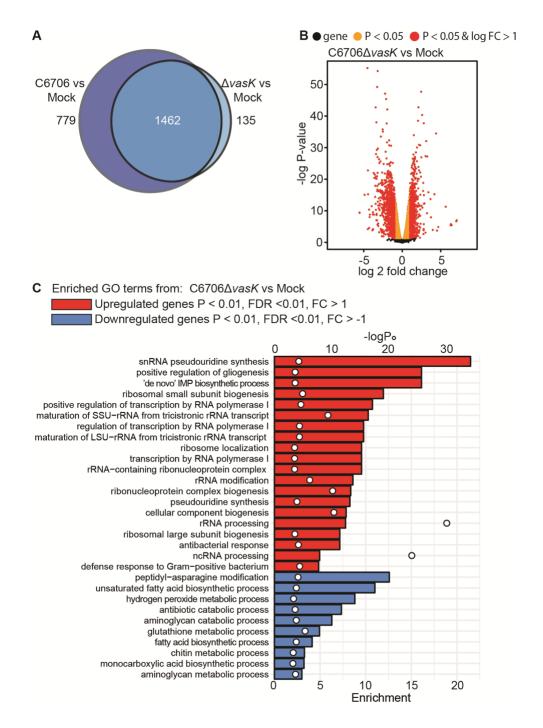

Supplemental Information

Vibrio cholerae-Symbiont Interactions


Inhibit Intestinal Repair in *Drosophila*

David Fast, Kristina Petkau, Meghan Ferguson, Minjeong Shin, Anthony Galenza, Benjamin Kostiuk, Stefan Pukatzki, and Edan Foley

SUPPLEMENTAL INFORMATION

Supplemental Figure 1. The T6SS modifies whole gut transcriptional responses to V. cholerae. Related to figures 2 and 3. (A) Schematic representation of the RNA-sequencing of V. cholerae infected guts, n=10 guts per replicate. (B) Principle component analysis from the counts per million obtained from RNA-sequencing of guts dissected from mock infected flies or flies infected with C6706 or C6706 $\Delta vasK$. (C) Volcano plots of differentially expressed genes from comparison of C6706 to Mock. Each dot represents a single gene. Yellow indicates a P<0.05 and red indicates P<0.05 and log2 fold change >1 or <-1. (D) Gene Ontology (GO) analysis from the top 500 up or down regulated differently expressed genes (P<0.01, false discovery rate (FDR) <0.01, and log2 fold change >1 or <-1) from comparisons of C6706 to Mock. Bars (bottom X-axis) represent enrichment scores and circles (top X-axis) represent -logP values for each enriched GO term.

Supplemental Figure 2. The gut transcriptional responses to C6706 $\Delta vas K$. Related to figures 2 and 3. (A) Venn diagram of differentially expressed genes (P<0.01, FDR< 0.01, and log2 fold change >1 or < -1) from comparisons of C6706 to Mock and C6706 $\Delta vas K$ to Mock. (B) Volcano plot of differentially expressed genes from comparison of C6706 $\Delta vas K$ to Mock. Each dot represents a gene. Yellow indicates a P < 0.05 and red indicates P<0.05 and log2 fold change >1 or <-1. (C) Gene Ontology (GO) analysis from the top 500 up or down regulated differently expressed genes (P<0.01, FDR < 0.01, and log2 fold change >1 or <-1) from comparisons of C6706 $\Delta vas K$ to Mock. Bars (bottom X-axis) represent enrichment scores and circles (top X-axis) represent -logP values for each enriched GO term.

gene	fold change	function	annotation	gene	fold change	function	annotation
wech	2.05	adhesion	intergrin	Cdk1	0.21	cell cycle	M phase
pasi2	2.04	adhesion	septate junction	Cdk4	0.45	cell cycle	S phase
cold	2.05	adhesion	septate junction	cort	0.32	cell cycle	APC/C
rux	2.12	cell cycle	CDK inhibitor	PCNA2	0.34	cell cycle	S phase
Atg13	2.10	metabolism	autophagy	insc	0.28	cell division	asymmetric
Atg6	2.00	metabolism	autophagy	msd1	0.25	cell division	spindle assembly
Atg8a	2.05	metabolism	autophagy	Nnf1b	0.44	cell division	kinetochore
cbt	2.25	signaling	dpp	pav	0.15	cell division	cytokinesis
dpp	2.07	signaling	dpp	tum	0.25	cell division	cytokinesis
lili	2.16	signaling	dpp	brk	0.39	signaling	dpp
salm	2.12	signaling	dpp	Dh31	0.41	signaling	diuretic hormone
salr	2.32	signaling	dpp	Pvr	0.45	signaling	RTK
tkv	2.08	signaling	dpp	Ror	0.23	signaling	RTK
ebd1	2.12	signaling	Wnt	tor	0.34	signaling	RTK
GATAe	2.02	transcription	intestinal homeostasis				

Supplemental Figure 3. The T6SS promotes a unique transcriptional response from the intestine. Related to figures 2 and 3. Representative genes involved in intestinal homeostasis, growth, and stress responses differentially regulated in response to C6706 relative to C6706 $\Delta vasK$ from RNA-seq of *Drosophila* whole guts.

	C6706	C6706∆vasK		
gene	fold change	gene	fold change	<u>function</u>
DptA	9.11	DptA	7.06	antimicrobial peptide
Dro	8.66	Dro	6.33	antimicrobial peptide
AttC	8.15	AttC	6.44	antimicrobial peptide
DptB	7.82	DptB	6.27	antimicrobial peptide
AttA	5.93	AttA	4.68	antimicrobial peptide
Mtk	5.85	Mtk	4.25	antimicrobial peptide
AttB	3.85	AttB	2.78	antimicrobial peptide
AttD	2.52	AttD		antimicrobial peptide

Supplemental Figure 4. Infection with *V. cholerae* promotes the transcription of antimicrobial peptides. Related to figures 3 and supplemental figures 1 and 2. Antimicrobial peptide expressed from RNA-seq of *Drosophila* whole guts *infected* with C6706 or C6706 $\Delta vas K$. Fold change was obtained from comparisons of C6706 to mock and C6706 $\Delta vas K$ to mock respectively.