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Referee #1 (Remarks to the Author): 
 
Househam, Heide et al. submit here a manuscript exploring the impact of genetic variation on 
transcriptomic intra-tumoral heterogentiy (tITH). The group use matched multi-regional WGS, 
RNAseq and ATACseq from 17 invasive carcinoma to understand the control of tITH. The manuscript 
forms part of a broader study using the same (and additional adenoma and normal) samples that 
provides greater granular detail and explanations of the ‘big bang’ theory previously published. In 
this submission, the authors initially describe the degree of tITH and cluster this according to both 
average expression and degree of variance. Leveraging matched WGS data the authors conclude 
that RNA expression is neither strongly heritable nor related to genetic ancestry. Next, the authors 
seek to understand the phenotypic consequence of somatic driver mutations through dN/dS analysis 
of their multi-regional WGS data. Interestingly, they conclude that most driver mutations have 
limited ‘phenotypic consequence’ and demonstrate limited selection. To further explore these 
observations the authors next apply complex computational modelling of tumour spatial growth and 
sub-clonal expansion. They find strong correlations between the model and their real-world data 
which allows them to accurately infer the evolutionary consequence of somatic driver mutations. 
Strikingly, neutral evolution appears dominant with only a third of tumours showing strong evidence 
of subclonal selection. Finally, the authors use samples with matched ATACseq and RNAseq data in 
tumours displaying sub-clonal selection and highlight recurrent alterations in focal adhesion 
pathways. 
 
This is an impressive dataset, that for the first-time permits dissection of some truly fundamental 
aspects of tumour evolution and phenotype. The authors should be applauded for the scope of this 
study. The manuscript is well written and figures are of a reasonable quality however some suffer 
from too much detail and small font size making it difficult to read. Data generated appear high 
quality and the authors seem to have taken much care in quality control. The highly complex 
narrative flow is decent through most of the manuscript although the latter section using ATACseq 
seems somewhat disconnected and limited in depth. Crucially, whilst this reviewer finds these data 
and analyses to be reliable, I find some of the conclusions and even some premises difficult to fully 
accept at present. This is perhaps reflective of the innovative focus of this study which has never 
been addressed before in this depth and for which terminology may be early in acceptance. 
 
Major comments: 
 
1. I think there is a fundamental question surrounding plasticity and variance that needs to be 
addressed. The authors state in their abstract “Using spatially-resolved paired whole genome and 



 

 

 

transcriptome sequencing, we find that the majority of intra-tumour variation in gene expression is 
not strongly heritable and therefore is plastic.” I am not fully convinced that that just because a 
transcriptome is not heritable it has to be plastic. This reviewer would interpret ‘plastic’ as being 
variant and capable of change/reversion. Surely, different ‘normal’ tissues have varying degrees of 
plasticity – for example the gut most would regard as plastic and the CNS less so, both however have 
transcriptional heterogeneity (variance). Both also have non-heritable gene expression. Further, the 
analyses the authors are performing are based on a single time point so how can they be confident 
that these read outs do or don’t change over time and if they can what is the sensitivity of this? 
Whilst this may well be semantics, I think this issue requires clarity. 
 
2. Similarly, in the discussion the authors state “This points towards phenotypic plasticity the ability 
of a cancer cell to change phenotype without underlying heritable (epi)genetic change to be a 
common phenomenon in CRC.”. The authors seem to be linking transcriptional variance with 
phenotypic plasticity in this paragraph. Is this not conflation? There is therefore an important 
definition that this reviewer is unclear on – are the authors defining phenotype as the degree of 
selection advantage within the tumour or the transcriptional pattern or both? Is it truly possible to 
infer such a highly dynamic process from these forms of analysis that rely on evolutionary inference 
based on MRS? 
 
3. In a related point to #1 I think it would be useful to provide context to the transcriptomic analyses. 
There is little description of the degree of variance in normal tissue. Given how much detail is known 
about phenotype and plasticity in normal colonic tissue is it not possible to link the tumour findings 
back to normal to provide both reassurance as to the authors’ conclusions and contextual 
framework. 
 
4. The ATACseq potion of the manuscript appears incomplete in analysis and doesn’t integrate well 
into the manuscript. The authors have understandably mainly chosen to focus on those tumour 
subclones showing a selection advantage but what are seen in those that do not? Indeed, more 
generally what is the epigenetic contribution to tITH, at least in regards to chromatin accessibility? 
Surely, this could be addressed using data the authors have generated? 
 
Minor comments: 
 
1. CMS and CRIS calling p3. These are quite striking results that call into question the entire validity 
of these sub-types. If this is true then how is it that these subtypes are capable of defining clinically 
relevant groups based on single biopsies? Also, why do the authors feel that CRIS and CMS don’t 
correlate well when this has previously been shown not to be the case? 
 
2. p6. The negative correlations of SCNAs with expression change (10%) is interesting. The authors 
speculate that this may be related to dominant-negative activity. This requires further attention and 
confirmation to ensure that this is not a technical error and better understand this result. 
 
3. The DepMap analysis (p8) is quite superficial and this reviewer is not certain that linking this quite 
artificial cell line derived dataset to their real world data is helpful. 
 



 

 

 

4. I cannot fully review the validity of the computational model used in this study as it is outside of 
my area of expertise however, I would be interested to know why a ΔAIC of >4 was used? Further 
how does the model take into account cooperative as well as more accepted competitive 
interactions between subclones? 
 
5. I am uncertain why the adenoma samples present in the wider EPICC study have not been 
included here. Surely it is important to define whether the evolutionary principles proposed in this 
submission are conserved (or not) at an earlier time in tumour development? 
 
6. Does cytosol specific RNAseq bias towards specific transcripts compared to whole cell RNAseq? 
 
7. Does the sampling of purely glandular structures bias the transcriptomic analysis? How reflective 
are the glandular samples of more traditionally sampled bulks? 
 
8. Some of the supplementary figures have overlapping gene annotations which should be tidied up. 
 
 
Referee #2 (Remarks to the Author): 
 
 
A. Summary of key results 
The manuscript leverages the sinlge-gland multiregion profiling of colorectal cancer by whole 
genome sequencing and RNAseq (generated for an accompanying manuscript) to infer the 
relationships between genetic and transcriptomic heterogeneity. The authors reconstruct 
phylogenetic trees to identify genetic ancestry and find that gene expression patterns do not strictly 
follow the genetic clustering of samples. Aiming to identify the true genetic drivers of CRC, the 
authors perform eQTL analysis and confirm that most mutations do not alter gene expression, while 
some of the subclonal genetic variants can affect gene expression. Interestingly, driver mutations 
identified in this study are predominantly clonal and very few cases of positive selection are 
identified. This can be attributed to higher-than-before depth of the data (single-gland analysis and 
multiregional sampling). CRCs analyzed in this study are either under “neutral” evolution or show 
signs of clonal selection. The Authors generate a mathematical model recapitulating the observed 
phylogenetic trees, which allows to capture evolutionary consequences of subclonal driver 
mutations. 
B. Originality and significance 
The manuscript presents original data and a novel mathematical model for identification of the 
impact of subclonal driver mutations. 
C. Data and methodology 
The impressive depth of data generated for this manuscript allows for a more detailed 
characterization of clonal events in CRC. The quality of data and presentation is high and meets the 
standards of the journal. 
D. Appropriate use of statistics 
Yes 
E. Conclusions: robusteness, validity and reliability 
Overall, the conclusions are well supported by the presented analyses. Several points listed below 



 

 

 

could be improved. 
F. Suggested improvements 
1. The main conclusion of the study is that in the majority of the tumors there is no clonal selection 
for genetic traits. Is there evidence for punctuated copy number evolution and thus clonal 
diversification early in tumor evolution? 
2. Another major conclusion of this study is that phenotypic heterogeneity in CRC is mostly driven by 
non-hereditary changes. Is there a pattern of chromatin accessibility associated with distinct clades 
in the analyzed tumors that would support this conclusion? Fig. S18B shows only selected 
comparisons for 4 tumors. These data could be helpful in supporting the epigenetic plasticity as a 
source of transcriptomic heterogeneity. 
3. On a similar note, are the differences in gene expression between distinct glands/locations 
explained by differential infiltration by immune cells or presence of other stromal cells? CIBERSORTx 
could help infer cell types present in each sample. 
Minor points: 
1. Page 3: “Pathway group 4 (low average pathway enrichment and high heterogeneity) contained 
two pathways, epithelial- mesenchymal transition (EMT) and angiogenesis, and was enriched for 
“stromal” acting pathways.” Does this mean that those two pathways were classified into 4 pathway 
groups? If that is the case, it would be better to show more detailed pathway analysis, without the 
grouping. 
2. Fig. S2C – not sure what this shows – should one expect a correlation? Why is there proportion 
instead of correlation measure? A short discussion of the differences between these classifiers 
would be helpful. 
3. Fig. 1 Some labels (especially legends for G,H, L, M) are too small to read. 
4. Phylogenetic signal – since the Authors construct this on Groups 1-3 genes and omit group 4, 
which is less variable in expression. Would including these genes significantly alter the association 
with genetic ancestry? 
 
5. How is tumor cell purity affecting phylogenetic signal and genetic ancestry reconstruction? 
6. Fig. S3 shows Phylogenetic tree and associated gene expression pattern. It looks like in 6/8 tumors 
the branching on the left corresponds to patterns in gene expression. Thus, the conclusion that “the 
expression level of most genes was not strongly related to genetic ancestry within the tumour” 
should be expanded to include the fact that in 6/8 tumors phylogenetic pattern is associated with 
expression of selected genes. 
7. The fact that most CRC candidate drivers show no essentiality in DepMap dataset is very 
interesting. Could the authors provide a discussion of why that might be? Could it be that initiating 
mutations are not essential for full blown CRC? Is there any evidence of selection for genes identified 
as essential in DepMap within Authors’ data? 
8. Fig. 3H&I: The resolution of BaseScope images is very low – please provide insets of higher 
magnification. It would also be helpful to see matching H&E staining and example of raw image that 
was used to score the glands as wt or mut. 
G. References 
Appropriate 
H. Clarity 
The manuscript is well written and apart from minor points mentioned above, it is clearly presented. 
 



 

 

 

 
 
Referee #3 (Remarks to the Author): 
 
Summary: 
 
Housham et al. conducted a spatially resolved analysis of 27 CRCs assayed for RNA-seq and WGS 
focusing on tumor evolution and intra-tumor heterogeneity. WGS data was used to construct sample 
phylogenies for samples from each tumor. Interestingly, the expression of most genes did not 
correlate with the phylogeny. Next, the authors tested for association of gene expression with 
somatic alterations in an eQTL-like framework. ~1,400 genes had expression associated with somatic 
variation, which was largely driven by copy number. There was little evidence that somatic SNVs 
drive gene expression (though it was not clear whether this was due to low power to detect such 
events). A dN/dS analysis was carried out and revealed little sub-clonal selection. Likewise, individual 
putative sub-clonal drivers were largely consistent with benign/neutral effects. Simulations were 
used to test for overall evidence of subclonal selection in the spatial data, identifying 8/26 such 
instances. 
 
Overall, this is a very interesting study of a cutting-edge dataset, which uses multiple different 
approaches to evaluate important questions about selection and plasticity. The findings of little 
phylogenetic signal in the gene expression and little evidence of sub-clonal selection, demonstrated 
through multiple different analyses, are very compelling and work to the strengths of this dataset. 
The statistical analyses are generally rigorous and well described. Given the key findings are 
null/neutral (but important!), my primary concerns are whether these results are actually indicative 
of a null/neutral architecture or are just underpowered, as well as some lack of clarity on the various 
selection analyses. 
 
Comments: 
 
* It is interesting that CMS/CRIS classifications were generally not homogenous, indicative of ITH of 
molecular subtypes. However it is not clear how much of this is due to (a) biological heterogeneity 
versus (b) uncertainty in the classification itself. Can it be shown that the findings are consistent with 
(a) vs (b), or otherwise comment on the plausibility of these two explanations. What would the 
molecular classifications look like for a "pseudo-bulk" analysis where all measure from a tumor are 
merged and then classified. Finally, assuming this molecular subtype ITH is really biological, how 
does this fit in with the broader observation of that gene expression appears to be largely neutral 
and carry little phylogenetic signal? Should molecular subtype ITH also be interpreted as a largely 
neutral process with subtypes not conferring selective advantage? 
 
* Conventional eQTL analyses typically regress out many latent factors of expression (Principal 
Components or PEER factors, see PMC3398141 and GTEx Consortium workflow for example) which 
accounts for a large fraction of variance and generally increases power. However, the analysis in this 
manuscript only included covariates for Purity and Tumor/Normal. It is thus important to investigate 
whether adding latent factors as covariates or regressing them out of the expression has an impact 
on the results. It was also not clear if MSI cases were excluded from this analysis or if a covariate for 



 

 

 

MSI status should be added. 
 
* There are several claims that somatic SNVs do not influence gene expression (e.g. "Thus, while 
most somatic SNVs do not cause a direct change in cis gene expression") but it seems just as likely 
that the study was underpowered to detect all such changes. Can the authors evaluate the statistical 
power to detect SNV -> eQTL effects and either confirm that the study is sufficiently well powered to 
rule out such effects or clarify what effect size range they are well powered to rule out. 
 
* It is surprising and interesting that non-coding somatic mutations had generally stronger effect 
sizes than coding variants. Here again, is this a consequence of different statistical power; for 
example, fewer non-coding somatic events in a typical enhancer than a typical gene means the 
effect sizes in the former must be higher to be detectable. 
 
* It's somewhat unclear how to reconcile the dN/dS analysis finding no significant subclonal 
selection ("For subclonal variants, we found no evidence of subclonal selection for truncating 
variants (dN/dS~1) and missense mutations had dN/dS slightly higher than 1 although the difference 
was non-significant, suggesting that only a small subset of putative CRC drivers mutations were 
actually under positive selection in the growing tumours") with the simulation results that 8/26 
tumors had strong evidence of subclonal selection and an additional 4 had some evidence of 
subclonal selection. This is made more confusing by the claim that "dN/dS analysis on the IntOGen 
driver gene list in neutral 
versus selected tumours confirmed the computational modelling results" which seems to contradict 
the previously quoted statement (although none of the blue lines in Figure 4O appear statistically 
significant, so unclear which claim is right) There's a big difference between no significant selection 
and 12/26 tumors having evidence of selection. Are the simulation-based results more sensitive than 
dN/dS or could they possibly be inflated? Are they diverging model results evidence of widespread 
subclonal selection on non-coding variants (which dN/dS cannot evaluate) or the presence of 
weak/mini-drivers? 
 
* It would be interesting to see if the coding eQTL genes also showed evidence of selection by dN/dS 
analysis. As the authors note, eQTL signal alone is not evidence of selection. 
 
* Pagel's lambda was used to quantify the phylogenetic signal, but I believe this statistic can be 
strongly effected by branch lengths even when the overall tree structure is similar. Can it be ruled 
out that lack of phylogenetic signal is not due to noise in the RNA/WGS data and is robust to the 
choice of scaling/normalizing the RNA-seq data? 
 
* In addition to testing for neutrality using dN/dS, there are orthogonal approaches that evaluate 
the Variant Allele Fraction spectrum (see: Williams et al. Nat Genet PMID 29808029 or Salichos et al. 
Nat Comms PMID 32024824). Given the focus of this manuscript on apparent neutrality, it would be 
helpful to confirm using one of these orthogonal statistical approaches. 
 
* It's not clear what the ATAC-seq analysis is showing and it is presented very tersely. ATAC-seq is 
introduced, but then the focus is on differentially expressed genes; then SCAAs are mentioned in 
one sentence (though the term is never actually defined) but what "analogus analysis" was actually 



 

 

 

carried out is not explained and the findings are not explained. 
 
* Given the overall observations of neutrality, can the authors comment on whether there is any 
utility to collecting additional spatial data in untreated primary CRCs? 
 
* A 1% FDR cutoff was selected to call eQTL genes which is reasonable, but it would be helpful to 
also report the estimated fraction of non-null effects (i.e. the Storey \pi statistic). It would also be of 
interest to know how many eQTL genes are detectable at a 10% FDR, which is the more liberal 
threshold typically used in conventional eQTL scans. 
 
* The abstract mention of "eQTLs" reads somewhat confusingly as if a conventional germline eQTL 
analysis was carried out, I recommend modifying this to something like "somatic eQTLs" to make the 
distinction clear. 

 



Referee #1 (Remarks to the Author): 
 
Househam, Heide et al. submit here a manuscript exploring the impact of genetic variation 
on transcriptomic intra-tumoral heterogentiy (tITH). The group use matched multi-regional 
WGS, RNAseq and ATACseq from 17 invasive carcinoma to understand the control of tITH. 
The manuscript forms part of a broader study using the same (and additional adenoma and 
normal) samples that provides greater granular detail and explanations of the ‘big bang’ 
theory previously published. In this submission, the authors initially describe the degree of 
tITH and cluster this according to both average expression and degree of variance. 
Leveraging matched WGS data the authors conclude that RNA expression is neither strongly 
heritable nor related to genetic ancestry. Next, the authors seek to understand the 
phenotypic consequence of somatic driver mutations through dN/dS analysis of their multi-
regional WGS data. Interestingly, they conclude that most driver mutations have limited 
‘phenotypic consequence’ and demonstrate limited selection. To further explore these 
observations the authors next apply complex computational modelling of tumour spatial 
growth and sub-clonal expansion. They find strong correlations between the model and 
their real-world data which allows them to accurately infer the evolutionary consequence of 
somatic driver mutations. Strikingly, neutral evolution appears dominant with only a third of 
tumours showing strong evidence of subclonal selection. Finally, the authors use samples 
with matched ATACseq and RNAseq data in tumours displaying sub-clonal selection and 
highlight recurrent alterations in focal adhesion pathways. 
 
This is an impressive dataset, that for the first-time permits dissection of some truly 
fundamental aspects of tumour evolution and phenotype. The authors should be applauded 
for the scope of this study.  
 
We thank the reviewer for their accurate precis of our study and for their exceptionally 
positive assessment of our work. 
 
The manuscript is well written and figures are of a reasonable quality however some suffer 
from too much detail and small font size making it difficult to read. Data generated appear 
high quality and the authors seem to have taken much care in quality control. The highly 
complex narrative flow is decent through most of the manuscript although the latter section 
using ATACseq seems somewhat disconnected and limited in depth. Crucially, whilst this 
reviewer finds these data and analyses to be reliable, I find some of the conclusions and 
even some premises difficult to fully accept at present. This is perhaps reflective of the 
innovative focus of this study which has never been addressed before in this depth and for 
which terminology may be early in acceptance. 
 
We appreciate this feedback on the presentation and have taken care to improve the 
presentation in this revision. Specifically, we have attempted clearer and more consistent 
use of terminology and made a clear link to our sister paper, under review at the same 
journal, which is focused on analysis of the ATAC-seq data (page 3, comment 1.0, text in 
red). We have edited the figures to improve legibility. 
 
The discussion of evolutionary concepts, and the choice of words to describe them, is 
discussed in response to the reviewer’s specific comments below. We are grateful for the 

Author Rebuttals to Initial Comments:



input about how best to communicate the ideas. 
 
Major comments: 
 
1. I think there is a fundamental question surrounding plasticity and variance that needs to 
be addressed. The authors state in their abstract “Using spatially-resolved paired whole 
genome and transcriptome sequencing, we find that the majority of intra-tumour variation 
in gene expression is not strongly heritable and therefore is plastic.” I am not fully convinced 
that that just because a transcriptome is not heritable it has to be plastic. This reviewer 
would interpret ‘plastic’ as being variant and capable of change/reversion. Surely, different 
‘normal’ tissues have varying degrees of plasticity – for example the gut most would regard 
as plastic and the CNS less so, both however have transcriptional heterogeneity (variance). 
Both also have non-heritable gene expression. Further, the analyses the authors are 
performing are based on a single time point so how can they be confident that these read 
outs do or don’t change over time and if they can what is the sensitivity of this? Whilst this 
may well be semantics, I think this issue requires clarity. 
 
2. Similarly, in the discussion the authors state “This points towards phenotypic plasticity 
the ability of a cancer cell to change phenotype without underlying heritable (epi)genetic 
change to be a common phenomenon in CRC.”. The authors seem to be linking 
transcriptional variance with phenotypic plasticity in this paragraph. Is this not conflation? 
There is therefore an important definition that this reviewer is unclear on – are the authors 
defining phenotype as the degree of selection advantage within the tumour or the 
transcriptional pattern or both? Is it truly possible to infer such a highly dynamic process 
from these forms of analysis that rely on evolutionary inference based on MRS? 
 
3. In a related point to #1 I think it would be useful to provide context to the transcriptomic 
analyses. There is little description of the degree of variance in normal tissue. Given how 
much detail is known about phenotype and plasticity in normal colonic tissue is it not 
possible to link the tumour findings back to normal to provide both reassurance as to the 
authors’ conclusions and contextual framework. 
 
These are three thoughtful and important points that get to the core of the definition of 
‘plasticity’ and how we attempt to quantitatively measure it in our dataset. We address 
them together below.  
 
As the reviewer points out, we should aim to differentiate between gene expression 
variability or ‘transcriptional noise’ and actual plastic transcriptional programmes that can 
be accessed by the cell without the need to wait for a genetic or epigenetic alteration to 
occur.  
 
The innovation in our study is to link the “temporal” information encoded in the 
evolutionary history (measured with whole genome sequencing and phylogenetics) with the 
current phenotype (measured foremost through gene expression). Thus, the definition of a 
plastic trait that we use in our study is “a phenotypic trait that varies independently of 
evolutionary history”. We do not include clonal selection in our definition of plasticity, but 
towards the end of our manuscript (see Results section “In vivo characterisation of the 



epigenome and transcriptome of selected subclones”) we did analyse the transcriptional 
programmes active in positively selected clones (now Figures S35 & S36), and assessed 
whether positively selected clones are enriched for heritable gene expression programmes 
(now Figure S37).  
 
We think that the reviewer’s comments refer to a definition of trait plasticity in which an 
organism (or cell) can change the trait within its lifetime, usually in response to some 
external stimulus. We could not, of course, perform direct temporal measurements of cell 
phenotypes in our patient samples so we could not directly assess plasticity as defined in 
this way. 
 
Nevertheless, whilst the two definitions are somewhat distinct, we consider that they are 
also in parts interrelated – for example a particular genetic mutation could “lock in” in a 
particular phenotypic trait, making that trait/phenotype then fixed over time and across 
generations even when the external stimuli vary. Our analysis is designed to detect these 
“locked in” events, and we were surprised to detect so few examples of them.  
 
In the revised manuscript we have now provided extra discussion around the definition of 
plasticity and what our analysis is capable of detecting. Specifically, we explicitly define 
phenotypic plasticity as gene expression changes that occurred independently of 
evolutionary history, potentially as a consequence of external stimulus from the tumour 
microenvironment. We added a short narrative about non-plastic traits being fixed through 
tumour evolution (comment 1.1, page 3, text in red). 
 
Further, to address the reviewer’s thoughtful comments, we now perform two additional 
analyses: (1) we explore gene expression variability in healthy colon to assess if plasticity is 
specific to cancer tissues, and (2) with respect to the reviewer’s definition of plasticity of 
gene expression changes within a cell lifetime, we attempt to assess how the 
microenvironment determines gene expression programmes.  
 
(1) Following the suggestion of the reviewer, in a new analysis we now compare the 
variability we observed in the tumour with the variation in expression in normal colon 
tissues.  
 
We accessed a single cell RNA-seq dataset derived from healthy intestine from Elmentaite et 
al. 2021 (PMID: 34497389). scRNA-seq data for colon gut epithelium was downloaded from 
https://www.gutcellatlas.org and filtered for cells from the colon in ‘Healthy adults’. This 
left 7 donors with a mean of 5,516 cells per donor (range 1,410-16,828). Expression data 
was normalised with Seurat and the mean expression within each donor was calculated. 
First, we assessed the set of genes identified as expressed in our cohort (new methods 
section 2.1). Figure R1 below (new Figure S1 in the manuscript) shows that genes which 
were moderately/highly expressed in our cancer glands have higher average expression in 
the normal single cell dataset compared to all other genes. Thus, as expected, Figure R1 
confirms that most genes which are expressed in tumours are also expressed in normal 
colon. 
 



 
Figure R1. Violin plot showing that genes identified as moderately/highly expressed in colon 
cancer glands are more highly expressed in normal colon cells from healthy adults than all 

other genes (Wilcoxon  p<1e-6). 
 
Next, we examined the variability of expression of these genes across patients (to assess the 
degree of transcriptional heterogeneity), analogous to our analysis in Figure 1 of our original 
submission. The mean and standard deviation of each gene’s expression within each donor 
was calculated. Then, genes were filtered and grouped according to the groups identified in 
Figure 1A of the original manuscript and plots were produced analagous to Figures 1B&C 
(see Figure R2 below and new Figure S2). 
 

 
Figure R2: Mean mean expression and mean standard deviation of genes in colonic single 

cells of healthy adults, split by gene group. 
 
The original analysis in Figure 1 identified four groups, the most notable of which was Group 
2 which had the highest intra-tumour variability of gene expression in our cancers and was 
enriched with genes involved in cancer-related pathways (Figure 1B-D), making it a set of 
candidate plastic genes. In contrast (as shown in Figure R2B) normal colonic cells appear to 
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have significantly less variability in the expression of these cancer-related Group 2 genes. 
This indicates that there is a set of genes that show increased transcriptional diversity in 
tumours but it is not normally heterogeneous in normal tissues, and hence their variability 
in cancer does not derive from intrinsic transcriptional noise. This is suggestive that these 
group 2 genes could represent gene expression programmes that enable plasticity in 
cancers.  
 
Contrastingly, in tumours, we observed group 1 genes showed less diversity of expression 
than group 2 genes, whereas in normal cells we observed the reverse. Group 1 genes are 
enriched for phylogenetic signal in tumours (heritable patterns of gene expression), 
providing examples of how tumour evolution can also simultaneously act to restrict gene 
expression heterogeneity. 
 
We now discuss these data in the main text (comment 1.1-1.3 – First Part, page 3, text in 
red). 
 
(2) We assessed the impact of tumour microenvironment as an external stimulus that drives 
gene expression (i.e. as a stimulus that potentially drives plastic switching of gene 
expression programmes). There were two parts to this new analysis:  
 
First, we noted that our samples were collected from four spatially-distinct regions of the 
tumour (“around the clock face”), and made the assumption that the tumour 
microenvironment was different in each of the four tumour regions. We then tested the 
degree to which gene expression in our tumour glands was a consequence of 
microenvironment by assessing the correlation between gene expression and tumour 
region. 
 
We calculated Euclidean distance matrices on the genes from gene groups 1-3 (n=8368) and 
performed complete hierarchical clustering for each tumour with at least 5 RNA-seq 
samples (n=17). The resulting dendrograms are plotted in Figure R3 (new Figure S14), with 
sample names, nodes and branches coloured according to region-of-origin, alongside the 
associated expression heatmaps. In Figure R3, some tumours were found to have perfect 
correlation between tumour region and gene expression (e.g. tumours C518 and C554) 
while others demonstrated a complete lack of association (e.g. tumours C542 and C560). 
The majority of tumours lay between these two extremes; some clustering of samples by 
region to varying degrees.  



 
Figure R3. Hierarchically clustered dendrograms of 17 tumours based on the expression of 
genes from Groups 1-3 (n=8368), with matching heatmaps. Colours of the sample names, 

nodes and branches of the dendrograms correspond to the tumour region; A = red, B = blue, 
C = Green, D = purple. 

 
In order to quantify the space-gene expression correlations we constructed a permutation 
test. For tumours with at least 10 samples (n=11) cophenetic distance matrices were 
extracted from the dendrograms plotted in Figure R3. The sum of all cophenetic distances 
between samples from the same tumour region was then calculated to get a metric of 
expression correlation with region for each tumour. To determine the significance of this 
metric, sample names for the cophenetic distance matrix were randomly relabelled and the 
mixing statistic recalculated 10,000 times, and we evaluated if the observed data was more 
extremely clustered than the random permutations. 4/11 tumours had significant 
associations between sample gene expression and region-of-origin (see Figure R4 and new 
Figure S15). These analyses were consistent with the notion that (unmeasured) variations in 



the microenvironment between tumour regions were a determinant of gene expression 
heterogeneity in some, but not all, tumours.  
 

 
Figure R4. Permutation test for correlations between gene expression and sample region-
of-origin. Red dashed lines show the empirically observed value of the statistic, and the blue 

histogram the computed null distribution. P-values are FDR-adjusted. 
 
Supporting this analysis, we next explored whether immune/stromal contamination 
differences explained gene expression differences between regions. The analysis is detailed 
in response to Reviewer 2, comment 3. We found that immune infiltration differences 
between samples are significantly associated with expression differences, but that only a 
small component of the gene expression heterogeneity is explained by non-tumour 
contamination (R2=0.219). 
 
From these analyses we conclude that the microenvironment does often influence gene 
expression.  
 
Second, we examined whether or not glands with similar gene expression phenotypes 
tended to be closely genetically related. We exploited the fact that we observed physical 
intermixing of clones across the tumour regions, meaning that two glands that were close 
together in physical space were not necessarily close genetic relations. In a tumour where 
clonal intermixing was prevalent, if gene expression were plastic and determined by the 
microenvironment, then we would expect little relationship between genetic ancestry and 
overall gene expression patterns.  
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Phylogenetic relatedness was compared to expression-based clustering in the 8 tumours 
used for the phylogenetic signal analysis. For each tumour using matched DNA-RNA samples 
only, Euclidean distances were calculated based on the expression of 8368 genes in gene 
groups 1-3, and samples underwent complete hierarchical clustering. The resulting 
dendrograms (and associated expression heatmaps) were plotted against the corresponding 
phylogenetic trees (Figure R5 and new Figure S11). 
 
 
 
 

 
Figure R5. Phylogenetic tree versus expression-based clustering. The dendrogram on the 
left of each panel is the mutation-based phylogenetic tree, while samples on the right are 
clustered according to gene expression. Dotted lines show matching samples and samples 

are coloured according to region-of-origin. 
 



Figure R5 shows that close genetic relations do not necessarily have similar gene expression-
based profiles. There are some instances when a phylogenetic clade almost exactly matches 
expression (e.g., region C of tumour C560) but many examples of samples clustering closely 
according to expression that are from distinct regions and phylogenetic clades.  
 
There was one example of clonal intermixing in the phylogenetic tree corresponding to gene 
expression clustering by spatial region (region D in tumour C559 where two samples are in 
region A’s clade, two samples are in region B’s clade, and all four samples cluster closely on 
the dendrogram). We note that our ability to detect these arguably clear examples of gene 
expression plasticity in response to microenvironmental differences was limited by the 
number of samples where we had been able to successfully obtain high quality matched 
DNA and RNA.  
 
We then performed a second analysis that compared the cohort-wide average correlation 
between genetic ancestry and gene expression relatedness. Specifically, we assessed 
dendrograms of clustered gene expression data alongside genetic phylogenies and 
calculated the frequency at which descendent samples on dendrograms and phylogenies 
respectively were found in different tumour regions. This was quantified by our “intermixing 
score”, previously only for computed for DNA-based phylogenetic trees (see Figure S13 of 
the original manuscript, now S31 in the revised manuscript, and “Intermixing scores” in 
methods section 4), and now also computed on the gene expression dendrograms (shown 
above in Figure R3). We then assessed the correlation between these expression intermixing 
scores and the previously calculated genetic intermixing scores, finding that the two 
measures were not significantly correlated (Figure R6 and new Figure S13). Thus, on average 
gene expression heterogeneity is not well explained by genetic ancestry. 
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Figure R6. Scatter plot comparing intermixing scores calculated using the WGS-based 
phylogenetics trees versus gene expression-based hierarchically clustered dendrograms. 

 
Taken together, these two analyses further demonstrate a general lack of genetic control of 
gene expression in colorectal cancers.  
 
In summary then, these new analyses indicate a frequent influence of the tumour 
microenvironment on gene expression patterns, and provide further demonstration that 
genetic ancestry is only infrequently associated with gene expression. We think these data 
provide good support to our conclusion that gene expression programmes are frequently 
plastic in CRC, and enabling adaption to heterogeneous microenvironments. 
 
We now present the new analysis in the revised version of the manuscript and clarify the 
distinction between plasticity and transcriptional noise throughout the paper (page 3 & 8, 
comment 1.1-1.3, text in red and new Figures S1, S2, S11 and S13-15). In addition to the 
above analyses, we now also provide a plot showing the WGS-based phylogenetic trees and 
expression-based hierarchically clustered dendrograms side-by-side for all tumours with at 
least 5 samples (n=17). See Figure R7 and new Figure S12. 
 
 
 



 
Figure R7. WGS-based phylogenetic trees plotted side-by-side with expression-based 

hierarchically clustered dendrograms for the 17 tumours with at least 5 RNA-seq samples. 
Dotted lines show matching samples and samples are coloured according to region-of-origin. 
 
4. The ATACseq potion of the manuscript appears incomplete in analysis and doesn’t 
integrate well into the manuscript. The authors have understandably mainly chosen to focus 
on those tumour subclones showing a selection advantage but what are seen in those that 
do not? Indeed, more generally what is the epigenetic contribution to tITH, at least in 
regards to chromatin accessibility? Surely, this could be addressed using data the authors 



have generated? 
 
We do appreciate the point raised by this reviewer. The reason why we did not focus more 
on the ATACseq data is because that is the central topic of our sister paper, which is under 
review in the same journal (Heide, Househam et al.). We now highlight this in the revised 
manuscript  – see page 3, comment 1.4, text in red. 
 
Minor comments: 
 
1. CMS and CRIS calling p3. These are quite striking results that call into question the entire 
validity of these sub-types. If this is true then how is it that these subtypes are capable of 
defining clinically relevant groups based on single biopsies? Also, why do the authors feel 
that CRIS and CMS don’t correlate well when this has previously been shown not to be the 
case? 
 
We note that intra-tumour heterogeneity of CMS and CRIS subtypes has previously been 
reported in the literature (Dunne et al. 2016; PMID: 27151745, Sirinukunwattana et al. 
2021; PMID: 32690604), as has the discordance between CRIS and CMS classifications 
(Dunne et al. 2017; PMID: 28561046, Isella et al. 2017; PMID: 28561063). We have extended 
our discussion about this point in the revised version of the manuscript (page 4, comment 
1.5, text in red). 
 
In terms of defining clinically-relevant groups, we note that transcriptional subtypes 
correlate strongly with information provided by existing molecular features already in the 
clinic, such as immune infiltration, RAS/RAF pathway mutations and microsatellite instability 
(Dientsmann et al. 2017; PMID: 28050011). We suspect such features are typically “clonal” 
in a tumour (certainly KRAS mutations and MSI status are almost always clonal), and so the 
gene expression subtypes can be useful for these features.  
 
The most obvious mechanistic explanation of subtype heterogeneity and disagreement 
between classification schemes is varying levels of stromal/immune cell contamination. It is 
well known that a strong transcriptional determinant of the subtype is the stromal cells, 
which is variable between tumour regions (quantified in our data in response to reviewer 2 
point 3). While CRIS subtyping is based only on the cancer transcriptional component (Isella 
et al. 2017; PMID: 28561063), we suggest that the expression of these genes is also 
influenced by microenvironmental cells.  Indeed, we note that the analysis shown in original 
Figure S2C (now Figure S4C) does reveal correspondence between CMS and CRIS but, as 
reported, this correspondence was weak. Previous studies that compared CMS to CRIS also 
found limited overlap, driven by strong CMS dependence on stromal infiltration (see Figure 
4G of Isella et al. 2017; PMID: 28561063 and Dunne et al. 2017; PMID: 28561046).   
 
2. p6. The negative correlations of SCNAs with expression change (10%) is interesting. The 
authors speculate that this may be related to dominant-negative activity. This requires 
further attention and confirmation to ensure that this is not a technical error and better 
understand this result. 
 



We agree that this was an interesting and unexpected finding. We observed a significant 
negative correlation between copy number and gene expression in our multivariate analysis 
for 81 genes (81/1163 genes with a significant association between expression and copy 
number; 6.96%). To check for a technical error, we ran a new univariate analysis (i.e., 
Expression ~ CNA) on the 81 negative CNA association genes. The CNA coefficient was found 
to always be below zero and a significant FDR-adjusted p-value was found for 63/81 genes 
(77.8%).  
 
A possible mechanism here could be that these genes act as transcriptional repressors of 
themselves in a negative feedback loop. Unfortunately, no gene list of transcriptional 
repressors has been curated and so this hypothesis could not be tested. We note that this 
idea is consistent with research in cell lines which found that single-chromosomal gains can 
function as tumour suppressors (Sheltzer et al. 2017; PMID: 28089890).  
 
We appreciate our analysis here is fairly superficial. We would prefer to leave the data in 
the manuscript, but could remove it if the reviewer feels strongly.  
 
3. The DepMap analysis (p8) is quite superficial and this reviewer is not certain that linking 
this quite artificial cell line derived dataset to their real world data is helpful.  
 
We agree that the field should not over-interpret the link between cell line data and patient 
sample biology. Nevertheless, we do think that DepMap provides a rare example of 
functional data about the consequence of cancer gene manipulation, which makes a useful 
reference point for our assessment of driver mutation “driverness”. 
 
It is worth noting that the CRISPR screens conducted by DepMap were designed to identify 
negatively selected or lethal loss of function (LOF) alterations. Specifically due to the short 
expansion period of cells (approx. 10 days) the power to detect positive selection of tumour 
suppressor gene (TSG) LOF is lower compared to negatively selected mutations. Further, 
most of the screened cell lines underlying the considered DepMap dataset have 
mutated/non-functional TSGs, whose knock-down does not provide further selective 
advantage. In addition, heterogenous on-target efficacy of gene targeting single-guide RNAs 
might also have (cryptically) influenced results. Nevertheless, it remains the case that the 
most essential of oncogenes in DepMap, namely KRAS and PIK3CA, corresponded to 
subclonal expansions in our cohort, with KRAS in tumour C539 as the clearest example.  
 
We further expand on this point in the revised version of the manuscript (page 14, comment 
1.7, text in red). 
 
4. I cannot fully review the validity of the computational model used in this study as it is 
outside of my area of expertise however, I would be interested to know why a ΔAIC of >4 
was used? Further how does the model take into account cooperative as well as more 
accepted competitive interactions between subclones? 
 
The value of ΔAIC!  used is consistent with accepted interpretation: conventionally, models 
with a ΔAIC! < 2 are considered to have substantial support, and those with a ΔAIC! < 4 to 
have strong support (Burnham & Anderson 2004). In line with this we chose a ΔAIC! < 4 to 



identify cases in which data supported more than one model. We now better clarify the use 
of ΔAIC! < 4 in the revised version of the manuscript (page 12, comment 1.8a, text in red). 
 
Our model does not explicitly consider cooperative interactions between subclones. While 
extremely interesting, such interactions are significantly more complex to model than the 
(relatively simple) framework we have presented. We note that our current model (of 
competitive evolution) can reproduce the observed data with surprisingly high accuracy 
(e.g., Figure 4A-L). We note that our use of the AIC regularization scheme, part of the 
statistical model fitting procedure, would strongly penalize against more complex models 
and prefer simpler models (unless the complex model explained the data enormously 
better). In other words, it is very unlikely that our phylogenetic tree-based inference scheme 
can access sufficient information in our data to discern cooperative effects between 
subclones. We describe these modelling limitations in the revised version of the manuscript 
(page 12, comment 1.8b, text in red).  
 
5. I am uncertain why the adenoma samples present in the wider EPICC study have not been 
included here. Surely it is important to define whether the evolutionary principles proposed 
in this submission are conserved (or not) at an earlier time in tumour development? 
 
We agree that an equivalent analysis of adenomas would be interesting but unfortunately 
(with the exception of the one patient with the large, advanced adenoma – C516) RNA-
sequencing was not carried out on the adenoma samples. We clarify this in the revised 
version of the manuscript (page 16, comment 1.9, text in red). In future work we hope to be 
able to collect a large cohort of adenomas and then to explore genotype-phenotype in 
premalignancy. 
 
6. Does cytosol specific RNAseq bias towards specific transcripts compared to whole cell 
RNAseq? 
 
To specifically address this comment in our data, we compared the expression values of 
normal colorectal tissues generated as part of the TCGA project (whole cell-seq) with those 
generated by our single crypt isolation protocol (cytosol-seq). As shown in Figure R8 below, 
the correlation of expression values between the two cohorts is very high (R>0.85).  
 
Notably for genes with lower expression (i.e., CPM<2) in the TCGA cohort some deviations 
appear to exist. We argue this most likely stems from the reduced amount of stromal 
contamination in our data: these genes are lowly expressed in the TCGA cohort but not 
expressed at all in our data and so are largely derived from non-epithelial cells. 
 
One could argue that the gene expression quantification from our study is a more relevant 
measure of gene expression that whole-cell data, as translation takes place outside the 
nucleus. We note that the normal tissue reference we used was generated from the same 
patients we collected tumours from, and was profiled with the same exact protocol, so 
there is no risk of technical bias here. Nevertheless, we note that whole single cell 
sequencing and nucleus-only sequencing produces highly comparable data, suggesting that 
there is little quantitative difference between cytosolic and nuclear RNA transcripts (Ding et 
al. 2020; PMID: 32341560). 



 
 

 
Figure R8. Correlation between gene expression in TCGA normal colon samples vs our 

normal samples. 
 
This analysis and associated figure are included in our related paper under review in the 
same journal, which discusses the methodology in more detail (“Single gland multi-omics” 
and Figure S2 in Heide, Househam et al. 2022). 
 
7. Does the sampling of purely glandular structures bias the transcriptomic analysis? How 
reflective are the glandular samples of more traditionally sampled bulks? 
 
Please see the answer to the preceding comment, which addresses the issues of both 
cytosol-specific and gland-based RNA-seq data. 
 
8. Some of the supplementary figures have overlapping gene annotations which should be 
tidied up. 
 
We thank for the reviewer for pointing out this formatting error (in original Figure S10). We 
have now corrected this in new Figure S24. 
 
 
 
  



Referee #2 (Remarks to the Author): 
 
 
A. Summary of key results 
The manuscript leverages the sinlge-gland multiregion profiling of colorectal cancer by 
whole genome sequencing and RNAseq (generated for an accompanying manuscript) to 
infer the relationships between genetic and transcriptomic heterogeneity. The authors 
reconstruct phylogenetic trees to identify genetic ancestry and find that gene expression 
patterns do not strictly follow the genetic clustering of samples. Aiming to identify the true 
genetic drivers of CRC, the authors perform eQTL analysis and confirm that most mutations 
do not alter gene expression, while some of the subclonal genetic variants can affect gene 
expression. Interestingly, driver mutations identified in this study are predominantly clonal 
and very few cases of positive selection are identified. This can be attributed to higher-than-
before depth of the data (single-gland analysis and multiregional sampling). CRCs analyzed 
in this study are either under “neutral” evolution or show signs of clonal selection. The 
Authors generate a mathematical model recapitulating the observed phylogenetic trees, 
which allows to capture evolutionary consequences of subclonal driver mutations.  
B. Originality and significance 
The manuscript presents original data and a novel mathematical model for identification of 
the impact of subclonal driver mutations. 
C. Data and methodology 
The impressive depth of data generated for this manuscript allows for a more detailed 
characterization of clonal events in CRC. The quality of data and presentation is high and 
meets the standards of the journal. 
D. Appropriate use of statistics 
Yes 
E. Conclusions: robusteness, validity and reliability 
Overall, the conclusions are well supported by the presented analyses. Several points listed 
below could be improved. 
 
We thank the reviewer for their positive opinion of our work and are glad that they see 
value and novelty in our dataset and analyses. 
 
F. Suggested improvements 
1. The main conclusion of the study is that in the majority of the tumors there is no clonal 
selection for genetic traits. Is there evidence for punctuated copy number evolution and 
thus clonal diversification early in tumor evolution? 
 
This is an interesting aspect of tumour evolution that has previously been studied in 
colorectal cancer (Sottoriva et al. 2015; PMID: 25665006, Cross et al. 2018; PMID: 
30177804). In the sister manuscript where we report the copy number profiles for each 
sample (Supplementary Figure S3 in Heide, Househam et al.), we do observe the same 
patterns of copy number as in previous analyses, with cancer genomes characterised by 
high aneuploidy, in stark contrast with adenoma genomes that showed much fewer copy 
number alterations. At the same time, the per-gland copy number profiles were not as 
heterogeneous, supporting a Big Bang model of tumour growth characterised by an early 
punctuated transformation, possibly at the transition of adenoma to carcinoma, followed by 



less radical chromosomal instability. We have explored copy number alteration evolution in 
CRC extensively in another study (preprint, doi:10.1101/2020.03.26.007138) and so decided 
not to revisit this topic in this manuscript.  
 
2. Another major conclusion of this study is that phenotypic heterogeneity in CRC is mostly 
driven by non-hereditary changes. Is there a pattern of chromatin accessibility associated 
with distinct clades in the analyzed tumors that would support this conclusion? Fig. S18B 
shows only selected comparisons for 4 tumors. These data could be helpful in supporting 
the epigenetic plasticity as a source of transcriptomic heterogeneity. 
 
This is a great point. In the sister manuscript in revision in the same journal we have 
investigated the patterns of chromatin variability in the same set of cancers and found that 
most recurrent chromatin accessibility alterations were clonal in the tumour (Heide, 
Househam et al., Figure 3). However, we did find a correlation between genetic and 
epigenetic divergence, indicating that chromatin accessibility is, at least in part, heritable 
and so likely evolving in CRCs (Heide, Househam et al., Figure S33 and S34). Some of the 
SNVs identified in the eQTL analysis in this manuscript were indeed associated with a 
change in chromatin accessibility at the locus (Heide, Househam et al., Figure S25). To avoid 
replication, we refer to the sister paper to for these detailed analyses. 
 
On a more philosophical note, we view chromatin changes as more likely to be permissive of 
gene expression change, rather than directly causative of the change. This is because 
chromatin has to be accessible in order for RNA to be transcribed from DNA, but 
transcription only happens if the DNA is unmethylated, if transcription factors bind 
appropriately, and if the replication machinery is in-place. These latter three factors are all 
regulated by a multitude of genetic, transcriptional and post-transcriptional factors. 
Consequently gene expression does not necessarily follow when a somatic chromatin 
accessibility alteration (SCAA) occurs, and indeed in (Heide, Househam et al.) we do not 
observe a perfect correlation between SCAAs and gene expression.  
 
3. On a similar note, are the differences in gene expression between distinct 
glands/locations explained by differential infiltration by immune cells or presence of other 
stromal cells? CIBERSORTx could help infer cell types present in each sample. 
 
The gene filtering procedure (as described in new methods section 2.1) removes genes that 
were negatively correlated with purity to focus on epithelial cell intrinsic gene expression 
that could be determined by genetic changes in those same cells. 
 
However, it is still an interesting question whether immune/stromal infiltration explains 
expression differences between regions. As CIBERSORTx (Steen et al. 2020; PMID: 
31960376) was suggested by the reviewer, we used it to assess how immune infiltration 
impacted differences in expression between samples, specifically using the LM22 signature 
file comprising of 22 immune cell types (Newman et al. 2015; PMID: 25822800). Firstly, 
Euclidean distances between the vector of gene expression from pairs of samples in the 
same tumour were calculated based on the expression of the 8,368 genes used in the 
phylogenetic signal analysis. Euclidean distances were also calculated based on the absolute 
scores from CIBERSORTx (note that CIBERSORTx was run using all genes, i.e. including 



stromally-derived genes). The Euclidean distance between two samples based on overall 
gene expression was found to significantly correlate with the distance based on CIBERSORTx 
estimates (Figure R9A; p=3.46E-140, R2=0.219). Therefore there is a significant but weak 
association between immune and overall expression differences: almost 80% of the variance 
in gene expression based sample pairwise expression comparisons is not explained by 
CIBERSORTx-measured stromal/immune cell composition. 
 
Divergence in gene expression tended to be higher for between tumour-region comparisons 
as opposed to within-region comparisons for both epithelial genes and CIBERSORTX data: in 
other words the tumour microenvironment was more similar within than between tumour 
pieces. This trend was found to be significant for both metrics but was stronger for genes 
expressed in the epithelium (Figure R9B vs R9C). 
 

 
 

Figure R9. Analysis of the impact of immune infiltration on expression differences. (A) 
Scatter plot showing the correlation of Euclidean distances between samples when 



calculated from the expression of genes and CIBERSORTx estimates respectively. Each dot is 
a within-tumour sample pair, dots are coloured by pair type (i.e., within-region/between-
region). (B) Violin plot showing the Euclidean distance of pairwise samples based on gene 

expression, split by pair type (C) Violin plot showing Euclidean distances of pairwise samples 
based on CIBERSORTx estimates, split by pair type. 

 
This analysis is now shown in Figure S16 and discussed in the revised version of the 
manuscript (page 7, comment 2.3, text in red). This, together with the analysis detailed in 
Figures R3-7 demonstrate how expression heterogeneity is not stringently defined by either 
genetic ancestry or microenvironmental contexts. 
 
A caveat to consider for these analyses is the accuracy of immune/stromal deconvolution. 
To explore this, we ran multiple deconvolutions tools on this cohort (note all genes were 
used for this analysis) and compared their overall contamination/purity/infiltration values 
(Figure R10). 

 
Figure R10. Pairs plot demonstrating correlation between different deconvolution tools 
and DNA-based purity estimated by Sequenza (Favero et al., 2015; PMID: 25319062) for 
matched samples (n=157). Bottom left panels show spearman correlation coefficients and 

associated significance values (adjusted for multiple testing). The scores used from each tool 
were as followed; EPIC (Gfeller et al. 2020; PMID: 32124324) = “otherCells”, quanTIseq 

(Plattner et al. 2020; PMID: 32178821) = “Other”, CIBERSORTx (Steen et al. 2020; PMID: 
31960376) = Absolute summary score, xCell (Aran et al. 2017; PMID: 29141660) = 
“MicroenvironmentScore”, ESTIMATE (Yoshihara et al. 2013; PMID: 24113773) = 

“ESTIMATE” score. 
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While most tools showed a significant correlation between their summary scores, the 
strength of this correlation was relatively low. Additionally, only a few tools displayed a 
significant correlation with ground truth purity for matched DNA-seq samples (Figure R10; 
bottom row). The low strengths of these correlations seem particularly surprising 
considering that this is just based on the summary score for each tool and the individual 
immune/stromal cell type estimations are not considered. Figure R10 therefore reveals the 
inherent uncertainty in RNAseq deconvolution, which we briefly emphasise when discussing 
Figure R9 (i.e. Figure S16) in the main manuscript (comment 2.3, text in red, page 7). 
 
Minor points: 
1. Page 3: “Pathway group 4 (low average pathway enrichment and high heterogeneity) 
contained two pathways, epithelial- mesenchymal transition (EMT) and angiogenesis, and 
was enriched for “stromal” acting pathways.” Does this mean that those two pathways were 
classified into 4 pathway groups? If that is the case, it would be better to show more 
detailed pathway analysis, without the grouping. 
 
We apologise for the confusing language of this sentence. The pathways used in this analysis 
can be put into 5 distinct classes according to function (Immune/Oncogenic/Cellular 
Stress/Stromal/Other) – as originally implemented in Jiménez-Sánchez et al. 2020 (PMID: 
32483290). Three pathways (ANGIOGENESIS, APICAL_JUNCTION and 
EPITHELIAL_MESENCHYMAL_TRANSITION) comprise the “Stromal” class. In our analysis of 
pathway clustering based on mean enrichment and variation in enrichment we identified 
four groups, where “Group4” comprises of just EPITHELIAL_MESENCHYMAL_TRANSITION 
and ANGIOGENESIS pathways. Via a Fisher’s exact test, Group4 pathways are enriched for 
Stromal pathways (p=2.7e-03). We have re-worded this sentence to be clearer (page 4, 
comment 2.4, text in red). 
 
2. Fig. S2C – not sure what this shows – should one expect a correlation? Why is there 
proportion instead of correlation measure? A short discussion of the differences between 
these classifiers would be helpful. 
 
We examined the relationship between CRIS and CMS classifications and recapitulated the 
findings of Isella et al. 2017 (PMID: 28561063, specifically Figure 4G) and others (Dunne et 
al. 2017; PMID: 28561046) where limited associations were found. Figure S2C (now Figure 
S4C in the revised manuscript) specifically shows the proportion of samples from each 
tumour that were classified as each subtype. The language of “correlation” in the main text 
is therefore mis-leading and has been changed (page 4, comment 2.5, text in red).  
 
A strong transcriptional determinant of the subtype in CMS is the stromal cells, which is 
variable between tumour regions (quantified in our data in comment 2.3 above). While CRIS 
subtyping is based only on the cancer transcriptional component (Isella et al. 2017; PMID: 
28561063), we suggest that the expression of these genes is also influenced by 
microenvironmental cells. 
 
3. Fig. 1 Some labels (especially legends for G,H, L, M) are too small to read. 
 



We thank the reviewer for pointing this out. Label sizes have been increased in the updated 
Figure 1. 
 
4. Phylogenetic signal – since the Authors construct this on Groups 1-3 genes and omit 
group 4, which is less variable in expression. Would including these genes significantly alter 
the association with genetic ancestry? 
 
Group 4 genes had a low mean expression and relatively low intra-tumour heterogeneity of 
expression. Group 4 was also the only group to not be significantly enriched for a relevant 
meta-pathway (see Figure 1D). To avoid the identification of spurious associations (and 
associated decrease in power for the rest of our analysis due to multiple testing) we 
therefore excluded these genes from the analysis.  
 
Inclusion of Group 4 genes has a negligible impact on the proportion of phylogenetic genes 
per tumour (a median of 56 genes in group 4 have significant phylogenetic signal). We 
clarify this point in the revised version of the manuscript (page 6, comment 2.7, text in red). 
 
5. How is tumor cell purity affecting phylogenetic signal and genetic ancestry 
reconstruction?  
 
This is an important point. Purity is accounted for during genetic ancestry reconstruction.  
The reconstruction of the ‘core’ WGS based phylogeny was based on the presence/absence 
of called mutations in glands, where a mutation was called if the cancer cell fraction (which 
depends on the purity) was above 0.25 (see methods section 4 for details). The ML method 
we used to place low-pass WGS samples on the reconstructed tree also takes the purity of 
samples into account and estimates it from the SNV data. We found the estimated purity to 
be strongly correlated with those we derived from orthogonal analysis of copy-number 
alterations (Figure R11A). Leave-one-out validation using subsampled deep WGS samples 
also confirmed the ability to derive correct estimates across a wide range of purities (Figure 
R11B). 

 
Figure R11. Purity estimation of LP-WGS samples during tree reconstruction. A) MLE purity 

estimates vs CNA derived estimates of LP-WGS sample purity show a strong correlation 
between both measures. B) Leave-one-out validation with subsampled deep WGS samples 
demonstrates the ability of the MLE LP-WGS addition method to recover the sample purity 

from LP-WGS SNV data across a wide range of purity and coverage values.  
 



To assess how phylogenetic signal is affected by purity, the analysis was rerun with purity-
corrected expression. Briefly, the coefficients of how purity determines gene expression had 
already been calculated during gene filtering (i.e., the coefficient of Purity in Exp ~ Purity 
regression for all DNA matched samples; see new methods section 2.1) and samples used 
for phylogenetic analysis had matched DNA samples, allowing the use of accurate purity 
values. Each gene’s expression (first normalised by DESeq2’s variance stabilising 
transformation) was then normalised with the following equation (1). 
 

𝐸𝑥𝑝"#$ = 𝐸𝑥𝑝%&' +
(#$!')	+,-..!+!-/'
012"3-	"#$!')

  (1) 

 
Phylogenetic signal analysis was then undertaken with purity-corrected expression, the 
results of which are shown in Figure R12. 
 

 
Figure R12. Phylogenetic signal in colorectal cancer with purity-adjusted expression. (A) 

and (B) Phylogenetic trees and heatmaps of genes with significantly high phylogenetic signal 
for tumours C552 and C554 respectively. (C) Genes with recurrent phylogenetic signal across 
tumours, genes shown were found to have significantly high phylogenetic signal in at least 
three tumours (D) Results of chi-squared test showing whether gene groups were enriched 

for phylogenetic genes (genes with phylogenetic signal in at least one tumour). (E) Bar chart 
showing the impact of RNA-seq normalisation method on the percent of genes that were 



found to be phylogenetic per tumour. (F) Clustered bar chart showing in each tumour, of the 
genes found to be phylogenetic in at least one analysis, the percentage that were found in 

both, only Original or only Purity respectively. 
 
When comparing Figures R12A-D to Figure 1G-J the impact of purity appears to be minimal. 
For instance, the heatmaps of Fig R12A&B display similar patterns and clustering to their 
Figure 1 counterparts, and the number of recurrent phylogenetic genes is only slightly 
increased (n=84 vs 61 genes). Additionally, Figure R12E shows that the number of 
phylogenetic genes per tumour does not greatly differ between the two analyses in that 
some tumours, such as C544, C551 and C554, are increased for the purity analyses while 
others are decreased. Interestingly, the proportion of genes found to be phylogenetic is 
relatively high for most tumours (Fig R12F) indicating that correcting for purity has only a 
small impact on phylogenetic signal analysis. We report this analysis in new Figure S8 and 
clarify these comparisons in the revised version of the manuscript (page 6, comment 2.8, 
text in red). 
 
6. Fig. S3 shows Phylogenetic tree and associated gene expression pattern. It looks like in 
6/8 tumors the branching on the left corresponds to patterns in gene expression. Thus, the 
conclusion that “the expression level of most genes was not strongly related to genetic 
ancestry within the tumour” should be expanded to include the fact that in 6/8 tumors 
phylogenetic pattern is associated with expression of selected genes. 
 
We apologise for the lack of clarity on this point. This is now Figure S5 in the revised version 
of the manuscript and it shows, for each tumour, only those genes that were found to have 
phylogenetic signal. Therefore, all tumours (rather than just 6/8) show a phylogenetic 
pattern in “selected genes”. Our argument is that the number of genes which show 
significant phylogenetic signal in each tumour is a small proportion of the expressed genes 
analysed (median 2%, range 0.8-27.9%) or 166 genes (range 67-2335 genes) out of 8368 
genes analysed.  
 
X-axis labels have been added to the heatmaps of Fig S5 (as well as Fig 1G&H) to make clear 
how many genes are plotted for each tumour (corresponding to the number of genes that 
were significantly phylogenetic for each tumour). 
 
7. The fact that most CRC candidate drivers show no essentiality in DepMap dataset is very 
interesting. Could the authors provide a discussion of why that might be? Could it be that 
initiating mutations are not essential for full blown CRC? Is there any evidence of selection 
for genes identified as essential in DepMap within Authors’ data? 
 
This is indeed something that interested us too. On the divergence of reported driver genes 
versus those that validate in functional assays we can only speculate. However, we can’t 
exclude that many reported putative driver genes are either spurious (e.g., they are highly 
mutable and hence recurrent but not functional) or are drivers only in specific contexts and 
neutral in others or become no longer necessary once the tumour is established. Relatedly, 
some of these drivers may have occurred and been selected in normal tissue before 
tumourigenesis (Martincorena et al. 2019; PMID: 31138277). Finally, and perhaps most 
importantly, the CRISPR screens conducted by DepMap were designed to identify negatively 



selected or lethal LOF alterations, not positively selected events. Specifically due to the 
short expansion period of cells (approx. 10 days) the power to detect positive selection of 
TSG LOF is lower compared to negatively selected mutations. 
 
However, it is indeed the case that the most essential of oncogenes in DepMap, namely 
KRAS and PIK3CA, are associated with subclonal expansions in our cohort, with KRAS in C539 
as the best example. We further expand on this point in the revised version of the 
manuscript (page 14, comment 2.10, text in red). 
 
8. Fig. 3H&I: The resolution of BaseScope images is very low – please provide insets of 
higher magnification. It would also be helpful to see matching H&E staining and example of 
raw image that was used to score the glands as wt or mut. 
 
We apologise for this. The requested inserts have been added to the new Figure 3 in the 
revised manuscript. The high resolution “.tiff” files are also available as supplementary 
figures (new Figures S29 and S30, page 10, comment 2.11, text in red). 
 
G. References 
Appropriate 
H. Clarity 
The manuscript is well written and apart from minor points mentioned above, it is clearly 
presented. 
 
 
 
Referee #3 (Remarks to the Author): 
 
Summary: 
 
Housham et al. conducted a spatially resolved analysis of 27 CRCs assayed for RNA-seq and 
WGS focusing on tumor evolution and intra-tumor heterogeneity. WGS data was used to 
construct sample phylogenies for samples from each tumor. Interestingly, the expression of 
most genes did not correlate with the phylogeny. Next, the authors tested for association of 
gene expression with somatic alterations in an eQTL-like framework. ~1,400 genes had 
expression associated with somatic variation, which was largely driven by copy number. 
There was little evidence that somatic SNVs drive gene expression (though it was not clear 
whether this was due to low power to detect such events). A dN/dS analysis was carried out 
and revealed little sub-clonal selection. Likewise, individual putative sub-clonal drivers were 
largely consistent with benign/neutral effects. Simulations were used to test for overall 
evidence of subclonal selection in the spatial data, identifying 8/26 such instances. 
 
Overall, this is a very interesting study of a cutting-edge dataset, which uses multiple 
different approaches to evaluate important questions about selection and plasticity. The 
findings of little phylogenetic signal in the gene expression and little evidence of sub-clonal 
selection, demonstrated through multiple different analyses, are very compelling and work 
to the strengths of this dataset. The statistical analyses are generally rigorous and well 
described. Given the key findings are null/neutral (but important!), my primary concerns are 



whether these results are actually indicative of a null/neutral architecture or are just 
underpowered, as well as some lack of clarity on the various selection analyses. 
 
We thank the reviewer for describing our dataset as cutting-edge and are glad that they find 
our work interesting. We address their thoughtful critique in detail below. 
 
Statistical power in our study is an important and interesting point for discussion. We had 
previously looked at this aspect for phylogenetic signal (original Figure S5, now Figure S9) 
and have now investigated power for the eQTL analysis (see below, Figure R18 and new 
Figure S19). Overall, we are powered to see large effects that happened early during the 
tumour’s evolution, and we find that there are (perhaps surprisingly) few examples of this. It 
is, of course, possible that there are many small effects but if the effects are small then they 
could be argued to be of limited relevance to cancer biology. We’ve now made this clear in 
the discussion (page 15, comment 3.0, text in red). 
 
Comments: 
 
* It is interesting that CMS/CRIS classifications were generally not homogenous, indicative of 
ITH of molecular subtypes. However it is not clear how much of this is due to (a) biological 
heterogeneity versus (b) uncertainty in the classification itself. Can it be shown that the 
findings are consistent with (a) vs (b), or otherwise comment on the plausibility of these two 
explanations. What would the molecular classifications look like for a "pseudo-bulk" analysis 
where all measure from a tumor are merged and then classified. Finally, assuming this 
molecular subtype ITH is really biological, how does this fit in with the broader observation 
of that gene expression appears to be largely neutral and carry little phylogenetic signal? 
Should molecular subtype ITH also be interpreted as a largely neutral process with subtypes 
not conferring selective advantage? 
 
The reviewer has highlighted the interesting finding of CMS/CRIS heterogeneity. We note 
that subtype heterogeneity in CRC, particularly for CMS, has previously been shown. For 
instance, Alderdice et al. 2018 (PMID: 29412457) found heterogeneity for CMS but not CRIS 
and researchers originally involved in the CMS project have since acknowledged this and 
other biases (Fontana et al. 2019; PMID: 30796810). 
 
To examine the impact of classification confidence, we have plotted only those samples 
which were confidently classified (Figure R13A&B below), revealing similar levels of intra-
tumour heterogeneity to that seen in the original Figure S2A&B (now Figure S4A&B). 
Additionally, both classifications output a centroid distance score for each class (it was the 
classes with the minimal scores that were plotted in original Figure S2). Figure R13C&D 
shows a case study of tumour C550, revealing the centroid distance of each sample to all 
CMS and CRIS classifications respectively (i.e., smaller distance = greater match). 
  



 
Figure R13. Extra analysis of CMS and CRIS heterogeneity. (A) CMS assignments per 

tumour, only samples which could be confidently classified (FDR<0.05) are shown. (B) As for 
(A) but for CRIS. (C) Heatmap of centroid distances of each sample from CMS classes, black 

squares indicate the minimum (most likely) class for each sample for tumour C550, and stars 
represent significance of classification. (D) As for (C) but for CRIS. 

 
Figure R13A&B demonstrate that CMS and CRIS classifications are heterogeneous within 
tumours even when only using confidently classified samples. Meanwhile, Figure R13C&D 



display the degree of heterogeneity and uncertainty for each sample and class for tumour 
C550, underlining the fact that both classifications suffer from ITH bias due to widespread 
expression heterogeneity. 
 
In terms of the interrelationship between subtypes and tumour evolution, we think that 
gene expression programmes, including subtype defining genes, are frequently plastic and 
may often be driven by response to extrinsic factors (including microenvironment 
composition), rather than representing a clonally selected expression programme. This is 
examined in detail in response to reviewer 1 point 1. Indeed, using a computational 
approach we find only a few examples of a positively selected subclone and none of those 
clones clonally express a molecular subtype distinct to the rest of the tumour. 
 
We now report this new analysis in new panels Figure S4E-H and discuss it in the revised 
version of the manuscript (page 4, comment 3.1, text in red). 
 
* Conventional eQTL analyses typically regress out many latent factors of expression 
(Principal Components or PEER factors, see PMC3398141 and GTEx Consortium workflow for 
example) which accounts for a large fraction of variance and generally increases power. 
However, the analysis in this manuscript only included covariates for Purity and 
Tumor/Normal. It is thus important to investigate whether adding latent factors as 
covariates or regressing them out of the expression has an impact on the results. It was also 
not clear if MSI cases were excluded from this analysis or if a covariate for MSI status should 
be added. 
 
It is indeed a good point that germline variation between patients impacts gene expression. 
To address this, we compiled a binary matrix with the germline SNPs of the 19 patients 
involved in the eQTL analysis. We then performed principal component analysis to 
determine if there was any patient clustering by germline variation (see Figure R14). 
 



 
Figure R14. Plot of the top two principal components from PCA analysis of germline SNPs 

in patients used in the eQTL analysis. Patients are coloured according to MSI status. 
 
Figure R14 shows patients C516, C548 and C549 to be outliers in terms of germline variation 
compared to all other patients, although it should be noted that these top two principal 
components only account for 16.6% of the explained variation. The tumours are also 
coloured by MSI status, showing that principal component 1 slightly separates MSS from 
MSI tumours. Principal component 3 contributed 6.2% of explained variation and separated 
only C516 from the rest of the cohort (not shown). 
 
Overall, it is important to note that we cannot claim causality because some effects can be 
driven by germline variations (and/or other unassessed trans effects). We have now made 
these caveats clear in the revised version of the manuscript and demonstrate the above 
analysis in new Figure S20 (pages 8 and 15, comment 3.2a, text in red). 
 
In relation to MSI status, MSI tumours were included in the original eQTL analysis but this 
was not accounted for in the model: we apologise that this was not made clear. We 
therefore assessed the impact of MSI on the eQTL analysis by rerunning the analysis twice, 
first using only MSS tumour samples (n=149 across 15 tumours) and second using only MSI 
tumour samples (n=18 across 3 tumours). Out of the 29,949 mutation-gene combinations 
analysed in the original analysis, only two are present in both new analyses (i.e., only two 
mutations are shared in both an MSS and MSI tumour – KRAS G13D in MSI C548 and MSS 



C561, and an enhancer mutation for CAPG in MSI C516 and MSS C550) and neither are 
significant for the mutation in either new analysis. 
 
We then tested if mutations had different associations with cis gene expression between 
MSS and MSI cohorts. Given the large difference in sample size and therefore power, in 
order to make the two analyses comparable, only mutations with very large (>1.5) effect 
sizes were considered. The absolute mutation effect sizes of 73 eQTLs from the MSS analysis 
were therefore compared to 293 eQTLs from the MSI analysis.  
 

 
Figure R15. QQ plot comparing the quantiles of MSS and MSI significant mutation eQTL 

effect sizes. 
 
Figure R15 (and new Figure S21), showing the QQ-plot comparing these two datasets, 
reveals there is a difference in the distribution of effect sizes of significant eQTLs between 
the MSS and MSI analyses. Specifically, there are a higher proportion of MSI eQTLs at very 
large effect sizes in comparison to the MSS analysis. This is interesting as it suggests a 
difference in the genetic control of gene expression between MSS and MSI tumours and has 
been added to the revised version of the manuscript (comment 3.2b, page 8, text in red). 
 
We next sought to determine the effect of adding MSI as a cofactor in the eQTL analysis (see 
Figure R16 and new Figure S22). 
 



 
Figure R16. Genetic control of expression with eQTL analysis with MSI status added as a 

cofactor. (A) The number of genes with significant models for each data type. (B) The 
distribution of regression coefficients (effect sizes) for each data type. (C) and (D) Volcano 

plots highlighting selected genes that were significant for CNA and Mut eQTLs respectively. 
(E) In comparison to non-synonymous SNVs (NS), enhancer (Enh) mutations tended to have 

large effect sizes and a higher proportion of positive effect sizes. (F) The proportion of 
subclonal mutations that were associated with detectable changes in cis gene expression 

tended to be lower than for clonal eQTL mutations. (G) Visualisation of Fisher’s exact tests 
showing that gene-mutation combinations were more likely to be eQTLs if they were 

associated with recurrent phylogenetic genes (genes found to be phylogenetic in at least 3 
tumours) for subclonal mutations and that this was not significant for clonal mutations. 

 



When compared with Figure 2A-G in the original manuscript Figure R16 reveals that adding 
MSI status as a cofactor in the eQTL analysis has a minor effect on the results. Notably, 
there was a small decrease in the number of significant eQTL genes (Figure R16A&B), non-
coding enhancers were no longer significantly associated with increases in expression 
(p=0.08; Figure R16E) and subclonal mutations were no longer more likely to be eQTLs 
(p=0.17; Figure R16F). However, it should be noted that the direction of these effects did 
not change. 
 
Finally, the distribution of R2 values were compared between the original analysis (without 
MSI as a covariate) and the analysis with MSI as a covariate. Figure R17 (and new Figure S23) 
shows that, for models that were significant in both analyses, the R2 values were highly 
correlated (p<1e-16, R2=0.855). 
 

 
Figure R17. Scatter plot showing correlation of R2 values for models significant in both the 

original eQTL analysis and the analysis with MSI included as a covariate. 
 
It is worth noting that the R2 values tend to be higher for the analysis with MSI, and this was 
found to be significant (paired Wilcoxon signed rank test; p=1.071e-241). Therefore, including 
MSI as a covariate marginally increases the amount of variance explained by each model, 
but the R2 values are very highly correlated with the original analysis.  
 
Overall, our analyses show some evidence of differences in genetic control of gene 
expression between MSS and MSI tumours, but the main finding of a lack of genetic control 
applies to both subtypes. The above analyses and figures have been added to the revised 
version of the manuscript (comment 3.2b, page 8, text in red). 
 
* There are several claims that somatic SNVs do not influence gene expression (e.g. "Thus, 



while most somatic SNVs do not cause a direct change in cis gene expression") but it seems 
just as likely that the study was underpowered to detect all such changes. Can the authors 
evaluate the statistical power to detect SNV -> eQTL effects and either confirm that the 
study is sufficiently well powered to rule out such effects or clarify what effect size range 
they are well powered to rule out. 
 
This is a very important point. Since expression values were normalised into a z-score, the 
mutation regression coefficient of each model could be used as the effect size to calculate 
power. Effect sizes were binned into intervals (0.5-3 by 0.5, and also 3-7) and then power 
was calculated using pwr.f2.test from the pwr R package, where inputs were u(the number 
of coefficients)=4, v(degrees of freedom)=n-u-1 (where n=19, the number of tumours), 
sig.level=0.01 and f2 = regression coefficient of Mut in each model tested. 
 

 
Figure R18. Boxplot showing post-hoc power analysis of mutation eQTL effect sizes. Effect 

sizes have been binned and the number of models in each bin are shown at the bottom of 
the plot. 

 
Figure R18 shows the results of this post-hoc power analysis. Notably, we were powered to 
detect effect average sizes greater than 0.94 (standard deviation in expression change). 
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We now report this analysis in the revised version of the manuscript (new Figure S19) and 
discuss it in page 8, comment 3.3, text in red. We have also rephrased the sentence 
highlighted by the reviewer to emphasise we only had power to detect large effects. 
 
* It is surprising and interesting that non-coding somatic mutations had generally stronger 
effect sizes than coding variants. Here again, is this a consequence of different statistical 
power; for example, fewer non-coding somatic events in a typical enhancer than a typical 
gene means the effect sizes in the former must be higher to be detectable. 
 
We thank the reviewer for this important point. As we treat each mutation independently 
(i.e., we don’t assess the cumulative effect of multiple mutations in the same 
gene/enhancer region), we believe that there are no differences in power between the 
coding and non-coding mutation analyses. For reference, the percentage of non-coding 
(enhancer) mutations we analysed that were found to be eQTLs (2.7%; 744/27742) was 
slightly higher than the percentage for coding mutations (2.4%; 60/2504). 
 
* It's somewhat unclear how to reconcile the dN/dS analysis finding no significant subclonal 
selection ("For subclonal variants, we found no evidence of subclonal selection for 
truncating variants (dN/dS~1) and missense mutations had dN/dS slightly higher than 1 
although the difference was non-significant, suggesting that only a small subset of putative 
CRC drivers mutations were actually under positive selection in the growing tumours") with 
the simulation results that 8/26 tumors had strong evidence of subclonal selection and an 
additional 4 had some evidence of subclonal selection. This is made more confusing by the 
claim that "dN/dS analysis on the IntOGen driver gene list in neutral 
versus selected tumours confirmed the computational modelling results" which seems to 
contradict the previously quoted statement (although none of the blue lines in Figure 4O 
appear statistically significant, so unclear which claim is right) There's a big difference 
between no significant selection and 12/26 tumors having evidence of selection. Are the 
simulation-based results more sensitive than dN/dS or could they possibly be inflated? Are 
they diverging model results evidence of widespread subclonal selection on non-coding 
variants (which dN/dS cannot evaluate) or the presence of weak/mini-drivers? 
 
Apologies for the lack of clarity here. The difference between the two analyses is the cohort-
wide “ensemble” analysis (dN/dS) versus individual tumour analysis (mathematical 
modelling). We first tested selection with dN/dS on all subclonal truncating and missense 
variants across our cohort. No set was statistically significant, however whereas the 
truncating variants showed a point estimate of 1, the point estimate for the missense 
subclonal mutations was higher than one (Figure 2I). One may argue that we just do not 
have enough tumours to observe significance and that there are indeed some subclonal 
missense mutations that are under positive selection in some tumours that push dN/dS 
point estimate above one. We were frankly excited to find out that when we separated 
tumours classified as experiencing subclonal selection from tumours only with detectable 
neutral evolution using our spatial inference framework (which is completely orthogonal to 
dN/dS), the dN/dS subclonal value of missense mutations in tumours predicted to have 
selection indeed showed a point estimate higher than one. In contrast, the tumours 
predicted to be neutrally evolving confirmed a subclonal dN/dS point estimate value of 1 



(Figure 4O). In the revised version of the manuscript we now clarify this point better (page 
14, comment 3.4, text in red). 
 
* It would be interesting to see if the coding eQTL genes also showed evidence of selection 
by dN/dS analysis. As the authors note, eQTL signal alone is not evidence of selection. 
 
We thank the reviewer for this interesting suggestion. We have modified the dndscv 
package by Martincorena et al. (2017; PMID = 29056346) to allow us to calculate dN/dS 
estimates across eQTL sites for the coding genes and the results of this analysis are shown in 
Figure R19. In brief we found little difference between eQTL and non-eQTL variants, 
suggesting that eQTL mutations in coding genes were indeed not generally subject to strong 
positive selection. For clarity, we note that dN/dS is unable to capture any selection acting 
on non-coding eQTLs.  
 

 
Figure R19. dN/dS estimates of eQTL and non-eQTL mutations.  

 
* Pagel's lambda was used to quantify the phylogenetic signal, but I believe this statistic can 
be strongly effected by branch lengths even when the overall tree structure is similar. Can it 
be ruled out that lack of phylogenetic signal is not due to noise in the RNA/WGS data and is 
robust to the choice of scaling/normalizing the RNA-seq data? 
 
It is true that phylogenetic signal, when measured by Pagel’s lambda, is affected by branch 
length. It was for this reason that the median Lambda reported in the original submission, 
and associated p-value, was obtained from a set of 100 trees with varying branch lengths for 
the added lpWGS samples, to mitigate this issue (methods section 5, page 19). 
 
To assess whether the lack of phylogenetic signal result is robust to the choice of RNA-seq 
normalisation, the gene phylogenetic signal analysis was rerun with expression normalised 
by standard log transformation (i.e., log2(n+1) after normalisation for library size) as 
opposed to DESeq2’s variance stabilising transformation (VST) normalisation. Figure R20 
shows the percentage of expressed genes with phylogenetic signal for the original “VST” 
normalisation compared to the new “LogNorm” analysis. 
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Figure R20. The impact of RNA-seq normalisation method on phylogenetic signal analysis. 
(A) Bar chart showing the impact of RNA-seq normalisation method on the percent of genes 

that were found to be phylogenetic per tumour. (B) Clustered bar chart showing in each 
tumour, of the genes found to be phylogenetic in at least one analysis, the percentage that 

were found in both, only VST or only LogNorm respectively. VST=variance-stabilising 
transformation, LogNorm=log-normalisation. 

 
Figure R20A demonstrates that the choice of RNA-seq normalisation method has little effect 
on the percentage of genes which were found to be phylogenetic in each tumour. Even 
though the LogNorm analysis finds notably more phylogenetic genes for C554 and C559, 
fewer phylogenetic genes were found for the LogNorm analysis in tumours C544, C552 and 
C560. 
 
Lastly, it was checked that similar genes (i.e., not just similar numbers of genes) were being 
identified as phylogenetic between the two analyses (see Figure R20B). Figure R20B reveals 
that, for most tumours, of the genes identified as phylogenetic in at least one analysis, the 
majority were identified in both analyses. There was a high overlap between the genes 
found to be phylogenetic, indicating that the normalisation method has a negligible impact 
on the results. 
 
We now report this new analysis in the revised version of the manuscript (Figures S7), and 
discuss in page 6, comment 3.6, text in red. 
 
* In addition to testing for neutrality using dN/dS, there are orthogonal approaches that 
evaluate the Variant Allele Fraction spectrum (see: Williams et al. Nat Genet PMID 
29808029 or Salichos et al. Nat Comms PMID 32024824). Given the focus of this manuscript 
on apparent neutrality, it would be helpful to confirm using one of these orthogonal 
statistical approaches. 
 
Indeed, methods developed by us (Williams et al.) and others enable measurement 
selection from single samples using the VAF spectrum. As we previously showed in Williams 
et al. 2018 (PMID: 29808029) however, such methods work well in single large bulk samples 



(which capture a large portion of the spatial composition of the tumour and hence its clonal 
structure) sequenced at high depth (>100X). In this study, our experimental design is 
different and in fact was designed to overcome the limitations of our previously developed 
methodologies. We aimed to map the clonal structure using gland-by-gland analyses, so not 
to have the confounding factors of bulk sequencing. Instead of one large sample containing 
many different lineages sequenced at high depth (>100X), we now opted for many spatially 
segregated samples containing clonal lineages (crypts/glands), sequenced at moderately 
lower depth (35X). We note that having a median of 8.5 WGS samples per patient implies a 
total coverage per patient of ~300X at whole genome level. For these types of data we had 
to design an entirely new method that incorporated the spatial information in our data and 
that could do inference on multi-region WGS. Hence the spatial cellular automaton we 
present in this study. 
 
Interestingly, we note that phylogenetic trees do, in a way, capture the VAF distribution, as 
one could look at the clade size distribution as a measurement of the clonal architecture. 
Specifically, the phylogenetic trees in Figure 3 provided good estimates of time of 
emergence of different lineages (their Most Recent Common Ancestor – MRCA) measured 
relative to the total age of the tumour from trunk to leaves, calculated as the mean number 
of SNVs per lineage in the clade divided by mean SNVs per from root to leaf for every 
lineage. Moreover, for each lineage we had an estimate of its clade size because of the 
many samples per clade. Under neutral evolution, only early diverging lineages lead to large 
clade sizes, and in general clade sizes are predicted to follow a power-law ~1/f distribution 
generating more and more lineages at smaller and smaller frequency as the tumour 
expands. In comparison, positive selection causes late emerging lineages to undergo 
subclonal expansion, reaching clade sizes that are larger than expected under neutral 
evolution. The clearest example of this phenomenon in our cohort is case C539, where a 
late arriving subclonal lineage in region A underwent a large expansion (Figure 3H). The 
relationship between MRCA time 𝑡4567 (how far into the tumour’s past that a subclone was 
generated) and the size of the clade 𝑓 (expressed as the proportion of samples within the 
mutated clade) should follow under neutrality as: 
 

𝑡4567 = − 89	(;	.)
=

  (2) 
 
Where 𝜋 is the copy number of the locus and 𝜆 is the tumour growth rate, assuming 
exponential growth N(t) = 𝑒='. We calculated 𝑡4567 vs 𝑓 for every gene mutation, dividing 
into five categories:  
 

• non-cancer gene mutations (background) 
• synonymous mutations driver genes 
• missense mutations in driver genes scored as functionally benign by PolyPhen 
• missense mutations in driver genes scored as functionally deleterious by PolyPhen 
• truncating mutations in driver genes 

 
When examining our data, we found that most clones carrying driver genes mutations 
evolved as the predicted from neutral theory (equation 2; Figure R21). Clones with benign 
missense mutations as expected evolved neutrally, as did clones with truncating mutations 



in genes with dN/dS~1. A few noticeable exceptions of functionally deleterious missense 
mutations (which indeed showed slightly higher dN/dS) show signs of deviating from the 
neutral expectation, most of all KRAS G12C in C539, but also a subset of the subclonal 
PIK3CA mutations. Evidently, putative drivers such as FAT3 and FAT4, which are very large 
genes that show often benign mutations typically evolved neutrally, are unlikely to be true 
drivers in colorectal cancer. 
 

 
Figure R21. Relative clade size vs relative age of MRCA for each putative driver variant 
versus background (non-cancer genes) shows that probably only RNF43 in truncating 
mutations, and a few variants in KRAS and PIK3CA show clear signs of deviating from the 
neutral expectation in red.  
 
* It's not clear what the ATAC-seq analysis is showing and it is presented very tersely. ATAC-
seq is introduced, but then the focus is on differentially expressed genes; then SCAAs are 
mentioned in one sentence (though the term is never actually defined) but what "analogus 
analysis" was actually carried out is not explained and the findings are not explained. 
 
We do appreciate the point raised by this reviewer. The reason why we did not focus more 
on the ATACseq data is because that is the central topic of our related manuscript that is 
under review in parallel the same journal. In the revised version of the manuscript we clarify 
that, and we now make better reference to the paper focussing on chromatin accessibility 
(Heide, Househam et al.) – see page 3, comment 3.8, text in red. 
 
* Given the overall observations of neutrality, can the authors comment on whether there is 
any utility to collecting additional spatial data in untreated primary CRCs? 
 
This is a good point. We did struggle to find genetic subclonal driver mutations beyond a 
few usual suspects. The dN/dS analysis on subclonal variants also excludes extensive weak 



selection that we may have not picked up with the inference (e.g., minidrivers hypothesis). 
Nevertheless, we did find cases where the subclonal expansion was evident in the tree but 
was caused by an unknown event. We cannot exclude that such events may be numerous 
and require extensive spatial sampling. However, as we are now collecting prospective 
tissue at progression, such as liver metastatic deposits, we will be able to profile the clones 
that really count in terms of disease relapse and can go back to the original primary samples 
to see where we find those. This is the subject of future work however, as tissues are being 
still collected. We have extended the discussion around this topic in the revised version of 
the manuscript (page 16, comment 3.9, text in red). 
 
* A 1% FDR cutoff was selected to call eQTL genes which is reasonable, but it would be 
helpful to also report the estimated fraction of non-null effects (i.e. the Storey \pi statistic). 
It would also be of interest to know how many eQTL genes are detectable at a 10% FDR, 
which is the more liberal threshold typically used in conventional eQTL scans. 
 
Using the q-value R package (https://github.com/StoreyLab/qvalue), the estimate of the 
overall proportion of true null hypotheses (π0) was found to be 0.1007. This value is now 
reported in the revised version of the manuscript (page 7, comment 3.10a, text in red), and 
the method used to calculate it is reported in the methods (page 21, comment 3.10a, text in 
red). 
 
Using a threshold of 10% FDR has only a small impact on the number of detectable eQTL 
genes (Figures R22 & R23). Notably the significance of results initially downstream of the 
FDR cut-off remain the same, with the exception of the subclonal analysis in Figure 2G 
(Figure R22G), where, in the 10% cut-off analysis only subclonal eQTLs are significantly 
associated with phylogenetic genes (as opposed to ‘All’ and ‘Subclonal’ being significant in 
the 1% cut-off analysis). 
 
This analysis has now been reported in the revised manuscript (page 7, comment 3.10b, text 
in red). Replicas of Figures 2A-G and original Figure S7 (now Figure S17) with a 10% cut-off 
are available as Figure R22 and R23 respectively: 
 



 
Figure R22. Genetic control of expression with eQTL analysis using 10% FDR threshold. (A) 

The number of genes with significant models for each data type. (B) The distribution of 
regression coefficients (effect sizes) for each data type. (C) and (D) Volcano plots highlighting 
selected genes that were significant for CNA and Mut eQTLs respectively. (E) In comparison 
to non-synonymous SNVs (NS), enhancer (Enh) mutations tended to have large effect sizes 
and a higher proportion of positive effect sizes. (F) The proportion of subclonal mutations 

that were associated with detectable changes in cis gene expression was significantly lower 
than for clonal eQTL mutations. (G) Visualisation of Fisher’s exact tests showing that gene-



mutation combinations were more likely to be eQTLs if they were associated with recurrent 
phylogenetic genes (genes found to be phylogenetic in at least 3 tumours) for subclonal 

mutations and that this was not significant for clonal mutations or all mutations. 
 

 
Figure R23. Frequency of associations between gene copy number alteration and change 
in gene expression, by direction of correlation and average locus-specific copy number. 

Using 10% FDR-threshold eQTL analysis results. X-axis: direction of copy number-expression 
correlation. Y-axis: proportion of samples across the whole cohort with specified copy 

number. 
 
* The abstract mention of "eQTLs" reads somewhat confusingly as if a conventional 
germline eQTL analysis was carried out, I recommend modifying this to something like 
"somatic eQTLs" to make the distinction clear. 
 



We thank the reviewer for pointing this out and have made the modification in the abstract 
so that the sentence now reads: “A somatic expression quantitative trait loci (eQTL) analysis 
identifies…” (page 2, comment 3.11, text in red). 
 
 
In preparing the manuscript revision, we realised that the total number of significant eQTL 
genes was incorrectly reported in the main manuscript. This has now been corrected and 
does not change the interpretation of these data in any meaningful way. 



Referee #1 (Remarks to the Author): The authors have provided a comprehensive and 
thoughtful response to this reviewer’s queries. I am satisfied with all their responses and 
appreciate their openness in acknowledging the limitations of their study, which 
paradoxically makes their conclusions even the more impactful. This manuscript and the 
accompanying sister manuscript are a great advance for the field and provide interesting 
avenues for further study. I think the SCNA data and discussion should stay in place (Point 2) 
as whilst superficial it is an interesting finding. 

We thank the reviewer for their comments, and we appreciate the amount of time spent 
reviewing our manuscript, as well as their thoughtful insights. 

Finally, I think some sort of visual schematic describing their findings would be useful, either 
within the manuscript or perhaps as an accompanying commentary given the scope of work 
and novelty. This decision can clearly be editorially decided on. 

We agree that a visual schematic to describe our findings would be a good idea. Please see 
new Extended Data Figure 9 which depicts the main results. 

Referee #2 (Remarks to the Author): The authors addressed all comments very well. This is a 
very thorough study and the conclusions will be of high interest to many investigators in the 
field. 

We thank the reviewer for their useful critiques throughout the peer review process and for 
taking the time to review our manuscript. 

Referee #3 (Remarks to the Author): The authors have addressed my major comments 
thoroughly, and I appreciate the detailed and thoughtful additional analyses. I have two 
outstanding minor comments which do not influence the main findings:  

We appreciate the reviewer’s positive appraisal of our responses and thank them for their 
time spent reviewing our manuscript in such detail. 

With respect to Figure R14, my prior concern was regarding latent *non-genetic* factors of 
expression (cell type heterogeneity / data quality/ batch / etc). However my concerns are 
now largely addressed by CIBERSORTx analysis requested by Reviewer #2, which will also 
capture such latent heterogeneity. As for Figure R14, it's plausible that those 2-3 outliers are 
simply individuals of non-European ancestry. Perhaps the authors can cross-reference 
against self-reported race and, if it is the case, note this somewhere in their data/study 
description for future analyses. 

We apologise for misunderstanding the reviewer’s comment regarding latent factors, but 
we are glad that the CIBERSORTx analysis addressed their concerns. 

For Figure R14 (now Figure S16 in the edited manuscript), the reviewer makes a good point 
that the genetic ancestry of our patients could explain the afore mentioned outliers. 
Unfortunately, we did not collect self-reported race data for our patients and so can’t test 

Author Rebuttals to First Revision:



this hypothesis. We now note this as a potential confounder in the edited version of the 
manuscript (comment 1, pages 6 & 11, text in red). 

With respect to Figure R15 (new Figure S21), the authors say "Specifically, there are a higher 
proportion of MSI eQTLs at very large effect sizes in comparison to the MSS analysis" but I 
believe the figure is showing the opposite: for example, a very large MSS effect size (x-axis) 
of 6 corresponding to a less large MSI effect size (y-axis) of ~4.5. Please check that the axis 
labels match the text or perhaps clarify the phrasing in the text. 

We thank the reviewer for correctly pointing out mistake in Figure R15 (now Figure S17 in 
the edited manuscript). The axis labels are right, so the correct interpretation is that there 
are a higher proportion of MSS eQTLs at very large effect sizes in comparison to the MSI
analysis. This also makes more sense to us as MSI tumours should be more likely to have 
many low-effect mutations due to their defective mismatch repair mechanisms. The 
corresponding point in the text now reads: “SNVs in MSS tumours were more frequently 
associated with large effects on gene expression” (comment 2, page 6, text in red). 

Please also note that an error in the code to make Figure R15 (now Figure S17) has been 
rectified, leading to a slight adjustment in the figure that has no bearing on the 
interpretation. 

Additional note from authors 

Figure S16 in the original revised manuscript (now Figure S12 in the edited manuscript) was 
generated using analysis that erroneously included Group 4 genes. The new figure now only 
includes genes from Groups 1-3, which has had a negligible impact on the statistics for 
panels A and B (e.g. panel A R2 was 0.219, it is now 0.210) 
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