Science Advances

Supplementary Materials for

Macrophage acetyl-CoA carboxylase regulates acute inflammation through control of glucose and lipid metabolism

Scott Yeudall et al.

Corresponding author: Norbert Leitinger, nl2q@virginia.edu

Sci. Adv. **8**, eabq1984 (2022) DOI: 10.1126/sciadv.abq1984

The PDF file includes:

Figs. S1 to S6 Table S1 Legends for data S1 and S3 Data S2. Uncropped Gels Blots: Summary PDF of uncropped gels and blots.

Other Supplementary Material for this manuscript includes the following:

Data S1 and S3

Supplementary Figure 1, related to Figure 1.

A. Representative genotyping of BMDM samples from flox or $ACC^{\Delta LysM}$ mice.

B. Body mass of flox and ACC^{$\Delta LysM$} mice at 8 weeks of age (male flox, n = 7; male ACC^{$\Delta LysM$}, n = 8; female flox, n = 10; female ACC^{$\Delta LysM$}, n = 8).

C. Fat as percentage of total body mass in flox and ACC^{$\Delta LysM$} mice at 8 weeks of age (male flox, n = 7; male ACC^{$\Delta LysM$}, n = 8; female flox, n = 10; female ACC^{$\Delta LysM$}, n = 8).

D. Enriched GO Biological Processes from unstimulated ACC^{*ΔLysM*} BMDMs.

E. Representative immunoblot analysis and quantification of fatty acid synthase (FASN) in unstimulated BMDMs from flox or ACC^{$\Delta LysM$} mice (n = 3 mice per group). Vinculin and β -actin were used as loading controls.

F. Heatmap showing fold expression of glycolytic enzyme genes in unstimulated flox and ACC^{$\Delta LysM$} BMDMs (n = 4).

G. Expression of glycolytic genes *Aldoc, Gapdh,* and *Pfkfb3* in unstimulated flox or ACC^{$\Delta LysM$} BMDMs (n = 4).

H. Mitochondrial stress test (MST) of BMDMs from flox or ACC^{$\Delta LysM$} mice (n = 4).

I. Basal respiration (calculated as average basal OCR – average post-AA/rot OCR) of flox or $ACC^{\Delta LysM}$ BMDMs (n = 4).

J. Maximal respiration (calculated as average post-BAM15 OCR – average post-AA/rot OCR) of flox or ACC^{$\Delta LySM$} BMDMs (n = 4).

K. Immunoblot analysis of mitochondrial oxidative phosphorylation complexes (n = 3 mice per group). Vinculin was used as loading control.

Data are represented as mean \pm SEM. Significance determined by one-tailed Welch's t-test (B, C, E, G, I, J, K). * *P* < 0.05.

Supplementary Figure 2, related to Figure 2.

A. Normalized gene expression (normalized counts per million) of *Acly, Acaca, Acacb,* and *Fasn* of BMDMs treated with control or LPS (100ng/mL) for 6 hours (n = 4).

B. Immunoblot and semi-quantification of ACC in BMDMs treated with LPS (100ng/mL) for 6 hours (n = 3). Vinculin was used as a loading control.

C. Relative mRNA expression of *Cd80* and *Cd86* in flox or ACC^{$\Delta LysM$} BMDMs treated with LPS (100ng/mL) for 6 hours (n = 4).

D. Relative mRNA expression of *Cd80* and *Cd86* in flox or ACC^{$\Delta LysM$} BMDMs treated with LTA (1µg/ml) for 6 hours (n = 4).

E. Immunoblot of ERK1/2 phosphorylation at T202/Y204 in flox or ACC^{$\Delta LysM$} BMDMs unstimulated or after LPS stimulation (100ng/ml) for 5-60 minutes. Representative of two independent experiments.

F. Immunoblot of p65 NF- κ B phosphorylation at S536 in flox or ACC^{$\Delta LysM$} BMDMs unstimulated or after LPS stimulation (100ng/ml) for 5-60 minutes. Representative of two independent experiments. β -actin was used as a loading control.

G. Immunoblot of total p65 NF- κ B in cytoplasmic or nuclear extracts from flox or ACC^{$\Delta LysM$} BMDMs unstimulated or after LPS stimulation (100ng/ml) for 0.5, 1, or 6 hours. Representative of two independent experiments. ERK1/2 was used as a loading control.

Data are represented as mean \pm SEM. Significance determined by one-tailed Welch's t-test (A, B) or One-Way ANOVA (C,D) . * P < 0.05, ** P < 0.01.

Supplementary Figure 3, related to Figures 2 and 4.

A. Relative mRNA expression of *ACACA* and *ACACB* in human MDMs treated with LPS (100ng/mL), LTA (1 μ g/ml) or hIL-4 (10ng/mL) for 6 hours (n = 4).

B. Immunoblot of ACC in human MDMs treated with LPS (100ng/mL), LTA (1 μ g/ml) or hIL-4 (10ng/mL) for 6 hours (n = 3). Vinculin was used as a loading control.

C. Relative mRNA expression of *ACACA* and *ACACB* in human MDMs treated with LPS (100ng/mL), LTA (1 μ g/ml) or hIL-4 (10ng/mL) for 18 hours (n = 4).

D. Immunoblot of ACC in human MDMs treated with LPS (100ng/mL), LTA (1 μ g/ml) or hIL-4 (10ng/mL) for 18 hours (n = 3). Vinculin was used as a loading control.

Data are represented as mean±SEM. Significance determined by One-Way ANOVA (A, C). * P < 0.05, *** P < 0.001.

Supplementary Figure 4, related to Figure 4

A. Relative mRNA expression of *Acly, Acaca, Acacb,* and *Fasn* in BMDMs stimulated with IL-4 (10ng/mL) for 6 hours (n = 4).

B. Whole-cell immunoblot analysis of STAT6 phosphorylation at Y64 in flox or ACC^{$\Delta LysM$} BMDMs stimulated with IL-4 (10ng/ml) for 6 hours (n = 3 mice per group). B-actin was used as a loading control.

Data are represented as mean±SEM. Significance determined by one-tailed Welch's t-test (A, B). ** P < 0.01

Supplementary Figure 5, Related to Figure 5

A. Glycolytic stress test of flox (black, left) or ACC^{$\Delta LysM$} (red, right) BMDMs after stimulation with LTA for 16 hours. Shaded areas represent the LT+LTA-induced increase in stressed (post-oligomycin) ECAR (n = 5).

B. Quantification of LTA-induced change in stressed ECAR in flox or ACC^{$\Delta LysM$} BMDMs after 16-hour stimulation with LPS (n = 5).

C. Representative immunoblot and **D.** semi-quantification of cell-surface and whole cell GLUT1 of flox or ACC^{$\Delta LySM$} BMDMs treated with LPS for 6 hours subjected to cell-surface biotinylation protocol (n = 2 biological replicates).

D. Succinate dehydrogenase activity of flox or ACC^{$\Delta LysM$} BMDMs treated with LPS for 6 hours (n = 6).

F. NADPH and **G.** NADP+ levels in BMDMs from flox or ACC^{$\Delta LysM$} BMDMs treated with LPS for 6 hours (n = 6).

H. NADP+/NADPH ratio in BMDMs from flox or ACC^{ΔLy_{SM}} BMDMs treated with LPS for 6 hours (n = 6).

I. Heat map of relative expression of genes related to the tricarboxylic acid (TCA) cycle in LPS-treated flox and ACC^{$\Delta LysM$} BMDMs (n = 4).

J. Supernatant lactate of flox or ACC^{$\Delta LysM$} BMDMs unstimulated or after 6 hours of LPS or LTA stimulation (n = 6).

Data are represented as mean±SEM. Significance determined by One-Way ANOVA (C, E, G, H, J) or one-tailed Welch's t-test (B,I) or. * P < 0.05, ** P < 0.01, **** P < 0.0001.

Supplementary Figure 6, related to Figure 6.

A. Heat map of relative expression of genes in the *de novo* lipogenesis pathway in LPS-treated flox and ACC^{ΔLy_{SM}} BMDMs (n = 4).

B. Heat map of relative expression of genes in the cholesterol biosynthesis pathway in LPS-treated flox and ACC^{$\Delta LysM$} BMDMs (n = 4).

C. Relative expression of transcription factor genes *Srebf1*, *Srebf2*, *N21h3*, and *Nr1h2* in flox and ACC^{ΔLy_{SM}} BMDMs after control and LPS stimulation (n = 4).

D. Expression of cholesterol pathway genes from in flox and ACC^{$\Delta LysM$} BMDMs after control and LPS stimulation was confirmed by qPCR (n = 4).

E. Heat map of significantly increased diacylglycerol (DAG) and triacylglycerol (TAG) species in LPS-stimulated flox and ACC^{$\Delta LysM$} BMDMs, relative to respective unstimulated cells (n = 6).

F. Heat map of significantly increased ceramide, sphingomyelin, and other lipid species in LPSstimulated flox and ACC^{$\Delta LysM$} BMDMs, relative to respective unstimulated cells (n = 6).

G. Accumulation of ¹⁴C-acetate signal in the lipid-soluble fraction of flox or ACC^{ΔLy_{SM}} BMDMs after 6 hours (n = 4).

H. BMDMs were stimulated with control or LPS (100ng/ml) for 4 hours, before corresponding media containing ¹⁴C-acetate was added for 2 hours. Fold increase in ¹⁴C-acetate flux into lipid-soluble fraction was determined (flox, n = 3; ACC^{ΔLysM}, n = 4)

Significance determined by two-tailed Student's t-test (E,F), one-tailed Mann-Whitney test (G,H) or One-Way ANOVA (C,D). * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.001

Gene	Forward Primer	Reverse Primer	Source	
Mus musculus				
Acaca	GTCTGCTGGGAAGTTAATCCAG	TCCTGCAGCTCTAGCAGAGG	(25)	
Acacb	ACAGAGATTTCACCGTCGCGT	CGCAGCGATGCCATTGT	(25)	
Il6	ACAACGATGATGCACTTGCAG	GCATTGGAAATTCGGGTAGGAA	(62)	
ll1b	CAAAATACCTGTGGCCTTGG	TACCAGTTGGGGGAACTCTGC	(7)	
<i>Il18</i>	GACTCTTGCGTCAACTTCAAGG	CAGGCTGTCTTTTGTCAACGA	Primer	
			Bank	
Argl	AAGACAGCAGAGGAGGTGAAGAG	TGGGAGGAGAAGGCGTTTGC	(7)	
Chil3	CTTCCACAGGAGCAGGAATC	GCTCCATGGTCCTTCCAGTA	(6)	
Ifng				
Nos2	CCTGGTACGGGCATTGCT	GCTCATGCCTCCTT	(7)	
B2m	ATTCACCCCCACTGAGACTG	TGCTATTTCTTTCTGCGTGC	(6)	
Hprt	TGAAGTACTCATTATAGTCAAGGGCA	CTGGTGAAAAGGACCTCTCG	(29)	
Mrcl			Primer	
			Bank	
Retnla	CCAATCCAGCTAACTATCCCTCC	CCAGTCAACGAGTAAGCACAG	Primer	
			Bank	
Il12a	CTGTGCCTTGGTAGCATCTATG	GCAGAGTCTCGCCATTATGATTC	Primer	
			Bank	
Il12b	TGGTTTGCCATCGTTTTGCTG	ACAGGTGAGGTTCACTGTTTCT	Primer	
			Bank	
Aldoc	TCTCTCTTGGGATCAGGGGG	CAGGTGAACCCTTCCTCCAC	(6)	
Gapdh	TGAAGGGTGGAGCCAAAAGG	ACTTGGCAGGTTTCTCCAGG	(6)	
Pfkfb3	AACGGATGTCTCCCGGTTTC	TGGTATGGAGGCTGCTCTCT	Primer	
			Bank	
Acly	TGATGGGAGAAGTTGGGAAG	ATCAGCTCGGGACTCAGAAA	Primer	
			Bank	
Fasn	GGAGGTGGTGATAGCCGGTAT	TGGGTAATCCATAGAGCCCAG	Primer	
			Bank	
Acat2	CCCGTGGTCATCGTCTCAG	GGACAGGGCACCATTGAAGG	Primer	
			Bank	
Mvd	ATGGCCTCAGAAAAGCCTCAG	TGGTCGTTTTTAGCTGGTCCT	Primer	
11 1			Bank	
Hmgcs1	AACTGGTGCAGAAATCTCTAGC	GGTTGAATAGCTCAGAACTAGCC	Primer	
- T			Bank	
LSS	ICGIGGGGGACCCIAIAAAAC	CGICCICCGCIIGAIAAIAAGIC	Primer	
D1 24			Bank	
Dncr24	CICIGGGIGCGAGIGAAGG	TICCCGGACCIGITICIGGAT	Primer	
C180			Dallk	
Cuou	UCTOTOTCOTTCAAAAOAAOOA	IOOOAAATTOTCOTATTOATOCC	Bank	
C186	GAGCTGGTAGTATTTTGGCAGG	GGCCCAGGTACTTGGCATT	Dalik	
Cuoo	GAGETOGIAGIATITTGGEAGG	OUCCAUTACTIOUCATI	Bank	
1110			(6)	
Homosa	niens	1000/microniorAccerra	(0)	
ACACA	CATGCGGTCTATCCGTAGGTG	GTGTGACCATGACAACGAATCT	Primer	
		STSTOREE/TGACAACGAATCI	Bank	
ACACR	AGAAGACAAGAAGCAGGCAAAC	GTAGACTCACGAGATGAGCCA	Primer	
			Bank	
IL6	ACTCACCTCTTCAGAACGAATTG	CCATCTTTGGAAGGTTCAGGTTG	Primer	
			Bank	

Supplementary Table 1. Primer Sequences for RT-qPCR

IL1B	AGCTACGAATCTCCGACCAC	CGTTATCCCATGTGTCGAAGAA	Primer
			Bank
RPS18	GCGGCGGAAAATAGCCTTTG	GATCACACGTTCCACCTCATC	Primer
			Bank

Data S1. Lipidomics_Data

Summary data for lipidomics experiment from unstimulated or LPS-treated flox and ACC^{ΔLysM} BMDMs.

Data S3. Source_Data_File

Source Data for figures.

Data S2. Uncropped_Gels_Blots: Summary PDF of uncropped gels and blots.

Macrophage acetyl-CoA carboxylase regulates acute inflammation through control of glucose and lipid metabolism

Scott Yeudall¹, Clint M Upchurch¹, Philip V Seegren¹, Caitlin M Pavelec^{1,2}, Jan Greulich³, Michael C Lemke¹, Thurl E Harris¹, Bimal N Desai¹, Kyle L Hoehn^{1,4}, and Norbert Leitinger^{1,2}

¹ Department of Pharmacology,

² Robert M Berne Cardiovascular Research Center,

University of Virginia School of Medicine, Charlottesville, Virginia 22908

³Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany

⁴School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia 2052.

Uncropped blots and gels

Samples after streptavidin pulldown of cell lysates – lanes alternate flox and ACC^{ΔLysM} BMDMs. Lanes 3 and 4 are shown in figure 1C.

Full unedited blots for Supplementary Figure 1E

Lanes 3 and 4 displayed in Supplementary Figure 1E

Full unedited blots for Supplementary Figure 2B

Full unedited blots for Supplementary Figure 2E

← p-ERK1/2 (T202/Y204) (CST #9101)

Full unedited blots for Supplementary Figure 2F

Full unedited blots for Supplementary Figure 2G

cytoplasmic

Full unedited blots for Supplementary Figure 2G nuclear

Full unedited blots for Supplementary Figure 3B

Full unedited blots for Supplementary Figure 3D

Full unedited blots for Figure S5C

Cell-surface biotin pulldown

Input: whole cell lysate

Full unedited gels for Supplementary Figure 1A – DNA gels

