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Supplementary Materials 

Supplementary Figures 

Fig. S1. Bathymetry and crevasse displacement rate for William Glacier. (a) Seabed 

bathymetry of Börgen Bay from multibeam echosounder data, and coastline/topography from 

Landsat imagery, with crevasse displacement rate and location shown in panel b. (b) Location of 

the depth profile of the grounded ice front presented in panel c. (c) Depth profile of the grounded 

ice front. 



Fig. S2. Börgen Bay oceanographic characteristics. Potential temperature versus salinity for 

the Börgen Bay CTD profiles, coloured by beam transmission. Contours of potential density 

anomaly are marked. High beam transmission denotes clearer waters; low beam transmission in 

deeper (denser) waters denotes waters with comparatively high concentration of sedimentary 

particles. Glacial meltwater lies along the steep diagonal dashed line defined by Gade (75), 

whilst subglacial discharge lies along the near-horizontal dashed line. The data points with low 

beam transmission lie along the Gade (75) line at depth; these are stations featuring strong 

glacial meltwater input, which has low beam transmission due to the presence of sedimentary 

particles in the water. This water rises at the front of William Glacier and spreads as a plume 

across Börgen Bay at approximately 50m depth. The mixing caused by the glacier calving 

resulted in the locus of points lying above both lines. 



Fig. S3. Near-surface underway hydrographic data. Underway near-surface temperature 

along the ship track in Börgen Bay, for the periods before (upper panel) and after (lower panel) 

the calving event. The marked decrease in temperature at the time of the calving event is 

apparent, consistent with upward mixing of cooler waters from below. 



Fig. S4. Near-surface underway hydrographic data in temperature-salinity space. The 

change in upper-layer temperature (Fig. S3) is concurrent with a shift toward higher salinity, 

indicating that it was caused by upwards mixing of more saline water below, as opposed to 

injection of cold (fresh) meltwater at the surface. 



Fig. S5: Numerical simulations with 50% tapered bathymetry. As for Fig. 7, but with the 

bathymetry in the centre of the domain tapered by 50% towards a flat bottom. (a-e) Potential 

temperature at the time intervals given in the individual panels. The peak inflow for the imposed 

wave is 𝑈0 = 1.536 m s-1 and the central ridge has been tapered to 50% of its height from the 

bottom. At 3 hours the impulsive flow reaches its peak velocity and by 6 hours it is effectively 

zero. Note the nonlinear colour scale, which emphasises the temperatures where most of the 

mixing takes place. (f) Domain average kinetic energy for 4 different tapers as per the legend. (g) 

A series of 4-hour averages of squared buoyancy frequency, spatially averaged over the top 60 

m. 



Fig. S6: Numerical simulations with varying wave strengths and bathymetric tapers. 2D 

model potential temperature after 24 hours for a range of model parameters. (a,c,e,g,i) varies the 

strength of the incoming wave, as per the individual captions; mixing between 50 and 100 m is 

seen to be critically dependent upon this strength. For (b,d,f,h,j), the strength of the wave is held 

constant at 1.536 m s-1 and the height of the central ridge is tapered towards a flat bottom by the 

percentage in the individual caption. Note the progressively weaker effect of the mixing as the 

bathymetric taper is increased. 



Fig. S7. Histograms of dissipation due to non-tsunami processes. (a) Histogram of tidal 

conversion computed at 30 arc-second resolution. (b) Bed friction dissipation. (c) Wind / near-

inertial shear-induced dissipation.  (d) Surface cooling-induced dissipation. In each panel, mean 

values for the West Antarctic Peninsula shelf are stated. 
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