solid, 6.8 mg, 30% yield) ¹H NMR (500 MHz, Methanol- d_4) δ 8.98 (s, 1H), 7.47 (d, J = 8.3 Hz, 2H), 7.44-7.41 (m, 2H), 7.23 – 7.06 (m, 7H), 6.95 (d, J = 8.7 Hz, 1H), 6.79-6.76 (m, 2H), 6.68 – 6.64 (m, 1H), 6.57 (d, J = 8.8 Hz, 1H), 6.43 – 6.38 (m, 1H), 4.62 – 4.44 (m, 4H), 4.35 (d, J = 15.5 Hz, 1H), 4.07 (t, J = 5.5 Hz, 1H), 3.90-3.85 (m, 2H), 3.79 – 3.72 (m, 1H), 3.60-3.56 (m, 1H), 3.48-3.45 (m, 1H), 3.42-3.39 (m, 2H), 2.97 – 2.88 (m, 2H), 2.65 – 2.42 (m, 7H), 2.22-2.19 (m, 1H), 2.12 – 2.02 (m, 1H), 1.02-0.99 (m, 9H). HRMS (ESI) m/z: calcd for C₅₀H₅₇ClN₅O₇S⁺[M + H]⁺, 906.3662; found, 906.3672.

N1-(2-(4-(4-chloro-1-(4-hydroxyphenyl)-2-phenylbut-1-en-1-yl)phenoxy)ethyl)-N5-((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrro-lidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)glutaramide (PROTAC 2). (white solid, 5.2 mg, 22% yield) ¹H NMR (500 MHz, Methanol- d_4) δ 9.47 (d, J = 5.4 Hz, 1H), 7.52 (d, J = 7.3 Hz,

2H), 7.48 – 7.44 (m, 2H), 7.20 – 7.06 (m, 7H), 6.94 (d, J = 8.7 Hz, 1H), 6.80 – 6.74 (m, 2H), 6.68 – 6.63 (m, 1H), 6.58 – 6.53 (m, 1H), 6.43 – 6.37 (m, 1H), 4.61 – 4.47 (m, 4H), 4.35 (dd, J = 14.9, 7.1 Hz, 1H), 4.08 (t, J = 5.5 Hz, 1H), 3.95 – 3.88 (m, 2H), 3.82 – 3.76 (m, 1H), 3.61-3.57 (m, 1H), 3.52 – 3.43 (m, 1H), 3.42-3.38 (m, 2H), 2.94 – 2.89 (m, 2H), 2.56 – 2.49 (m, 3H), 2.34 – 2.16 (m, 5H), 2.11 – 2.04 (m, 1H), 1.96 – 1.82 (m, 2H), 1.03-0.99 (m, 9H). HRMS (ESI) m/z: calcd for C₅₁H₅₉ClN₅O₇S⁺ [M + H]⁺, 920.3818; found, 920.3811.

N1-(2-(4-(4-chloro-1-(4-hydroxyphenyl)-2-phenylbut-1-en-1-yl)phenoxy)ethyl)-N6-((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrro-lidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)adipamide (PROTAC 3). (white solid, 7.5 mg, 32% yield) ¹H NMR (500 MHz, Methanol- d_4) δ 9.40 (d, J = 5.5 Hz, 1H), 7.54 – 7.49 (m, 2H), 7.46 (d, J = 8.3 Hz, 2H), 7.21 – 7.05 (m, 7H), 6.95 (d, J = 8.7 Hz, 1H), 6.77 (dd, J = 8.6, 6.6 Hz, 2H), 6.67-6.65 (m, 1H), 6.57 (d, J = 8.8 Hz, 1H), 6.41 (d, J = 8.6 Hz, 1H), 4.65 – 4.45 (m, 4H), 4.37 (d, J = 15.6 Hz, 1H), 4.07 (t, J = 5.4 Hz, 1H), 3.90 (t, J = 5.4 Hz, 2H), 3.82 – 3.72 (m, 1H), 3.58 (t, J = 5.5 Hz, 1H), 3.46 (dd, J = 10.8, 5.2 Hz, 1H), 3.40 (t, J =7.5 Hz, 2H), 2.95-2.88 (m, 2H), 2.52 (d, J = 5.3 Hz, 3H), 2.37 – 2.14 (m, 5H), 2.12 – 2.02 (m, 1H), 1.61 (d, J = 20.4 Hz, 4H), 1.02-1.00 (m, 9H). HRMS (ESI) m/z: calcd for C₅₂H₆₁ClN₅O₇S⁺ [M + H]⁺, 934.3975; found, 934.3975.

N1-(2-(4-(4-chloro-1-(4-hydroxyphenyl)-2-phenylbut-1-en-1-yl)phenoxy)ethyl)-N7-((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrro-lidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)heptanediamide (PROTAC 4). (white solid, 8.1 mg, 34% yield) ¹H NMR (500 MHz, Methanol- d_4) δ 8.95 (s, 1H), 7.47 (d, J = 8.3 Hz, 2H), 7.43 - 7.39 (m, 2H), 7.21 - 7.06 (m, 7H), 6.95 (d, J = 8.7 Hz, 1H), 6.80 - 6.75 (m, 2H), 6.68 -6.64 (m, 1H), 6.59 - 6.55 (m, 1H), 6.43 - 6.39 (m, 1H), 4.62 (d, J = 2.5 Hz, 1H), 4.58-4.49 (m, 3H), 4.35 (d, J = 15.5 Hz, 1H), 4.07 (t, J = 5.5 Hz, 1H), 3.93 - 3.87 (m, 2H), 3.81 -3.76 (m, 1H), 3.60 - 3.55 (m, 1H), 3.46 (t, J = 5.6 Hz, 1H), 3.41-3.38 (m, 2H), 2.95-2.86 (m, 2H), 2.47 (s, 3H), 2.29-2.15 (m Hz, 5H), 2.11-2.03 (m, 1H), 1.68 - 1.54 (m, 4H), 1.38 - 1.32 (m, 2H), 1.02-1.00 (m, 9H). HRMS (ESI) m/z: calcd for C₅₃H₆₃ClN₅O₇S⁺ [M + H]⁺, 948.4131; found, 948.4137.

N1-(2-(4-(4-chloro-1-(4-hydroxyphenyl)-2-phenylbut-1-en-1-yl)phenoxy)ethyl)-N8-((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrro-lidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)octanediamide (PROTAC 5). (white solid, 8.4 mg, 34% yield) ¹H NMR (500 MHz, Methanol- d_4) δ 9.20 (s, 1H), 7.49 (d, J = 8.1 Hz, 2H), 7.46-7.43 (m, 2H), 7.21 – 7.05 (m, 7H), 6.95-6.91 (m, 1H), 6.79-6.76 (m, 2H), 6.68 – 6.62 (m, 1H), 6.57-6.53 (m, 1H), 6.43 – 6.37 (m, 1H), 4.63 (s, 1H), 4.60 – 4.47 (m, 3H), 4.39 – 4.32 (m, 1H), 4.08-4.05 (m, 1H), 3.95 - 3.85 (m, 2H), 3.79 (dd, J = 11.0, 3.8 Hz, 1H), 3.58 - 3.54 (m, 1H), 3.46 (t, J = 5.4 Hz, 1H), 3.40 (t, J = 7.4 Hz, 2H), 2.95 - 2.88 (m, 2H), 2.50 (s, 3H), 2.30 - 2.13 (m, 5H), 2.10 - 2.03 (m, 1H), 1.61 - 1.57 (m, 4H), 1.36 - 1.27 (m, 4H), 1.03 - 1.00 (m, 9H). HRMS (ESI) m/z: calcd for $C_{54}H_{65}CIN_5O_7S^+$ [M + H]⁺, 962.4288; found, 962.4280.

N1-(2-(4-(4-chloro-1-(4-hydroxyphenyl)-2-phenylbut-1-en-1-yl)phenoxy)ethyl)-N9-((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrro-lidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)nonanediamide (PROTAC 6). (white solid, 9.7 mg, 40% yield) ¹H NMR (500 MHz, Methanol- d_4) δ 9.31 (s, 1H), 7.51 (d, J = 8.2 Hz, 2H), 7.48 – 7.43 (m, 2H), 7.21 – 7.06 (m, 7H), 6.96 – 6.91 (m, 1H), 6.80 – 6.74 (m, 2H), 6.69 – 6.64 (m, 1H), 6.58 – 6.53 (m, 1H), 6.43 – 6.38 (m, 1H), 4.63 (s, 1H), 4.61 – 4.46 (m, 3H), 4.37 (d, J = 15.6 Hz, 1H), 4.06 (t, J = 5.4 Hz, 1H), 3.92-3.88 (m, 2H), 3.80 (dd, J = 10.9, 3.8 Hz, 1H), 3.56 (t, J = 5.4 Hz, 1H), 3.46 (t, J = 5.4 Hz, 1H), 3.40 (t, J = 7.4 Hz, 2H), 2.95-2.89 (m, 2H), 2.52 (s, 3H), 2.32 – 2.12 (m, 5H), 2.10-2.02 (m, 1H), 1.67 – 1.51 (m, 4H), 1.37 – 1.23 (m, 6H), 1.03-1.00 (m, 9H). HRMS (ESI) m/z: calcd for C₅₅H₆₇ClN₅O₇S⁺ [M + H]⁺, 976.4444; found, 976.4441.

N1-(2-(4-(4-chloro-1-(4-hydroxyphenyl)-2-phenylbut-1-en-1-yl)phenoxy)ethyl)-N10-((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrro-lidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)decanediamide (PROTAC 7). (white solid, 9.0 mg, 36% yield) ¹H NMR (500 MHz, Methanol- d_4) δ 9.23 (s, 1H), 7.50 (d, J = 8.3 Hz, 2H), 7.44 (d, J = 8.3 Hz, 2H), 7.22 – 7.06 (m, 7H), 6.96 – 6.91 (m, 1H), 6.82 – 6.74 (m, 2H), 6.68 – 6.63 (m, 1H), 6.58 – 6.53 (m, 1H), 6.44 – 6.37 (m, 1H), 4.63 (s, 1H), 4.60 – 4.47 (m, 3H), 4.36 (d, J = 15.6 Hz, 1H), 4.07 (t, J = 5.4 Hz, 1H), 3.89 (t, J = 9.4 Hz, 2H), 3.80 (dd, J = 11.0, 3.8 Hz, 1H), 3.57 (t, J = 5.4 Hz, 1H), 3.46 (t, J = 5.4 Hz, 1H), 3.40 (t, J = 7.4 Hz, 2H), 2.95-2.89 (m, 2H), 2.51 (s, 3H), 2.31 – 2.12 (m, 5H), 2.10-2.04 (m, 1H), 1.65 – 1.52 (m, 4H), 1.29-1.27 (m, 8H), 1.03-1.01 (m, 9H). HRMS (ESI) m/z: calcd for C₅₆H₆₉ClN₅O₇S⁺ [M + H]⁺, 990.4601; found, 990.4611.

N1-(2-(4-(4-chloro-1-(4-hydroxyphenyl)-2-phenylbut-1-en-1-yl)phenoxy)ethyl)-N11-((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrro-lidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)undecanediamide (PROTAC 8). (white solid, 9.6 mg, 38% yield) ¹H NMR (500 MHz, Methanol- d_4) δ 9.15 (s, 1H), 7.49 (d, J = 8.3 Hz, 2H), 7.46-7.43 (m, 2H), 7.22 – 7.05 (m, 7H), 6.94 (d, J = 8.7 Hz, 1H), 6.78 (dd, J = 9.6, 8.8 Hz, 2H), 6.66 (d, J = 8.7 Hz, 1H), 6.60 – 6.52 (m, 1H), 6.45 – 6.38 (m, 1H), 4.63 (s, 1H), 4.60 – 4.47 (m, 3H), 4.36 (d, J = 15.6 Hz, 1H), 4.07 (t, J = 5.4 Hz, 1H), 3.92-3.88 (m, 2H), 3.80 (dd, J = 10.5, 3.2 Hz, 1H), 3.58-3.55(m, 1H), 3.46 (t, J = 5.4 Hz, 1H), 3.40 (t, J = 7.4 Hz, 2H), 2.92 (dt, J = 11.9, 7.5 Hz, 2H), 2.50 (s, 3H), 2.32 – 2.12 (m, 5H), 2.10-2.05 (m, 1H), 1.59-1.57 (m, 4H), 1.28 (d, J = 9.2 Hz, 10H), 1.03-1.01 (m, 9H). HRMS (ESI) m/z: calcd for C₅₇H₇₁ClN₅O₇S⁺ [M + H]⁺, 1004.4757; found, 1004.4761.

N1-(2-(4-(4-chloro-1-(4-hydroxyphenyl)-2-phenylbut-1-en-1-yl)phenoxy)ethyl)-N14-((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrro-lidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)tetradecanediamide (PROTAC 9). (white solid, 10.2 mg, 38% yield) ¹H NMR (500 MHz, Methanol- d_4) δ 9.23 (s, 1H), 7.50 (d, J = 8.2 Hz, 2H), 7.47-7.44 (m, 2H), 7.22 – 7.15 (m, 3H), 7.15 – 7.08 (m, 4H), 6.97 – 6.91 (m, 1H), 6.81 – 6.74 (m, 2H), 6.66 (d, J = 8.7 Hz, 1H), 6.58-6.55 (m, 1H), 6.41 (d, J = 8.6 Hz, 1H), 4.63 (s, 1H), 4.61 – 4.46 (m, 3H), 4.36 (d, J = 15.6 Hz, 1H), 4.07 (t, J = 5.4 Hz, 1H), 3.92-3.89 (m, 2H), 3.80 (dd, J = 11.0, 3.8 Hz, 1H), 3.58-3.55 (m, 1H), 3.47 (t, J = 5.4 Hz, 1H), 3.40 (t, J = 7.4 Hz, 2H), 2.92 (dt, J = 11.9, 7.5 Hz, 2H), 2.51 (s, 3H), 2.31-2.22 (m, 5H), 2.21-2.03 (m, 1H), 1.63 – 1.54 (m, 4H), 1.28 (d, J = 13.1 Hz, 16H), 1.11 – 0.85 (m, 9H). HRMS (ESI) m/z: calcd for C₆₀H₇₇ClN₅O₇S⁺ [M + H]⁺, 1046.5227; found, 1046.5224.

N1-(2-(4-(4-chloro-1-(4-hydroxyphenyl)-2-phenylbut-1-en-1-yl)phenoxy)ethyl)-N16-((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrro-lidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)hexadecanediamide (PROTAC 10). (white solid, 12.1 mg, 44% yield) ¹H NMR (500 MHz, Methanol- d_4) δ 9.01 (s, 1H), 7.48 (d, J = 8.2 Hz, 2H), 7.45-7.42 (m, 2H), 7.23 – 7.07 (m, 7H), 6.94 (d, J = 8.7 Hz, 1H), 6.82 – 6.74 (m, 2H), 6.66 (d, J = 8.7 Hz, 1H), 6.56 (d, J = 8.8 Hz, 1H), 6.41 (d, J = 8.7 Hz, 1H), 4.63 (s, 1H), 4.58-4.50 (m, 3H), 4.36 (d, J = 15.5 Hz, 1H), 4.08 (t, J = 5.3 Hz, 1H), 3.92-3.89 (m, 2H), 3.80 (dd, J = 10.9, 3.9 Hz, 1H), 3.57 (t, J = 5.3 Hz, 1H), 3.48-3.45 (m, 1H), 3.40 (t, J = 7.4Hz, 2H), 2.93 (dt, J = 11.9, 7.5 Hz, 2H), 2.49 (s, 3H), 2.32 – 2.13 (m, 5H), 2.11-2.03 (m, 1H), 1.60-1.56 (m, 4H), 1.27 (d, J = 14.9 Hz, 20H), 1.03-1.01 (m, 9H). HRMS (ESI) m/z: calcd for C₆₂H₈₁ClN₅OrS⁺ [M + H]⁺, 1074.5540; found, 1074.5539.

(2S,4R)-1-((S)-2-(2-(2-((2-(4-(4-chloro-1-(4-hydroxyphenyl)-2-phenylbut-1-en-1yl)phenoxy)ethyl)amino)-2-oxoethoxy)acetamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (PROTAC 11). (white solid, 6.4 mg, 28% yield) ¹H NMR (500 MHz, Methanol- d_4) δ 9.13 – 9.04 (m, 1H), 7.49 (dd, J = 8.4, 1.6 Hz, 2H), 7.46 – 7.41 (m, 2H), 7.20 – 7.10 (m, 6H), 7.09 – 7.06 (m, 1H), 6.95 – 6.91 (m, 1H), 6.79 – 6.73 (m, 2H), 6.67 – 6.63 (m, 1H), 6.57 – 6.53 (m, 1H), 6.43 – 6.38 (m, 1H), 4.68 (d, J = 9.2 Hz, 1H), 4.61-4.54 (m, 2H), 4.52-4.48 (m, 1H), 4.32 (dd, J = 15.6, 1.7 Hz, 1H), 4.15 – 4.10 (m, 4H), 4.08-4.06 (m, 1H), 3.96 – 3.86 (m, 2H), 3.83-3.76 (m, 1H), 3.71 – 3.63 (m, 1H), 3.59-3.53 (m, 1H), 3.41-3.36 (m, 2H), 2.94 – 2.88 (m, 2H), 2.48 (d, J = 3.9 Hz, 3H), 2.27-2.19 (m, 1H), 2.13-2.04 (m, 1H), 1.04 – 0.99 (m, 9H). HRMS (ESI) m/z: calcd for C₅₀H₅₇ClN₅O₈S⁺ [M + H]⁺, 922.3611; found, 922.3601.

(2S,4R)-1-((S)-2-(tert-butyl)-14-(4-(4-chloro-1-(4-hydroxyphenyl)-2-phenylbut-1-en-1-yl)phenoxy)-4,11-dioxo-6,9-dioxa-3,12-diazatetradecanoyl)-4-hydroxy-N-(4-(4methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (PROTAC 12). (white solid, 6.3 mg, 26% yield) ¹H NMR (500 MHz, Methanol- d_4) δ 9.29 (d, J = 10.0 Hz, 1H), 7.50 – 7.42 (m, 4H), 7.20 – 7.14 (m, 3H), 7.14 – 7.07 (m, 4H), 6.93-6.91 (m, 1H), 6.80 – 6.74 (m, 2H), 6.68 – 6.63 (m, 1H), 6.57-6.54 (m, 1H), 6.42 – 6.36 (m, 1H), 4.70 (d, J = 9.5 Hz, 1H), 4.62 – 4.53 (m, 1H), 4.52-4.46 (m, 2H), 4.41 – 4.33 (m, 1H), 4.10 – 3.99 (m, 5H), 3.94 – 3.85 (m, 2H), 3.81-3.76 (m, 1H), 3.74 – 3.64 (m, 5H), 3.58 – 3.47 (m, 1H), 3.39 (t, J = 7.4 Hz, 2H), 2.94 – 2.89 (m, 2H), 2.52-2.50 (m, 3H), 2.26-2.21 (m, 1H), 2.10-2.04 (m, 1H), 1.02-0.99 (m, 9H). HRMS (ESI) m/z: calcd for C₅₂H₆₁ClN₅O₉S⁺ [M + H]⁺, 966.3873; found, 966.3879.

(2S,4R)-1-((S)-2-(tert-butyl)-16-(4-(4-chloro-1-(4-hydroxyphenyl)-2-phenylbut-1-en-1-yl)phenoxy)-4,13-dioxo-7,10-dioxa-3,14-diazahexadecanoyl)-4-hydroxy-N-(4-(4methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (PROTAC 13). (white solid, 7.5 mg, 30% yield) ¹H NMR (500 MHz, Methanol- d_4) δ 9.31 (s, 1H), 7.57 – 7.42 (m, 4H), 7.20-7.15 (m, 3H), 7.15 – 7.07 (m, 4H), 6.97 – 6.91 (m, 1H), 6.81 – 6.74 (m, 2H), 6.69 – 6.64 (m, 1H), 6.56 (d, J = 8.8 Hz, 1H), 6.44 – 6.38 (m, 1H), 4.64 (d, J = 4.3 Hz, 1H), 4.60-4.49 (m, 3H), 4.42 – 4.32 (m, 1H), 4.07 (t, J = 5.4 Hz, 1H), 3.90-3.88 (m, 2H), 3.82 – 3.76 (m, 1H), 3.73 (t, J = 6.0 Hz, 1H), 3.70-3.63 (m, 3H), 3.61 – 3.51 (m, 5H), 3.49 (t, J = 5.2 Hz, 1H), 3.39 (t, J = 7.4 Hz, 2H), 2.91 (dt, J = 13.1, 7.4 Hz, 2H), 2.55 – 2.40 (m, 7H), 2.27 – 2.18 (m, 1H), 2.12 – 2.00 (m, 1H), 1.03-1.01 (m, 9H). HRMS (ESI) m/z: calcd for C₅₄H₆₅ClN₅O₉S⁺ [M + H]⁺, 994.4186; found, 994.4196.

(2S,4R)-1-((S)-2-(tert-butyl)-19-(4-(4-chloro-1-(4-hydroxyphenyl)-2-phenylbut-1-en-1-yl)phenoxy)-4,16-dioxo-7,10,13-trioxa-3,17-diazanonadecanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (PROTAC 14). (white solid, 7.2 mg, 27% yield) ¹H NMR (500 MHz, Methanol- d_4) δ 9.17 (d, J = 1.8 Hz, 1H), 7.49 (d, J = 8.0 Hz, 2H), 7.46 – 7.41 (m, 2H), 7.22 – 7.15 (m, 3H), 7.15 – 7.07 (m, 4H), 6.97 – 6.92 (m, 1H), 6.81 - 6.74 (m, 2H), 6.69 - 6.64 (m, 1H), 6.58-6.56 (m, 1H), 6.44 - 6.38 (m, 1H), 4.64 (s, 1H), 4.58-4.49 (m, 3H), 4.39-4.34 (m, 1H), 4.08 (t, J = 5.4 Hz, 1H), 3.91-3.88 (m, 2H), 3.79 (dd, J = 11.0, 3.8 Hz, 1H), 3.75 - 3.66 (m, 4H), 3.60-3.53 (m, 9H), 3.48 (t, J = 5.4 Hz, 1H), 3.40 (t, J = 7.4 Hz, 2H), 2.92 (dt, J = 11.9, 7.4 Hz, 2H), 2.60 - 2.39 (m, 7H), 2.24-2.20 (m, 1H), 2.10-2.05 (m, 1H), 1.03-1.01 (m, 9H). HRMS (ESI) m/z: calcd for $C_{56}H_{69}CIN_5O_{10}S^+$ [M + H]⁺, 1038.4448; found, 1038.4442.

N1-(2-(4-(4-chloro-1-(4-hydroxyphenyl)-2-phenylbut-1-en-1-yl)phenoxy)ethyl)-N16-((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrro-lidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)-4,7,10,13-tetraoxahexadecane-diamide

(**PROTAC 15).** (white solid, 7.9 mg, 29% yield) ¹H NMR (500 MHz, Methanol-*d*₄) δ 9.23 (d, *J* = 1.3 Hz, 1H), 7.50 (d, *J* = 8.2 Hz, 2H), 7.44 (d, *J* = 8.1 Hz, 2H), 7.21 – 7.15 (m, 3H), 7.15 – 7.07 (m, 4H), 6.95 (d, *J* = 8.7 Hz, 1H), 6.81 – 6.75 (m, 2H), 6.69 – 6.64 (m, 1H), 6.57 (d, *J* = 8.8 Hz, 1H), 6.44 – 6.38 (m, 1H), 4.64 (s, 1H), 4.60 – 4.47 (m, 3H), 4.39 – 4.34 (m, 1H), 4.09-4.06 (m, 1H), 3.91-3.88 (m, 2H), 3.79 (dd, *J* = 11.0, 3.8 Hz, 1H), 3.74-3.67 (m Hz, 4H), 3.60-3.51 (m, 11H), 3.54 – 3.52 (m, 2H), 3.49 (t, *J* = 5.4 Hz, 1H), 3.40 (t, *J* = 7.4 Hz, 2H), 2.95 – 2.88 (m, 2H), 2.60 – 2.46 (m, 6H), 2.42 (t, *J* = 6.0 Hz, 1H), 2.24-2.20 (m, 1H), 2.10-2.03 (m, 1H), 1.03-1.01 (m, 9H). HRMS (ESI) m/z: calcd for C₅₈H₇₃ClN₅O₁₁S⁺ [M + H]⁺, 1082.4710; found, 1082.4706.

N1-(2-(4-(4-chloro-1-(4-hydroxyphenyl)-2-phenylbut-1-en-1-yl)phenoxy)ethyl)-N19-((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrro-lidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)-4,7,10,13,16-pentaoxanonadecane-diamide (PROTAC 16). (white solid, 8.1 mg, 28% yield) ¹H NMR (500 MHz, Methanol- d_4) δ 9.63 (d, *J* = 1.1 Hz, 1H), 7.54 (d, *J* = 8.2 Hz, 2H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.22 – 7.15 (m, 3H), 7.15 – 7.07 (m, 4H), 6.97 – 6.94 (m, 1H), 6.82 – 6.75 (m, 2H), 6.68 – 6.64 (m, 1H), 6.60 – 6.55 (m, 1H), 6.43 – 6.39 (m, 1H), 4.64 (s, 1H), 4.60 – 4.47 (m, 3H), 4.41 – 4.34 (m, 1H), 4.08 (t, *J* = 5.4 Hz, 1H), 3.92-3.88 (m, 2H), 3.83 – 3.77 (m, 1H), 3.75 – 3.68 (m, 4H), 3.62 – 3.56 (m, 13H), 3.55-3.54 (m, 4H), 3.49 (t, *J* = 5.4 Hz, 1H), 3.41-3.38 (m, 2H), 2.95 – 2.90 (m, 2H), 2.61 – 2.53 (m, 4H), 2.49-2.42 (m, 3H), 2.25-2.20 (m, 1H), 2.10-2.05 (m, 1H), 1.03-1.01 (m, 9H). HRMS (ESI) m/z: calcd for C₆₀H₇₇ClN₅O₁₂S⁺ [M + H]⁺, 1126.4972; found, 1126.4981.

4. Procedure for the synthesis and characterization data of negative control PROTAC 8N.

A mixture of toremifene derivative (1.0 eq.), *cis* VHL-1 based acid (1.0 eq.), HOAt (2.0 eq.), EDCI (2.0 eq.), NMM (5.0 eq.) and DMF was stirred at room temperature overnight. LC-MS showed the reaction was complete. The reaction mixture was filtered and purified by prep-HPLC (eluent: with 10%-100% (v1: v2) acetonitrile in water (containing 0.05% HCl)). The collections were concentrated in vacuo to remove most of the solvent and then lyophilized to afford N1-(2-(4-(4-chloro-1-(4-hydroxyphenyl)-2-phenylbut-1-en-1-yl)phenoxy)ethyl)-N11-((S)-1-((2S,4S)-4-hydroxy-2-((4-(4-methylthiazol-5-

yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)undecanediamide (PROTAC 8N). (white solid, 10.6 mg, 38% yield). ¹H NMR (500 MHz, DMSO- d_6) δ 9.63 – 9.08 (m, 1H), 8.98 (s, 1H), 8.70 – 8.56 (m, 1H), 8.10 – 7.90 (m, 1H), 7.84 (d, J = 8.8 Hz, 1H), 7.39 (q, J = 8.4 Hz, 4H), 7.22 – 7.10 (m, 6H), 7.05 (d, J = 8.5 Hz, 1H), 6.93 (t, J = 9.8 Hz, 1H), 6.80 – 6.67 (m, 2H), 6.64 – 6.55 (m, 2H), 6.45 – 6.34 (m, 1H), 4.52 – 4.39 (m, 2H), 4.36 (dd, J = 8.4, 6.2 Hz, 1H), 4.27-4.18 (m, 2H), 4.03 – 3.90 (m, 2H), 3.81 (t, J = 5.5 Hz, 1H), 3.31 (d, J = 5.5 Hz, 4H), 2.87 (dt, J = 10.3, 7.4 Hz, 2H), 2.44 (s, 3H), 2.35-2.29 (m, 1H), 2.23 (dt, J = 14.4, 7.4 Hz, 1H), 2.13 – 2.00 (m, 3H), 1.74 (dt, J = 12.3, 6.0 Hz, 1H), 1.45 (dd, J = 13.3, 6.6 Hz, 4H), 1.20 (d, J = 8.2 Hz, 11H), 0.92 (d, J = 21.5 Hz, 9H). HRMS (ESI) m/z: calcd for C₅₇H₇₁ClN₅O₇S⁺ [M + H]⁺, 1004.4757; found, 1004.4763.

test set	truth=1	truth=0	total	
prediction=1	315	74	389	
prediction=0	54	124	178	
total	369	198	567	
test set	1 1	1 0	1	
lest set	truth=1	truth=0	total	
prediction=1	55.56%	13.05%	total 68.61%	
prediction=1 prediction=0	55.56% 9.52%	truth=0 13.05% 21.87%	total 68.61% 31.39%	

Supplementary Table 1. The prediction results of DeepPROTACs model on test set.

_

Target_E3	Active	Inactive	Target_E3	Active	Inactive
ABL_CRBN	3	2	ALK_CRBN	10	43
ABL_IAP	1	1	ALK_VHL	12	10
ABL_VHL	1	2	AR_CRBN	16	42
ABL_cIAP1	2	10	AR_MDM2	0	1
AKT1_CRBN	7	10	AR_VHL	46	39
AKT1_VHL	3	8	AR_cIAP1	0	18
AKT2_CRBN	1	12	AURKA_CRBN	4	3
AKT2_VHL	2	16	AURKA_VHL	0	2
ALK-G1202R_CRBN	0	2	Alpha-tubulin_CRBN	0	13
ALK-G1202R_VHL	0	1	BCL-xL_CRBN	24	11
BCL-xL_VHL	9	18	BCR-ABL_VHL	7	28
BCL-xL_XIAP	6	2	BCR-ABL_cIAP1	4	16
BCL-xL_cIAP1	0	8	BRAF-D594N_VHL	3	0
BCL2_CRBN	0	11	BRAF-G466E_VHL	4	0
BCL6_CRBN	1	0	BRAF-G466V_VHL	2	0
BCR-ABL-	0	1	DDAE CAGOA VIII	r	1
E255K_CRBN	0	1	BRAF-0409A_VIL	2	1
BCR-ABL-	0	1		1	2
H396R_CRBN	0	1	DKAF-K001L_VIIL	1	5
BCR-ABL-	0	3	BRAE V600E CRBN	7	20
T315I_CRBN	0	5	DRAF-V000L_CRDN	/	29
BCR-ABL-	0	1	BRAE V600E VHI	3	11
V468F_CRBN	0	1	BRAI-VOUCE_VIIL	5	11
BCR-ABL_CRBN	13	24	BRAF-V600K_VHL	0	2
BRAF_CRBN	0	4	BRD4_MDM2	2	0
BRAF_VHL	0	4	BRD4_VHL	25	20
BRD2_CRBN	33	6	BRD4_cIAP1	1	1
BRD2_VHL	5	9	BRD7_DCAF15	0	2
BRD3-BD2_KEAP1	0	3	BRD7_VHL	3	28
BRD3_CRBN	31	8	BRD9_CRBN	9	5
BRD3_VHL	5	7	BRD9_DCAF15	0	2
BRD4-BD1_KEAP1	0	3	BRD9_VHL	8	26
BRD4-BD2_KEAP1	0	3	BRDT_VHL	1	0
BRD4_CRBN	51	22	BTK-C481S_CRBN	4	0
BTK_CRBN	39	55	CDK2_CRBN	14	23
BTK_MDM2	0	4	CDK4_CRBN	17	39
BTK_VHL	2	10	CDK4_MDM2	1	4

Supplementary Table 2. The distribution of active and inactive PROTAC molecules across various target proteins and E3 ligases.

BTK_XIAP	0	1	CDK4_VHL	3	9
BTK_cIAP1	0	5	CDK4_cIAP1	2	5
Beta-tubulin_CRBN	0	13	CDK5_CRBN	1	1
CBP_CRBN	1	0	CDK6_CRBN	44	16
CDK12-C1039F_CRBN	2	0	CDK6_MDM2	1	4
CDK12_CRBN	3	5	CDK6_VHL	7	5
CDK1_CRBN	0	2	CDK6_XIAP	0	1
CDK6_cIAP1	2	5	Cdc20_CRBN	0	8
CDK7_CRBN	0	1	Cdc20_VHL	0	7
CDK8_CRBN	0	3	EED_VHL	2	6
CDV0 CDDN	17	00	EGFR-L858R-T790M-	0	1
CDK9_CKBN	17	00	C797S_CRBN	0	1
	1	4	EGFR-L858R-T790M-	0	1
CKABP-II_CIAPI	I	4	L718Q_CRBN	0	1
CRABP-I_cIAP1	2	1	EGFR-L858R-T790M_CRBN	6	24
CRABP2_cIAP1	0	2	EGFR-L858R-T790M_MDM2	1	4
CRBN_CRBN	2	5	EGFR-L858R-T790M_VHL	3	14
CRBN_VHL	8	19	EGFR-L858R-T790M_cIAP1	0	1
CYP1B1_CRBN	1	3	EGFR-L858R_CRBN	1	0
EGFR-L858R_VHL	2	0	ERRalpha_CRBN	0	1
EGFR-e19d_CRBN	13	2	ERRalpha_VHL	7	4
EGFR-e19d_VHL	3	8	ER_CRBN	12	15
EGFR_CRBN	2	17	ER_IAP	0	2
EGFR_MDM2	0	5	ER_VHL	49	95
EGFR_VHL	4	13	ER_XIAP	4	2
EGFR_cIAP1	0	1	ER_cIAP1	6	18
EP300_CRBN	1	0	EZH2_CRBN	4	14
ERK1_CRBN	0	1	FAK_CRBN	32	0
ERK2_CRBN	0	1	FAK_VHL	12	1
FKBP12-F36V_CRBN	2	0	HDAC1_VHL	0	2
FKBP12-F36V_VHL	1	1	HDAC1_cIAP1	0	1
FKBP12_CRBN	4	6	HDAC2_CRBN	0	8
FLT-3_CRBN	2	7	HDAC2_VHL	0	2
FLT-3_VHL	1	0	HDAC3_CRBN	0	12
GCN5_CRBN	1	0	HDAC3_VHL	3	3
GSK-3beta_CRBN	1	15	HDAC6_CRBN	25	15
GSPT1_CRBN	7	3	HDAC6_VHL	5	7
H-PGDS_CRBN	7	0	HDAC6_cIAP1	0	1
HDAC1_CRBN	0	4	HDAC8_cIAP1	0	1
HMGCR_CRBN	1	39	IRAK4_XIAP	0	2
HPGDS_CRBN	1	0	JAK1_CRBN	0	8
			•		

HPGDS_cIAP1	0	1	JAK1_VHL	0	8
HPK1_CRBN	2	2	JAK1_XIAP	0	8
IDO1_CRBN	0	7	JAK2_CRBN	0	8
IGF-1R_CRBN	0	11	JAK2_VHL	0	8
IRAK3_CRBN	4	6	JAK2_XIAP	0	8
IRAK3_VHL	0	8	KRAS-G12C_CRBN	0	16
IRAK4_CRBN	15	19	KRAS-G12C_VHL	0	6
IRAK4_VHL	0	4	KRAS_CRBN	0	2
KRAS_VHL	0	4	NSD3_CRBN	0	2
MCL1_CRBN	0	17	NSD3_VHL	0	4
MDM2_CRBN	32	18	PARP1_CRBN	14	38
MDM2_VHL	0	3	PARP1_MDM2	0	2
MEK1_CRBN	2	40	PARP1_VHL	2	5
MEK1_VHL	12	22	PARP2_CRBN	1	3
MEK2_CRBN	4	19	PBRM1_VHL	1	2
MEK2_VHL	12	15	PCAF_CRBN	1	1
MerTK_CRBN	1	0	PD-L1_CRBN	0	28
NS3_CRBN	1	2	PDEdelta_CRBN	1	11
PDEdelta_VHL	1	0	SHP2_CRBN	6	10
PDL1_CRBN	0	19	SHP2_VHL	15	8
PI3Kalpha_CRBN	1	3	SIRT2_CRBN	0	3
PLK1_CRBN	2	0	SMARCA2_VHL	6	1
PRMT5_VHL	0	6	SMARCA4_VHL	6	1
RAR_cIAP1	1	0	STAT3_CRBN	4	19
RIPK2_CRBN	2	0	Src_CRBN	0	11
RIPK2_VHL	2	0	TBK1_CRBN	0	2
RIPK2_cIAP1	2	1	TRIM24_VHL	0	2
RPS6KA1_CRBN	1	1	TRKA_CRBN	19	0
TRKB_CRBN	9	1	c-Met_VHL	1	0
TRKC_CRBN	8	3	eIF4E_CRBN	6	15
TRKC_MDM2	0	2	eIF4E_VHL	2	1
VEGFR-2_VHL	0	5	p38alpha_CRBN	7	16
VHL_VHL	2	5	p38alpha_VHL	3	5
WDR5_CRBN	0	5	p38beta_CRBN	2	0
WDR5_VHL	0	15	p38delta_CRBN	1	0
Wee1_CRBN	4	0	p38delta_VHL	3	5
c-KIT_CRBN	0	15			
c-Met_CRBN	0	12			

Compound ID	concent	ration (nl	M, in MC	F-7 cell)	concent	ration (nl	M, in T-4	7D cell)
	1	10	50	100	1	10	50	100
PROTAC 1	2.58	1.89	0.90	0.81	1.02	0.76	0.28	0.30
PROTAC 2	2.17	2.72	1.51	1.59	1.26	0.99	0.70	0.58
PROTAC 3	2.08	1.89	1.36	1.19	1.06	0.83	0.43	0.32
PROTAC 4	0.83	0.62	0.31	0.26	1.43	0.38	0.12	0.08
PROTAC 5	1.19	0.70	0.29	0.21	1.00	0.31	0.04	0.02
PROTAC 6	1.15	0.52	0.26	0.16	1.42	0.28	0.05	0.06
PROTAC 7	1.15	0.63	0.20	0.11	1.12	0.43	0.05	0.04
PROTAC 8	1.08	0.36	0.12	0.08	0.68	0.25	0.06	0.04
PROTAC 9	1.10	0.84	0.38	0.22	1.28	0.67	0.31	0.22
PROTAC 10	1.12	1.21	1.02	0.60	1.25	1.08	1.05	0.71
PROTAC 11	1.24	1.15	0.82	0.94	1.34	1.08	0.78	0.64
PROTAC 12	0.88	0.81	0.22	0.27	1.41	0.79	0.25	0.07
PROTAC 13	1.12	1.06	1.30	0.24	1.07	0.77	0.14	0.05
PROTAC 14	1.06	1.03	0.59	0.33	1.71	1.77	0.46	0.18
PROTAC 15	0.92	0.92	0.47	0.30	1.33	0.75	0.07	0.04
PROTAC 16	0.88	0.93	0.67	0.97	1.16	1.15	1.15	1.22

Supplementary Table 3. Densitometry quantifications of Western blotting data in order (normalized by GAPDH using the Image J software and DMSO was used as negative control) for easy comparison between two cell lines.

PROTAC ID	Expt.	Prediction
PROTAC 1	1	1
PROTAC 2	0	1
PROTAC 3	0	1
PROTAC 4	1	1
PROTAC 5	1	1
PROTAC 6	1	1
PROTAC 7	1	1
PROTAC 8	1	1
PROTAC 9	1	1
PROTAC 10	0	1
PROTAC 11	0	1
PROTAC 12	1	1
PROTAC 13	1	1
PROTAC 14	1	1
PROTAC 15	1	0
PROTAC 16	0	0

Supplementary Table 4. The prediction results of DeepPROTACs model on our experimental dataset.

Note: bold means correct prediction.

Targets	EZH2	STAT3	eIF4E	FLT-3
Accuracy on Test set	76.67%	77.99%	79.77%	77.22%
Accuracy on Targets	77.78%	75.36%	65.28%	80.00%

Supplementary Table 5. The evaluation results of DeepPROTACs model on different targets.

character	frequency	code	character	frequency	code
'C'	16867032	1	'\\\'	40666	21
'('	7201666	2	'3'	1203951	22
'='	3164974	3	'4'	149622	23
'O'	4806890	4	'1'	208445	24
')'	7201666	5	'F'	463503	25
'N'	3274399	6	'o'	263404	26
'['	2272539	7	'I'	9154	27
'@'	2787747	8	'B'	67994	28
'H'	1906099	9	'r'	62314	29
']'	2272539	10	'P'	2852	30
'1'	5943024	11	'5'	7974	31
'c'	15747890	12	'6'	1724	32
'n'	2818752	13	'i'	583	33
'/'	183604	14	'7'	616	34
'2'	3746324	15	'8'	310	35
'#'	85212	16	'9'	86	36
'S'	437668	17	'%'	42	37
's'	242192	18	'0'	24	38
'+'	100208	19	'p'	2	39
'_'	340633	20			

Supplementary Table 6. The encoding table for SMILES.

Supplementary Fig.1. The network architecture of an alternative model. The preprocess of POI, E3 ligase and PROTAC molecule: extraction of binding pocket from POI (BRD4) and E3 ligase (VHL) and conversion to graph representations, conversion of PROTAC molecule to graph representation.

Supplementary Fig.2. The network architecture of an alternative model. The preprocess of POI, E3 ligase and PROTAC molecule: extraction of binding pocket from POI (BRD4) and E3 ligase (VHL) and conversion to graph representations, conversion of PROTAC molecule to SMILES.

Supplementary Fig.3. Validation of ER PROTACs. (a) Thermodynamic data, representative titration raw data, and fitting curves of VHL and ER titrated into PROTAC 8 and PROTAC 8N. Binding kinetic and thermodynamic data are shown below as mean values \pm SD. Source Data are provided as a Source Data file. (b) Western blotting analysis of ER in T-47D cell line by PROTAC 8 and negative compound PROTAC 8N. All western blot data are representative of at least two independent replicates.

Supplementary Fig.4. Computational model of whole CRLs (Cullin-Ring E3 ubiquitin Ligases) induced by PROTAC 2. The ternary complex (ER, VHL-EloC-EloB and PROTAC 2) is aligned with crystal structure of NEDD8-CUL1-RBX1-UB-E2 (PDB ID: 6TTU) with the help of Cul2-Rbx1-EloBC-VHL structure (PDB ID: 5N4W). The structure of 5N4W was hidden for the sake of clarity.

Supplementary Fig.5. Computational model of whole CRLs (Cullin-Ring E3 ubiquitin Ligases) induced by PROTAC 6. The ternary complex (ER, VHL-EloC-EloB and PROTAC 6) is aligned with crystal structure of NEDD8-CUL1-RBX1-UB-E2 (PDB ID: 6TTU) with the help of Cul2-Rbx1-EloBC-VHL structure (PDB ID: 5N4W). The structure of 5N4W was hidden for the sake of clarity.

Supplementary Fig.6. Computational model of whole CRLs (Cullin-Ring E3 ubiquitin Ligases) induced by PROTAC 10. The ternary complex (ER, VHL-EloC-EloB and PROTAC 10) is aligned with crystal structure of NEDD8-CUL1-RBX1-UB-E2 (PDB ID: 6TTU) with the help of Cul2-Rbx1-EloBC-VHL structure (PDB ID: 5N4W). The structure of 5N4W was hidden for the sake of clarity.

Supplementary Fig.7. Unprocessed blots related to Figure 6. Protein marker (Thermo ScientificTM, #26616) was used. Membranes were cropped according to the molecule weight of ER and GAPDH before exposure.

Supplementary Fig.8. Unprocessed blots related to Supplementary Fig. 3b. Protein marker (Thermo ScientificTM, #26616) was used. Membranes were cropped according to the molecule weight of ER and β -actin before exposure.

	ER	
:d—		
	ß actin	
	β-actin	

40 kd—

Supplementary Fig.9. HRMS spectrometry data of ER PROTACs.

S47

