Fig. S1

а

b

Fig S1: Indole suppresses activation of splenic CD11b⁺ cells by suppressing Akt and ERK signaling pathway

a, Effect of indole (1mM) on the Akt and ERK signaling pathways in CD11b⁺ cells (monocytes/macrophages) in different post incubation time. Figure depicts the flow cytometric dot-plot analysis and time-course graphical representation of phospho-Akt and phospho-ERK expression in CD11b⁺ cells . **b,** Schematic diagram of murine CIA model used for results depicted in Fig 3c to Fig 3g. Mice were inoculated with an emulsion of CFA and collagen on Day 0 followed by bacterial treatment on Day 7 and Treg transfer on Day 14. A booster (repeat) injection of CFA + Collagen was administered to the mice on Day 21 to enhance CIA.

Fig. S2

- CD19 hi CD62L lo
- CD19 hi CD40L hi
- CD19 hi PD-1 mid CTLA4 hi
- CD19 hi CD140hi
- CD19 hi PD-1 lo CD40L lo

Fig. S2: Bm $\Delta v j b R$::tnaA activates T_{reg} cells and modulates B-cell mediated inflammation.

a, BMDMs infected with either Bm $\Delta v j b R$::*tnaA* or Bm $\Delta v j b R$ were co-cultured with CD4⁺T cells from mouse LNs and spleen and activated by using anti-CD3/CD28 Abs. Flow cytometric dot-plot assay shows that Bm $\Delta v j b R$::*tnaA* treated BMDMs greatly promoted expression of FoxP3 and PD-1 and production of IL-10 in CD4⁺T cells. The dot-plots are followed by graphical representation from 3 independent experiments. **b**, The CD19⁺ population is shown in the viSNE plots. Data represent means ± SD. Student's *t*-test or Tukey's multiple comparisons test was applied for statistical analysis. *, **, ***: significance at *p*<0.05, 0.01, 0.001. Fig. S3

Fig. S3: Bm $\Delta v j b R$::tnaA in combination with T_{regs} delays the progression of CIA.

a, Arthritis Score and **b**, arthritis incidence derived from treatment of CIA mice with indicated treatment strategies. Mice were inoculated with an emulsion of CFA and collagen on Day 0 followed by $Bm\Delta v j b R$::*tnaA* (5 x 10⁷ cfu) and/or indole treatment (20 mg/kg) on Day 21 followed by T_{reg} cell transfer on Day 25. The T_{reg} only group of mice received only T_{reg} cells without any other treatment. A booster (repeat) injection of CFA + Collagen was also administered to the mice on Day 21 to enhance CIA. Data represent means \pm SD. Student's *t*-test or Tukey's multiple comparisons test was applied for statistical analysis. ***: significance at *p* < 0.001.

Population	Cell type	Ctrl	T _{reg}	Bm <i>∆vjbR</i> <i>∷tnaA</i> + T _{req}
1	CD40L hi CD25 lo	8.6 %	18.7 %	72.7 %
2	CD25 hi Tim3 hi Ki67 hi	34.9 %	20.4 %	44.7 %
3	D45 lo CD44 mid	34.7 %	22.2 %	43.1 %
4	CD45 lo CD44 lo	34.3 %	27.9 %	37.8 %
5	CD44 hi CD160 mid	28.0 %	36.0 %	36.0 %
6	CD3 hi CD8hi CD25 lo	31.8 %	33.3 %	34.9 %
7	CD19 hi CD62L lo	32.7 %	33.6 %	33.7 %
8	CD4 hi CD25 lo	31.9 %	36.8 %	31.3 %
9	CD4 hi CD25 mid CTLA4 lo	37.0 %	32.0 %	31.0 %
10	CD25 hi PD-L1 hi	47.1 %	22.9 %	30.0 %
11	CD8 hi CD62L lo	38.2 %	32.4 %	29.4 %
12	CD19 hi CD40L hi	40.6 %	36.7 %	22.7 %
13	CD19 hi PD-1 mid CTLA4 hi	46.6 %	32.3 %	21.1 %
14	CD19 hi CD40L hi	32.1 %	47.4 %	20.5 %
15	CD25 hi CD140 hi	20.1 %	60.3 %	19.6 %
16	CCR7 hi PD-1 lo	53.1 %	28.0 %	18.9 %
17	CD4 mid PD-L1 hi	55.2 %	29.3 %	15.5 %
18	CD19 hi PD-1 lo CD40L lo	76.0 %	22.3 %	1.68 %

Supplementary Table 1. A list of different immune cell types which were differentiated using the tSNE analysis and their proportion in different treatment groups.

Ab	Clone	Fluorophore	Source	
Ghost Dye Red 710		Ghost Dye Red 710	Tonbo Biosciences	
CD45	30-F11	FITC	Tonbo Biosciences	
CD8a	53-6.7	BUV395	BD Biosciences	
CD4	GK1.5	eFluor 450	Thermo Fisher Scientific	
CD3	17A2	APC-Fire 810	BioLegend	
CD19	1D3	BUV805	BD Biosciences	
MHC II	M5/114.15.2	Violet Fluor 500	Tonbo Biosciences	
CD160	7H1	APC	BioLegend	
PD-L1	MIH5	Super Bright 780	Thermo Fisher Scientific	
CTLA-4	UC10-4F10-11	PE-Cy7	Tonbo Biosciences	
PD-1	29F.1A12	PE-Dazzle 594	BioLegend	
Lag-3	C9B7W	BUV661	BD Biosciences	
TIM-3	5D12/TIM-3	Brilliant Violet 605	BD Biosciences	
CD44	IM7	PerCP	BioLegend	
CD62L	HRL1	BUV737	BD Biosciences	
Ki-67	B56	Brilliant Violet 711	BD Biosciences	
CCR7	4B12	PE	BioLegend	
CD69	H1.2F3	BUV563	BD Biosciences	
CD25	PC61	Brilliant Violet 650	BioLegend	
CD40L	MR1	BB700	BD Biosciences	
CD28	37.51	BUV496	BD Biosciences	

Supplementary Table 2: List of Abs used in CyTEK assay