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Multimodal hardware design 

Overall, the key upgrades from the hardware used in19 include the addition of a flexible 

connector, two main sensing printed circuit boards as opposed to three, eventually the use of gel-

electrode ECG, a separate photoplethysmogram sensor board with newer discretized photodiodes 

and light-emitting-diodes, and a foam-based spring backing mechanism for improved 

photoplethysmogram sensing. However, the photoplethysmogram signals were not explored in 

this work and therefore—to prevent detracting from the focus of this work—the specific details 

of that hardware will not be expanded on further. The sample rate of the ECG was 1kHz and the 

SCG either 500Hz or 2kHz depending on the prototype version. Specifically, in the newer 

version, shown in Figure 2a, the sample rate of the SCG was increased to 2 kHz to provide a 

bandwidth of 500 Hz; the SCG sampling frequency was adjusted to capture higher frequency 

sounds that may eventually be utilized to monitor patients with heart murmurs—a subsection of 

the CHD population at a greater risk of decline. Unfortunately, as with a proof-of-concept study, 

the hardware required few—mostly device housing—modifications at different stages of the 

study before reaching the current prototype pictured in Figure 2a. Most importantly, the earlier 

version of the hardware utilized in this study featured the use of a dry electrode ECG, using 

stainless steel tape, for which the device was pressed against the chest of the patient to acquire 

the biosignals, while the later version used standard infant AgCl gel electrodes (Kendall HP69, 

Medtronic PLC, Dublin, Ireland) to adhere to the chest, eliminating the need for an extra contact 

force. To help mitigate any issues from differences in contact pressure with the dry electrode 



version, in addition to having the same group of few clinicians collect all data, only segments of 

the signals where the dry electrode acquired ECG—which is susceptible to variations in contact 

pressure due to changes in skin-electrode-impedance32—had a consistent amplitude were 

analyzed. Devices with both versions of the ECG featured a firmware modification which 

leveraged the lead-on detect feature of the ECG chip and would toggle a light-emitting diode 

facing the clinician between red and green for when ECG lead was detected as off or on, 

respectively. This also removed the possibility of accidentally applying an excessive amount of 

pressure without knowing whether a signal was being acquired. 

In future work, though high-fidelity wearable measurements were acquired and only few 

minutes of data collection were necessary for this study, the wearable biosensor still needs 

further miniaturization to be used in future longitudinal studies in a pediatric population. 

However, given the considerably smaller footprint of the internal essential sensing elements, the 

hardware could readily be miniaturized and exploit the advent of flexible electronics which can 

offer a low-profile, less obtrusive solution for even greater convenience when performing 

longitudinal monitoring33. 

Signal processing and feature extraction 

All signal processing and feature extraction was carried out in MATLAB 2018a 

(MathWorks, Natick, Massachusetts, USA) and entirely automated. A high-frequency SCG signal 

more closely related to the phonocardiogram was extracted for this analysis. The 

phonocardiogram, typically acquired from digital stethoscopes, is a wide bandwidth, high -

frequency acoustic signal that captures heart sounds (i.e., S1 and S2) and obtains information of 

valve closures when placed at specific auscultation sites. Although, the phonocardiogram should 

be acquired using a wide-bandwidth, piezoelectric accelerometer (i.e., a contact microphone) 



rather than the capacitive, direct current micro-electro-mechanical systems accelerometer used 

herein, the sampling rate of the accelerometer was increased to provide this bandwidth. First, the 

R-peaks of the ECG—marking ventricular depolarization—were found using Pan-Tompkins’s 

algorithm and used to determine the wearable HR. Then the SCG and high-frequency SCG signals 

were segmented into different heartbeats using and beginning with the detected R-peaks of the 

ECG. Due to the large differences in HR in this dataset, all of the heartbeats were zero -padded to 

a fixed length of 1300 ms, based on the slowest HR in the dataset. Next, the SCG and high -

frequency SCG heartbeats were ensemble averaged using 30 heartbeat windows with 50% 

overlap—to reduce zero-mean noise, remove respiratory induced variability, and improve the 

consistency of amplitude features—before selecting the highest SNR beat—calculated using the 

algorithm in34. First the envelope of the high-frequency SCG was computed which provided the 

profiles for the conventional heart sounds S1 and S2.  The algorithm for detecting the aortic opening 

point on the max SNR SCG beat was the same as that used in 20, where the aortic opening was 

detected by finding the nearest zero-crossing after the peak of the high-frequency SCG envelope 

between 0 and 150 ms; the aortic closing point was determined by finding the most consistent peak 

of the high-frequency SCG itself between 250 ms to the end of the beat. The aortic opening point 

resembles the PEP with the difference between that and the aortic closing point being the VET. 

Two other reciprocal features, PEP/VET and VET/PEP—systolic marker robust to differences in 

HR–are the quotient of the PEP and VET. Two interpretable systolic amplitude features were 

calculated as the RMS amplitude of the SCG during the PEP and during the VET. In total 9 systolic 

features were extracted from the wearable signals. Note that the HR from the CMR was added as 

a feature, due to both the inability to acquire continuous measurements with the wearable patch 

during the CMR—because of magnetic interference and injury— and due to expected high 



accuracy in HR estimation when using wearable ECG during baseline measurements, as a closer 

measure of the HR during the reference measurement. 

Leveraging surrounding physiological information can contextualize and improve the 

estimation accuracy of wearable measurements. The SV measurement from the CMR, is computed 

from a composition of several images which are obtained a relatively slow sampling rate. 

Therefore, due to respiratory induced variability in SV readings—stemming from changes in 

venous return, preload, and HR—clinicians typically ask patients to hold their breath. However, 

as imaginable, for younger children this is obviously not possible. Instead, multiple scans are 

taken, are the resulting images are averaged before computing SV from the averaged image. 

Similarly, when using wearable measurements to accurately estimate SV compared to CMR 

readings should also factor in respiratory variability by averaging over a larger timespan—such as 

the 30 heartbeats employed in this analysis.  

Machine learning 

All machine learning and cross validation was performed in Python 3.0 using scikit-learn 

ridge regression and grid search packages, respectively. Despite a considerable sample size with 

respect to other SCG literature—especially given the diversity of demographics and diagnoses in 

such a diseased population—due to a small number of overall datapoints for a machine learning 

problem, multi-variate ridge regression was chosen as a less complex linear, and more 

interpretable, model to estimate SV35. Ridge regression is similar to multiple-linear regression 

but with a regularization penalty—commonly referred to as lambda—that penalizes the model to 

prevent overfitting to the training data, thereby hopefully improving model generalizability 35. 

10-fold cross validation was chosen as a commonly regarded robust method for 

optimizing hyperparameters and given that each subject had only one datapoint there would be 



no overlap of subject-specific data in each fold. The completely randomized, held-out test set 

was determined by utilizing a true random number generator (RANDOM.ORG, Dublin, Ireland). 

To approximately balance and have a representative number of the number of single-ventricle 

patients in the training and testing set based on their size, originally during the data collection we 

again randomly split them into groups of four and three, respectively. However, after the final 

data was collected, a last single-ventricle patient was added to the training set to achieve a 

perfect 80%-20% split, hence a slight imbalance. 

When selecting features for biomedical machine learning problem with a small dataset 

size there is a greater importance placed on not only selecting a few features that can explain a 

lot of the variance but also ones that can be clinically understood. Therefore, the original feature 

set of predictor variables consisted of 14 features that were chosen based on those with strong 

overlap between commonly used SCG features in existing literature and those that are simple and 

intuitive to cardiologists. Using forward feature selection on the training set, we decreased the 

feature set from 14 down to nine features based on the simple linear regression coefficient of 

determination between ECG and SCG features and SV. The Pearson’s correlation coefficient 

values between these final nine features and SV, for the training set, are shown in Table S1. 

We compared different ridge regression models trained on unique feature sets in our 

work. Specifically, we sought to compare models leveraging different combinations of ECG, 

SCG, and demographic (i.e., age and body surface area) features. Both training and testing set 

features were normalized based on the training set mean and standard deviation.  The 

hyperparameter lambda for the highest performing model, which combined ECG and SCG 

features, came out to the maximum regularization penalty of 1.0. 

  



Table S1. Training Set Correlation Coefficients Between Physiological Features and Stroke 

Volume. 

 

Physiological 

Feature 

Training Set 
Pearson’s r 

HRCMR -0.65 

HRWearable -0.63 

VET 0.39 

PEP -0.02 

PEP/VET 0.01 

VET/PEP -0.06 

AC 0.45 

RMSPEP -0.20 

RMSVET -0.21 

HR indicates heart rate; CMR, cardiac magnetic resonance imaging; VET, ventricular ejection 
time; PEP, pre-ejection period; AC, timing of aortic valve closure; RMS, root-mean-square 
power. 

 

  



 

Figure S1. Signal processing pipeline. Block diagram of signal processing overview showing 

interpolation of electrocardiogram (ECG) and seismocardiogram (SCG) signals acquired from 

the wearable before bandpass filtering, R-peak detection, heartbeat windowing, and signal 



quality assessment using the signal-to-noise ratio (SNR). Illustration of the custom high-

frequency SCG (HF-SCG)—indicative of valve closures—assisted feature selection algorithm, 

helping to locate key fiducial points such as the aortic valve opening (AO) and aortic valve 

closure (AC) on the SCG—used to compute the pre-ejection period (PEP), ventricular ejection 

time (VET), and the AC. Additionally, the search radius for the AO (green) and AC (red) 

algorithm as well as their candidate points are shown. 

 

 

Figure S2. Permutation feature importances for stroke volume (SV) estimation model. 

Permutation feature importances for wearable system with features randomly shuffled 1000 

times, ranked in order from top to bottom, and color-coded by wearable sensing modality—

electrocardiogram (ECG) and seismocardiogram (SCG) signals. 

 


