
A Truncated normal distribution

In order to describe the effect of a cutoff we consider a truncated normal dis-
tribution. In general, such a distribution, in 3 dimensions, with mean ~µ and
covariance matrix Σ is defined by the following probability density function
(pdf):

f(~x, ~µ,Σ, S) = N 1√
(2π)3|Σ|

exp(−(~x− ~µ)TΣ−1(~x− ~µ)) (A.1)

for all x within a bounded set S and f = 0 for all other x. N is chosen such
that f is normalized to 1. In the remainder of this work we consider only the
case where ~µ = 0, Σ = diag(σ2) and S is defined by all ~x for which |~x| < cσ.

While in this case σ is the standard deviation of the underlying normal dis-
tribution, it is not the standard deviation of the truncated normal distribution.
We can determine this standard deviation of f along direction xi by

σ2
c,i =

∫
x2i f(~x, σ, c)d~x (A.2)

and since our problem is spherically symmetric, σc,i = σc, independent of the
choice i. In spherical coordinates f becomes

f(r, σ, c) = N 1

(2π)3/2σ3
exp(− r2

2σ2
) (A.3)

which can be integrated by parts to find

N = (t1 − t2)−1 (A.4)

with

t1 = erf(
c√
2

)

t2 = c

√
2

π
exp(−1

2
c2).

(A.5)

In spherical coordinates we can write (A.2) as

σ2
c =

1

3
(σ2
c,1 + σ2

c,2 + σ2
c,3)

=
4π

3

∫
r4f(r, σ, c)dr

(A.6)

Combining (A.3), (A.4) and (A.6) results after several partial integrations in

σ2
c = σ2

(
1− c2

3

t2
t1 − t2

)
. (A.7)
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B Simple analytic model

In this section, we provide analytic expressions for the margin. Our analysis is
to a large extend analogous to the approach by Van Herk et al [16], only using
the truncated normal distribution and an approximation for the finite number
of fractions.

B.1 Dose distribution

We consider a spherical target, with a spherical dose distribution described by a
step function convolved with a normal distribution of width σp and zero mean.
We place the origin in the center of the target, such that

w = s+m+ λ, (B.1)

where w is the distance to the 50% isodose, s = target radius; m = margin and
λ= distance between the prescription isodose line q and the 50% isodose line.
The dose at position x is given by

d(x) = 1/2
(
erf

w − x√
2σp

+ erf
w + x√

2σp

)
. (B.2)

Under the assumption that s >> σp, λ is determined by d(m+ s) = q:

1

2

(
erf

λ√
2σp

+ 1
)

= q (B.3)

which e.g. for q = 0.95 results in λ ≈ 1.64σp. Now given a shift r, the dose
becomes d(x− r) and thus at the edge of the CTV (again assuming s >> σp)

d(s− r) = 1/2
(
erf(

m+ λ+ r√
2σp

) + 1
)

(B.4)

B.2 Margins for finite number of fractions

In this analysis, we assume the systematic error to be negligible. However, after
a finite number of fractions N , the blurring due to the random error does not
average out to zero, resulting in an effective systematic error. We assume the
daily random variation is sampled from a normal distribution of mean zero and
width σ. We approximate the finite number of fractions by

σ2
N =

N − 1

N
σ2

Σ2
N =

1

N
σ2,

(B.5)

where σN and ΣN are the effective standard deviations of the random and
systematic error respectively. A motivation and analysis for this approximation
can be found in references [18-20].

To determine the required margin due to random errors mrand, we assume
the dose distribution after N fractions can be approximated by the dose dis-
tribution (B.4), convolved with a normal distribution of width σN . Effectively

this means replacing σp with
√
σ2
p + σ2

N . As is explained in the manuscript,
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this approach is only approximate, since with a finite number of fractions, the
convolution is not a perfect Gaussian. The margin required is then found by
solving for d = q and using the definition of λ from (B.3)

mrand =
√

2erf−1(2 ∗ q − 1)(
√
σ2
N + σ2

p − σp) (B.6)

which for q = 0.95 and σN = σ is the non-linear van Herk margin recipe.
The margin for the systematic error msys should be chosen such that a cer-

tain fraction of all patients has a displacement less than msys. The probability
that r < msys is

p(r < msys) = N
(
erf(

msys√
2ΣN

)−
√

2

π

msys

ΣN
exp(−1

2

m2
sys

Σ2
N

)
)
, (B.7)

with N as in (A.4). Solving (B.7) for msys provides the margin required for
the systematic component. For p = 0.9 and c → ∞ (such that N = 1), this
results in msys ≈ 2.5ΣN . The final margin required for N fractions is

m = mran +msys (B.8)

B.3 Margins in the presence of a cut-off

We approximate the margin required due to random errors in the presence of
a cut-off by simply taking σN from (B.5) and replace σ with σc from (A.7),
resulting in σc,N . The margin is than given by (B.6) with the appropriate
substitution. To incorporate the cut-off in the systematic error, we only need
to correct for the change in population due to the truncation of the gaussian.
This is in effect taken into account by the normalization N in (B.7). Notice
that we do not need to substitute ΣN with ΣN,c, since within the truncation,
the distribution is properly described by σ and not σc.

We denote the margin in the presence of a cut-off with mc and will next
study mc/m.

B.3.1 dependency on σ

It follows from (A.7) and (B.5) that σc,N and ΣN are both linear in σ. Therefore,
in the regime where σ is not too large and mrand is approximately linear in σc,N ,
it follows that m is approximately linear in σ (which is equivalent to the regime
where the van Herk recipe is linear). From this it immediately follows that
mc/m is approximately independent of σ.

B.3.2 dependency on N

to determine the dependency of mc/m on N , we consider the following state-
ments to make the dependency on c and N explicit (again in the linear regime)

m(N) = αΣN + γσN

m(N =∞) = γσ

mc(N) = αcΣN + γσc,N

mc(N =∞) = γσc

(B.9)
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and then study the ratio of mc/m for finite N with the same for infinite N .

mc(N)

mc(N =∞)

m(N =∞)

m(N)
=
αcΣN + γσc,N

γσc

γσ

αΣN + γσN

=

1√
N

αc

γ
σ
σc

+ σN

σ

1√
N
α
γ + σN

σ

= 1 +
1√
N

αc

γ
σ
σc
− α

γ
1√
N
α
γ + σN

σ

= 1 +

αc

γ
σ
σc
− α

γ

α
γ +
√
N − 1

= 1 +
αc

α
σ
σc
− 1

1 + γ
α

√
N − 1

,

(B.10)

where we used (B.5) and, following from (A.7), that

σN,c
σc

=
σN
σ
. (B.11)

(B.10) implies that mc(N)/m(N) approaches its value at N = ∞ with a
correction that decreases as 1/

√
N . In other words: for N large enough, mc/m

approaches

mc(N =∞)

m(N =∞)
=
σc
σ

= 1− c2

3

t2
t1 − t2

,

(B.12)

which is independent of N and where we used (A.7).
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C Supplementary Tables 
Table C1. Overview of the most important symbols used. 
c Truncation parameter 
σ Standard deviation random error 
Σ Standard deviation systematic error 
σp Penumbra of dose distribution 
Ν Number of fractions 
σΝ Effective standard deviation of random errors, corrected for finite number 

of fractions (Eq. 1) 
ΣΝ Effective standard deviation of systematic errors, corrected for finite 

number of fractions (Eq. 2) 
σc Standard deviation of truncated Gaussian with standard deviation σ and 

truncation c. (Eq. A7) 
σΝ,c Effective standard deviation of random errors, σΝ, with σ in Eq. 2 replaced 

with σc. 
M Margin in the absence of truncation 
mc Margin in the presence of truncation (Eq. 3) 
m0 Margin with truncation c=0; In other words all errors are corrected for 

except for any residual, uncorrected, errors. (Eq. 4) 
αc Systematic factor of the margin (Eq. 3) 
β Random factor of the margin (Eq. 3) 
ε Correction parameter for model 2 where in the analytic approximation the 

effective standard deviation is fitted as σ  εσ 
ω Parameter fitted using the linear approximation mc / m = ω c 
W Distance to the 50% isodose (Eq. B1) 
Q Prescription isodose 
λ Distance between the 50% isodose and the prescription isodose  (Eq. B3) 
 



Table C2: Margins required (in mm) for different values of the standard deviation σ, number of fractions N and the truncation parameter c for 
model 1 (discrete displacement), based on the Monte Carlo simulations. The values in this table correspond to the dots in figure 1. 

 

 

  

N σ  = 1 mm σ  = 2.5 mm σ  = 5 mm σ  = 7.5 mm σ  = 1 mm σ  = 2.5 mm σ  = 5 mm σ  = 7.5 mm σ  = 1 mm σ  = 2.5 mm σ  = 5 mm σ  = 7.5 mm σ  = 1 mm σ  = 2.5 mm σ  = 5 mm σ  = 7.5 mm

1 1.0 2.4 4.8 7.2 1.9 4.7 9.2 13.8 2.5 5.9 12.0 18.0 2.6 6.3 12.6 18.7
2 0.8 1.9 3.9 6.3 1.4 3.8 8.5 13.2 1.9 5.5 12.0 18.3 2.0 5.8 12.9 19.8
3 0.7 1.7 3.7 5.8 1.2 3.4 7.9 12.7 1.6 5.0 11.6 18.3 1.8 5.5 12.9 20.3
4 0.6 1.6 3.4 5.5 1.1 3.2 7.4 12.2 1.5 4.7 11.3 18.0 1.6 5.2 12.8 20.3
5 0.6 1.5 3.2 5.3 1.0 3.0 7.1 11.8 1.4 4.4 11.0 17.8 1.5 5.0 12.7 20.3
6 0.5 1.4 3.1 5.1 0.9 2.9 6.9 11.4 1.3 4.1 10.7 17.6 1.4 4.8 12.5 20.4
7 0.5 1.3 3.0 5.0 0.9 2.8 6.8 11.2 1.2 4.0 10.4 17.4 1.3 4.6 12.4 20.3
8 0.5 1.3 2.9 4.9 0.9 2.7 6.6 11.0 1.1 3.8 10.1 17.1 1.2 4.5 12.2 20.1
9 0.5 1.2 2.8 4.8 0.8 2.6 6.5 10.9 1.1 3.7 9.8 16.8 1.2 4.4 12.0 19.9

10 0.5 1.2 2.8 4.7 0.8 2.5 6.4 10.7 1.0 3.6 9.6 16.5 1.1 4.2 11.8 19.8
11 0.4 1.1 2.7 4.6 0.8 2.5 6.3 10.6 1.0 3.6 9.4 16.2 1.1 4.1 11.5 19.7
12 0.4 1.1 2.7 4.6 0.8 2.4 6.2 10.5 1.0 3.5 9.2 15.9 1.0 4.0 11.3 19.5
13 0.4 1.0 2.6 4.5 0.7 2.4 6.1 10.4 0.9 3.4 9.1 15.7 1.0 3.9 11.0 19.3
14 0.4 1.0 2.6 4.5 0.7 2.3 6.0 10.3 0.9 3.3 9.0 15.5 1.0 3.8 10.9 19.1
15 0.4 1.0 2.6 4.4 0.7 2.3 5.9 10.2 0.9 3.3 8.9 15.3 1.0 3.8 10.7 18.9
16 0.4 1.0 2.5 4.4 0.7 2.3 5.9 10.1 0.9 3.2 8.8 15.1 1.0 3.7 10.5 18.6
17 0.4 1.0 2.5 4.3 0.7 2.2 5.8 10.0 0.9 3.2 8.7 15.0 0.9 3.6 10.3 18.3
18 0.4 1.0 2.5 4.3 0.7 2.2 5.8 9.9 0.9 3.1 8.6 14.9 0.9 3.6 10.1 18.0
19 0.4 0.9 2.4 4.2 0.7 2.2 5.7 9.9 0.9 3.1 8.5 14.8 0.9 3.5 9.9 17.6
20 0.4 0.9 2.4 4.2 0.7 2.1 5.7 9.8 0.8 3.0 8.5 14.7 0.9 3.5 9.8 17.3

c  = 1 c = 2 c = 3 no cut-off



Table C3: Margins required (in mm) for different values of the standard deviation σ, number of fractions N and the truncation parameter c for 
model 2 (continuous movement), based on the Monte Carlo simulations. The values in this table correspond to the dots in figure 2. 
 

 

  

N σ  = 1 mm σ  = 2.5 mm σ  = 5 mm σ  = 7.5 mm σ  = 1 mm σ  = 2.5 mm σ  = 5 mm σ  = 7.5 mm σ  = 1 mm σ  = 2.5 mm σ  = 5 mm σ  = 7.5 mm σ  = 1 mm σ  = 2.5 mm σ  = 5 mm σ  = 7.5 mm

1 0.6 1.4 3.0 4.8 1.0 2.8 6.5 10.5 1.4 3.8 8.8 14.2 1.4 4.1 9.3 15.0
2 0.5 1.0 2.3 3.8 0.8 2.1 5.4 9.3 1.0 3.2 8.2 13.8 1.1 3.5 9.1 15.1
3 0.4 0.9 2.0 3.5 0.7 1.9 4.7 8.4 0.8 2.7 7.6 13.1 0.9 3.0 8.5 14.5
4 0.3 0.8 1.9 3.2 0.6 1.7 4.4 7.8 0.8 2.4 6.9 12.3 0.8 2.8 7.9 13.9
5 0.3 0.8 1.8 3.0 0.6 1.6 4.2 7.4 0.7 2.2 6.4 11.5 0.8 2.6 7.5 13.3
6 0.3 0.7 1.7 2.9 0.5 1.5 3.9 7.2 0.7 2.1 5.9 10.8 0.7 2.4 7.0 12.7
7 0.3 0.7 1.6 2.8 0.5 1.4 3.8 7.0 0.6 2.0 5.7 10.3 0.7 2.3 6.6 12.0
8 0.3 0.7 1.5 2.7 0.5 1.4 3.7 6.8 0.6 1.9 5.5 10.0 0.6 2.1 6.3 11.5
9 0.3 0.6 1.5 2.6 0.5 1.3 3.6 6.6 0.6 1.8 5.3 9.8 0.6 2.0 6.1 11.1

10 0.3 0.6 1.4 2.5 0.4 1.3 3.5 6.4 0.6 1.8 5.2 9.6 0.6 2.0 5.9 10.8
11 0.2 0.6 1.4 2.5 0.4 1.2 3.4 6.3 0.5 1.7 5.0 9.4 0.6 1.9 5.7 10.5
12 0.2 0.6 1.4 2.4 0.4 1.2 3.3 6.2 0.5 1.7 4.9 9.2 0.6 1.9 5.6 10.3
13 0.2 0.6 1.3 2.4 0.4 1.2 3.2 6.1 0.5 1.7 4.8 9.0 0.5 1.8 5.4 10.0
14 0.2 0.6 1.3 2.3 0.4 1.1 3.2 5.9 0.5 1.6 4.7 8.9 0.5 1.8 5.3 9.8
15 0.2 0.5 1.3 2.3 0.4 1.1 3.1 5.9 0.5 1.6 4.7 8.7 0.5 1.7 5.2 9.7
16 0.2 0.5 1.2 2.2 0.4 1.1 3.1 5.8 0.5 1.5 4.6 8.6 0.5 1.7 5.1 9.5
17 0.2 0.5 1.2 2.2 0.4 1.1 3.0 5.7 0.5 1.5 4.5 8.5 0.5 1.7 5.0 9.4
18 0.2 0.5 1.2 2.2 0.4 1.0 3.0 5.7 0.5 1.5 4.4 8.4 0.5 1.6 4.9 9.2
19 0.2 0.5 1.2 2.1 0.4 1.0 2.9 5.6 0.5 1.5 4.4 8.2 0.5 1.6 4.9 9.1
20 0.2 0.5 1.2 2.1 0.4 1.0 2.9 5.6 0.4 1.5 4.3 8.1 0.5 1.6 4.8 9.0

c  = 1 c = 2 c = 3 no cut-off



Table C4: Difference in the margin mc (in mm) between the Monte Carlo calculation and a calculation based on the linear fit mc / m  = 0.3 c, for 
different values of the standard deviation σ and number of fractions N. The difference is calculated over the range of the truncation parameter  
c = {0…3} and the reported values are the median (lower quartile ; upper quartile).  
 

Model 1 
 
σ (mm) N = 1 N = 3  N = 5 N = 20 

 
1  0.00 (0.00 ; 0.00)  0.00 (0.00 ; 0.00)  0.00 (0.00 ; 0.00)  0.00 (0.00 ; 0.00) 

 
2,5  0.01 (0.01 ; 0.02)  0.00 (0.00 ; 0.00)  -0.00 (-0.00 ; 0.00)  -0.00 (-0.00 ; 0.00) 

 
5  0.04 (0.02 ; 0.05)  -0.00 (-0.00 ; 0.00)  -0.02 (-0.02 ; -0.01)  -0.02 (-0.02 ; -0.01) 

 
7,5  0.07 (0.05 ; 0.10)  0.01 (-0.00 ; 0.02)  -0.02 (-0.02 ; -0.01)  -0.04 (-0.04 ; -0.03) 

   
 

  Model 2 
     

 
1  0.00 (0.00 ; 0.00)   0.00 (0.00 ; 0.00)   0.00 (0.00 ; 0.00)   0.00 (0.00 ; 0.00)  

 
2,5  0.00 (0.00 ; 0.01)   0.00 (0.00 ; 0.00)   0.00 (0.00 ; 0.00)   0.00 (0.00 ; 0.00)  

 
5  0.02 (0.00 ; 0.02)   -0.01 (-0.01 ; -0.01)   -0.01 (-0.02 ; -0.01)   -0.00 (-0.01 ; 0.00)  

 
7,5  0.03 (0.01 ; 0.04)   -0.01 (-0.03 ; -0.00)   -0.02 (-0.03 ; -0.02)   -0.00 (-0.02 ; 0.01)  

 

 

 
  



D Supplementary figures 

 

 

 

Figure D1. Margin required for different values of standard deviation σ, truncation parameter c and number of fractions 
N for model 1 (discrete displacement), using a prescription dose of 80%. Dots show the Monte Carlo simulation result 
and the solid line shows the analytic approximation given by the van Herk margin formula, corrected for finite fractions 
and truncation (equation 3). σc is the standard deviation of the truncated distribution (given by equation A7).  



 

Figure D2. Margin relative to the original (no truncation) margin (mc / m) for different values of the standard deviation σ and number of fractions 
N as a function of the truncation parameter c for model 1 (discrete displacement), using a prescription dose of 80%. Dots are the Monte Carlo 
result and the solid lines are a linear interpolation. The dash-dotted line is the linear relation with mc / m = 0.3c. 

   

 



 

 

 

Figure D3. Margin relative to the original (no truncation) margin (mc / m) for different values of the standard deviation σ and number of fractions 
N as a function of the truncation parameter c for model 1 (discrete displacement) in the presence of a residual systematic error of Σ = 3 mm. 
Dots are the Monte Carlo result and the solid lines are a linear interpolation. The dash-dotted line is the equivalent of the linear relation mc / m = 
0.3c in the presence of a residual error (equation 4). 


