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1 Normal colon scRNA-seq
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Supplementary Figure S1: Violin plot showing that genes identified as moderately /highly
expressed in colon cancer glands are more highly expressed in normal colon cells from
healthy adults than all other genes. Two-sided Wilcoxon signed rank test (p<le-6).
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Supplementary Figure S2: Mean mean expression and mean standard deviation of genes
in colonic single cells of healthy adults, split by gene group.



2 Phylogenetic signal
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Supplementary Figure S3: Explanation of phylogenetic signal analysis. (a) Example phy-
logenetic tree with branch lengths and expression of two example genes shown. Gene A’s expression
was randomly generated for each sample, while Gene B’s expression follows a random walk along the
tree, meaning expression will tend to be more similar for closely related samples. Expression for both
genes is scaled between 0 and 9. (b) Illustration of Pagel’s lambda calculation: log-likelihood values
are calculated for all values of lambda between 0 and 1, where a lambda of 1 means the structure of
the tree itself explains the gene expression while a lambda of 0 means that the tree must lose all of its
structure to explain the evolution of the gene expression under a random walk. The lambda estimate
is the lambda with the maximum log-likelihood while a likelihood ratio test against lambda=0 then
tests for the significance of phylogenetic signal (adjustments are not made for multiple testing).
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Supplementary Figure S4: Scatterplot of the number of phylogenetic genes per tumour
against the number of multi-region tumour samples analysed. The detection of phylogenetic
signal did not depend upon sample number (linear regression two-sided t-test).
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Supplementary Figure S5: The impact of RNA-seq normalisation method on phyloge-
netic signal analysis. (a) Bar chart showing the impact of RNA-seq normalisation method on the
percent of genes that were found to be phylogenetic per tumour (P<0.05). (b) Clustered bar chart
showing in each tumour, of the genes found to be phylogenetic in at least one analysis (P<0.05),
the percentage that were found in both, only VST or only LogNorm respectively. VST=variance-
stabilising transformation, LogNorm=Ilog-normalisation.



b

C551 C554 arou
e — i
A169 I (1T J c-oresson Exprassion
-B1G2 " ‘ I S c16s 3
--B1G7 4
-A1GE ‘ ! B
-C1G4
Wl g g ’ ’ 1
B1G4
+++B1G1
0
‘“Ill I ||| |‘| |\||M|H \ ||||HH||HHH| 100
Bics \|| ‘ TR \ H B~ -
| el “ ‘ H C1G5
L:A. a3 ‘ ‘ [ -2
A1 a3 | \ I | *
"
A Y o
LM L 2 i
| MedPval e D161 °
45 MedPval
Il TN \ B
++A1G10
o16s \H ‘hH \ | \HH‘ (LRI \‘“ 15 s s1cs ’”‘ H ’ |“ s
MedLambda
rp1co H ||H|||||\||H| ||| (il | H || I | lo.s Haedrambda
| ‘ ,,,,,,,,,,,,,,,,,,,,,, B1Go
‘ s 0.75
283 significant phylogenetic genes 1677 significant phylogenetic genes
c d e ..
. ©
|°gw(pva|) chisq test: XA2=55.6 df=2, p—value=8.58e-13 E‘ Purity
fuzee o 25 Original
)
B ‘ §. 20 1
| ] =
| [}
3 €
2 8 154
£
§ E
2 @
< 10
B 77 NonPhylo §
B ; = Phylo 2
£ 5
=)
k]
0 2 4]
NumPBec © o < - o 4 (=] o
4 Perceniage of genes 2 % % B8 8 B 8B 8
(3] (3] (3] (3] (3] (3] (3] (3]

-

=)

=3
)

Purity-only
Original-only

|| -s'mea

3
o
L

]
=]

% of genes with significant phylogenetic signal
n
o

850
6GGOR 4+

dx3 uespyuesy [

o o

Supplementary Figure S6: Phylogenetic
expression. (a) and (b) Phylogenetic trees

C551

C552
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C559

C560

signal in colorectal cancer with purity-adjusted
and heatmaps of genes with evidence of phylogenetic

signal (P<0.05) for tumours C552 and C554 respectively. (c) Genes with recurrent phylogenetic
signal across tumours, genes shown were found to have evidence of phylogenetic signal (P<0.05) in
at least three tumours (d) Results of two-sided chi-squared test showing whether gene groups were
enriched for phylogenetic genes (genes with phylogenetic signal in at least one tumour). (e) Bar chart
showing the impact of RNA-seq normalisation method on the percent of genes that were found to be
phylogenetic per tumour. (f) Clustered bar chart showing in each tumour, of the genes found to be
phylogenetic in at least one analysis, the percentage that were found in both, only Original or only
Purity respectively.
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Supplementary Figure S7: Assessment of power to detect phylogenetic signal for multi-
region tumours. Left: labelling of nodes for tumour phylogenetic trees. Right: Power to detect
phylogenetic signal (colour) by the magnitude of expression change (rows) induced at a particular
node (columns). Listed by cancer tumour: (a) C538. (b) C542. (c) C544. (d) C551. (e) C552. (f)

C554. (g) C559.

(h) C560.



3 Expression clustering
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Supplementary Figure S8: WGS-based phylogenetic trees plotted side-by-side with
expression-based hierarchically clustered dendrograms for the 17 tumours with at least
5 RNA-seq samples. Dotted lines show matching samples and samples are coloured according to
region-of-origin.
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Supplementary Figure S9: Scatter plot comparing intermixing scores calculated using

the WGS-based phylogenetic trees versus gene expression-based hierarchically clustered
dendrograms. Linear regression two-sided t-test.
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Supplementary Figure S10: Hierarchically clustered dendrograms of 17 tumours based
on the expression of genes from Groups 1-3 (n=8368), with matching heatmaps. Colours
of the sample names, nodes and branches of the dendrograms correspond to the tumour region; A =
red, B = blue, C = Green, D = purple.
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Supplementary Figure S11: Permutation test for correlations between gene expression
and sample region-of-origin. Red dashed lines show the empirically observed value of the statistic,
and the blue histogram the computed null distribution. Test is effectively one-sided and p-values are
FDR-adjusted.

11



Intra=tumour euclidean distances

30 7 « within-regions
between-regions
o 25
S
o
O
7]
o 20 -
=
8 p=1.26e-133
Q0 R2=0.21
< 15 T -
= -
c =
2 o
— -
A 10 153
Ll -
m o X
o O
5 N o
-
—
0 -
[ I I I | ]
0 100 200 300 400 500
Expressed Genes
b c
8 wilcoxon p-value: 6.97e-07 wilcoxon p-value: 2.32e-06
€ 600 - @ 30
S g
0 [}
0 500 ® 25
g o
S 400 § 20
S B
W 300 - S 15
n w
g x
@ 200 - = 10
(0] 2
et (@]
7]
& 100 - £ 54
] w
o @
g o- O o-
w I | | |
within-regions between-regions within-regions between-regions
Comparison type Comparison type

Supplementary Figure S12: Analysis of the impact of immune infiltration on expression
differences. 239 samples from 17 tumours; n=2567 pairwise comparisons. (a) Scatter plot showing
the correlation of Euclidean distances between samples when calculated from the expression of genes
and CIBERSORTX estimates respectively. Each dot is a within-tumour sample pair, dots are coloured
by pair type (i.e., within-region/between-region). Linear regression two-sided t-test. (b) and (c)
Violin plots showing the Euclidean distance of pairwise samples split by pair type (703 within-region
comparisons versus 1864 between-region comparisons, two-sided Wilcoxon signed rank tests) based on
(b) gene expression and (c¢) CIBERSORTx estimates.
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4 Exploring eQTL results
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Supplementary Figure S13: Frequency of associations between gene copy number alter-
ation and change in gene expression, by direction of correlation and average locus-specific
copy number. X-axis: direction of copy number-expression correlation. Y-axis: proportion of sam-
ples across the whole cohort with specified copy number. (a) Genetic deletions are more commonly
associated with positive correlations between gene expression and copy number. (b) Loci with total
copy number two (which includes copy neutral loss of heterozygosity — cnLOH - events) are more likely
to show a negative correlation between copy number and gene expression. (c) Unbalanced gains re-
sulting in total gene copy number 3 are also associated with negative correlation between copy number
and gene expression, whereas (d) copy number alterations resulting in total copy number 4 (typically
balanced gain) are significantly associated with positive correlations with copy number.
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Supplementary Figure S14: Investigating gene mutation-expression correlations (eQTLs)
in the Hartwig mCRC cohort. (a-i) Recurrent eQTLs in the Hartwig metastatic CRC tumours
which also significantly correlate with expression changes in mutated samples. Linear regression two-
sided t-tests, p-values are not adjusted for multiple comparisons. (j) Power analysis demonstrating
the lack of power to detect most eQTLs in the Hartwig cohort. X-axis: Predicted number of mutated
Hartwig samples required to detect effect of size observed in our cohort. Y-axis: Actual number
of mutated Hartwig samples available in the cohort. Red diamonds: significant effect replicated in

Hartwig, grey circles: effect not detected in Hartwig.
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Supplementary Figure S15: Box plot showing post-hoc power analysis of mutation eQTL
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5 eQTL and MSI
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Supplementary Figure S16: Plot of the top two principal components from PCA analysis
of germline SNPs in patients used in the eQTL analysis. Patients are coloured according to
MSI status.
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Supplementary Figure S17: QQ plot comparing the quantiles of MSS and MSI significant
mutation eQTL effect sizes.
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Supplementary Figure S18: Genetic control of expression with eQTL analysis with MSI
status added as a cofactor. (a) The number of genes with significant models for each data type.
(b) The distribution of regression coefficients (effect sizes) for each data type. (c) and (d) Volcano
plots highlighting selected genes that were significant for CNA and Mut eQTLs respectively (linear
regression two-sided t-tests, p-values are FDR-adjusted). (e) In comparison to non-synonymous SNVs
(NS), enhancer (Enh) mutations tended to have large effect sizes and a higher proportion of positive
effect sizes. (f) The proportion of subclonal mutations that were associated with detectable changes
in cis gene expression tended to be lower than for clonal eQTL mutations (two-sided chi-squared
test). (g) Visualisation of two-sided Fisher’s exact tests showing that gene-mutation combinations
were more likely to be eQTLs if they were associated with recurrent phylogenetic genes (genes found
to be phylogenetic in at least 3 tumours) for subclonal mutations and that this was not significant for
clonal mutations. P-values are not corrected for multiple testing.



R? values for models that are significant in both analyses
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Supplementary Figure S19: Scatter plot showing correlation of R? values for models
significant in both the original eQTL analysis and the analysis with MSI included as a
covariate.
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6 Mutations and phylogenetics
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Supplementary Figure S20: Gene essentiality analysis with CRISPR screens. Essentiality
scores from the cancer dependency map (DepMap) of many putative driver genes we find subclonal
are not significant across hundreds of cancer cell lines, and are not significantly different across mutant
versus wild-type subpopulations of cell-lines (which would be consistent with oncogenic function), with
the exception of KRAS and PIK3CA. Orange lines denote the significance thresholds of the essentiality
score as defined by DepMap, i.e. half of the median essentiality scores observed for prior known
essential genes ( = -1). The lower and upper hinges of the boxes show the first and third quartiles,
the whiskers extend to the most extrem values up to 1.5 inter quartile ranges from the whisker and
values outside of this range are shown as individual points. The number of mutated and unmutated
models per gene are: 26+10 KRAS, 4+13 TBX3, 19427 PIK3CA, 31472 NF1, 24+14 FBXW7, 2143
BCLIL, 22+60 USP6, 12+0 AMERI, 21+7 ACVR2A, 66+31 FAT4, 14+32 NIN, 34+107 NBEA,
29425 GNAS, 18439 NCOR2, 13436 GRIN2A, 10+5 TGFBR2, 748 DUSP16, 34470 BIRC6, 17+54
PTPRC, 19415 ARID1A and 1148 SMAD4.
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C539 - BaseScope for KRAS G12C
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Supplementary Figure S21: High resolution figure image of in situ mutation detection
with BaseScope® for the KRAS G12C subclonal variant in C539. H&E and BaseScope®
staining was performed once, and scale bars are 50 pm.
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Supplementary Figure S22: High resolution figure image of in situ mutation detection
with BaseScope® for the PIK3CA E545K subclonal variant in C537. H&E and BaseScope®
staining was performed once, and scale bars are 50 pm.
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Supplementary Figure S23: Measurements of subclonal intermixing for each patient.
Reported values for each tumour are computed as specified in Methods section 4.
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Selection inference
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Supplementary Figure S24: Simulations of tumour growth with different mutation rate

and peripheral growth parameters. Colours indicates clonal lineages
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Supplementary Figure S25: Differential gene expression and chromatin accessibility be-
tween detected subclone and background clone. (a) Differential gene expression between the
subclone and background clone for all tumours with selection (AIC) for which there was sufficient
samples (linear regression two-sided t-test, p-values are adjusted for multiple comparisons). (b) Dif-
ferential ATAC peak between subclone and background clone for those tumours with no detected
genetic driver (linear regression two-sided t-test, p-values are adjusted for multiple comparisons).
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Supplementary Figure S26: Gene set enrichment analysis based on gene expression of
subclone versus background clone. Enrichment tests were two-sided and p-values are adjusted
for multiple comparisons. (a) C518. (b-d) C524. (e-g) C531. (h-j) C538. (k-m) C542. (n-p)

C551. (q-s) C559.
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8 Combining analyses
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Supplementary Figure S27: Assessment of heritable changes associated with subclonal
selection. All tests are two-sided Wilcoxon signed-rank tests. (a) No association between the number
of phylogenetic genes and the presence of subclone selection. (b) No association between the number
of phylogenetic genes and spatial segregation/intermixing. (c) No association between the percentage
of tested eQTL genes that were significant and the presence of subclone selection. (d) No association
between the magnitude of heritable gene expression changes and the presence of subclone selection.
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