#### Expanding cross-presenting dendritic cells enhances oncolytic virotherapy and is critical for long-term anti-tumor immunity

**Supplementary Figure 1.** NDV enhances immunogenicity and susceptibility of tumor cells to T cell-mediated killing.

Supplementary Figure 2. DC activation and Ag-uptake upon Flt3L and NDV treatment.

Supplementary Figure 3. Cross-priming is dependent on type I IFN signaling.

**Supplementary Figure 4.** Characterization of the myeloid compartment upon Flt3L+NDV treatment.

**Supplementary Figure 5.** Characterization of immune cells and safety assessment upon Flt3L+NDV treatment.

Supplementary Figure 6. Characterization of T cells upon Flt3L+NDV treatment.

Supplementary Figure 7. Tumor Ag-specific T cell responses upon combination therapy.

Supplementary Figure 8. Batf3-DCs are critical for the anti-tumor effects of Flt3L+NDV.

Supplementary Figure 9. Example gating strategies for flow cytometry data.

Supplementary Table 1. Neoepitope peptides.

Supplementary Table 2. Antibodies used for conventional and spectral flow cytometry.

Supplementary Table 3. RT- qPCR primer sequences (5' to 3' end).



**Supplementary Figure 1. NDV enhances immunogenicity and susceptibility of tumor cells to T cell-mediated killing. a.** Representative dot plots showing NDV-infectivity and cell death in human SUDHL4 and murine A20 cells, and the effect on tumor cell growth (bar graphs), shown as number of surviving cells in culture, 24h, 48h and 72h post NDV infection. Repeated measures One-way ANOVA with Dunnett's multiple comparisons test, n=3 (SUDHL4) and n=4 (A20) independent experiments, each performed in duplicates. **b.** Heat

map of interferon stimulated and proinflammatory gene expression in human (SUDHL4, n=2) and mouse (A20, n=3) lymphoma cell lines 8h post NDV infection. c. Heat map showing expression (analyzed by flow cytometry) of MHC and co-stimulatory molecules on selected patient lymphoma cells (total, n=11; MCL, SLL/CLL and FL, n=3; DLBCL, n=2) 24h, 48h and 72h post NDV infection. Data shows the fold MFI compared to the No NDV condition. d-f. Uninfected or NDV-preinfected GFP<sup>+</sup> and mCherry<sup>+</sup> A20 cells (ratio 1:1) were cocultured with naïve JEDI splenocytes (at 5:1 or 10:1 splenocyte:tumor ratio). d. Representative histograms showing PD1 expression (n=5) and proliferation (n=2) in CD8<sup>+</sup> JEDI T cells analyzed after 5 days of co-culture. e. Contour plots showing tumor killing (day 5) in cocultures where free NDV was removed ("washed") or not ("unwashed") prior to splenocyte co-culture. Representative of 3 independent experiments. **f.** Contour plots showing activation of CD4<sup>+</sup> T cells upon 5 days of co-culture with NDV-infected tumor cells. Representative of 3 independent experiments. g. Uninfected or NDV-preinfected human SUDHL4 cells were cocultured with PBMCs in the absence or presence of the CD3-CD19 bispecific T cell-engager Blinatumomab (Blina). Representative contour plots (of n=4) show activation of CD4<sup>+</sup> T cells. h. GFP<sup>+</sup> A20 tumor-bearing mice were treated with intratumoral NDV and tumors were harvested and cryopreserved after 24h. Representative confocal images and quantification of cleaved caspase 3 (mean pixel intensity), from a total of 12-18 20x images per mouse (n=2); unpaired two-tailed t-test. All data are presented as mean ± standard deviation. MCL, mantle cell lymphoma; SLL, small lymphocytic lymphoma; CLL, chronic lymphocytic leukemia; FL, follicular lymphoma; DLBCL, diffuse large B cell lymphoma.



**Supplementary Figure 2. DC activation and Ag-uptake upon Flt3L and NDV treatment. a.** Uninfected or NDV-preinfected A20 cells were co-cultured with splenocytes from untreated or Flt3L-treated Balb/c mice and analyzed after 24h with spectral flow cytometry. The bar graphs show expression of activation markers on cDC1 (XCR1<sup>+</sup>), cDC2 (CD11b<sup>+</sup>) and pDC (B220<sup>+</sup>Ly6C<sup>hi</sup>) subpopulations. Repeated measures Two-way ANOVA with Dunnett's multiple comparisons test, n=3. **b.** CD14<sup>+</sup> monocytes isolated from PBMCs from healthy volunteers were treated with IL-4 and GM-CSF for 7 days to generate monocyte-derived DCs (moDCs). The moDCs were co-cultured with NDV-preinfected human SUDHL4 lymphoma cells and analyzed after 24h for MHC and co-stimulatory marker expression by flow cytometry.

Repeated measures One-way ANOVA with Dunnett's multiple comparisons test (n=4). c. The left graphs show the proportion of lineage (CD14, CD3, CD19, CD16, CD56)-negative HLA-DR<sup>+</sup>CD11c<sup>+</sup> cDCs and CD11c<sup>-</sup>CD123<sup>+</sup> pDCs in samples from lymphoma patients before (Pre) and after (Post) Flt3L treatment. Stacked bar graphs (right) showing fold expression (compared to the No NDV condition) of activation markers on cDCs and pDCs after co-culture with NDVpreinfected SUDHL4 cells. One-way ANOVA with Dunnett's multiple comparisons test (n=5). **d.** Cells were cultured as in (**a**) with or without 1 µM of the Axl inhibitor R428, or 20 µg/ml Clec9A-blocking or isotype control antibodies, and cDCs (Lin<sup>-</sup>CD11c<sup>+</sup>I-Ad<sup>+</sup>) were analyzed by flow cytometry for activation markers. The graphs show No NDV vs 10 MOI data analyzed in triplicates, representative from 2 independent experiments; One-way ANOVA with Dunnett's multiple comparisons test. e. Splenocytes from untreated and Flt3L-treated mice were cocultured with uninfected or NDV-preinfected GFP<sup>+</sup> A20 cells (1:1 ratio) for 24h and analyzed by flow cytometry. The bar graphs show tumor antigen (GFP)-uptake in different immune subpopulations (left) and in cDC1 (XCR1<sup>+</sup>) and cDC2 (CD11b<sup>+</sup>) subpopulations (contour plots and bar graphs to the right). Two-way ANOVA with Bonferroni's multiple comparisons test, n=5. All data are presented as mean  $\pm$  standard deviation.



#### Supplementary Figure 3. Cross-priming is dependent on type I IFN signaling.

**a-b.** NDV-preinfected MHC I-deficient  $\beta 2m^{-/-} A20s$  or  $\beta 2m^{-/-} GFP^+ A20s$  were co-cultured with bulk splenocytes from untreated or Flt3L-treated mice for 48h and CellTrace violet-stained anti-GFP JEDI T cells were added to the co-cultures. For testing APC-dependency, CD11c-depleted splenocytes were used, and for MHC I-dependence, MHC I (H2)-blocking or isotype control antibodies were added before co-culture (a). For pDC-dependency, splenocytes were depleted of B220<sup>+</sup>Ly6C<sup>hi</sup> pDCs, and for type I IFN-dependence, IFNAR-blocking or isotype control antibodies were added before co-culture (b). The representative histograms show CD45.1<sup>+</sup> CD8<sup>+</sup> T cell proliferation (a and b, left panel) or cytokine production (b, right panel) after 3-4 days. Representative from n=2 (CD11c-depletion), n=3 (anti-MHC-I), n=7 ( $\beta 2m^{-/-}$  A20s vs  $\beta 2m^{-/-}$  GFP<sup>+</sup> A20s) or n=2 (pDC-depletion and anti-IFNAR) performed in duplicates. **c.** NDV-preinfected SUDHL4 cells were co-cultured with PBMCs in the absence or presentative fraction (B (SEB) and T cells were analyzed after 3 days. The representative

(of n=5) contour plots show that NDV-infected tumor cells induce TNF and IFN- $\gamma$  production in CD4<sup>+</sup> T cells. All data are presented as mean  $\pm$  standard deviation.



Supplementary Figure 4. Characterization of the myeloid compartment upon Flt3L+NDV treatment. a. GFP<sup>+</sup> A20 tumor-bearing mice were treated with 9 doses of Flt3L starting from day 3 and two doses of NDV starting from day 8 post tumor inoculation and followed for tumor growth and survival. Graphs show individual growth curves, and numbers refer to mice with complete remission (CR) vs total number of mice (CR/total) in each group; n=10 mice per group, Log-rank (Mantel-Cox) test (survival). b-e. Tumors, TdLNs and spleens from mice treated as in Fig 3c were harvested and analyzed by spectral flow cytometry (n=5) b. Representative viSNE plots showing the intratumoral immune cell populations identified (top) and relative expression (color code indicates the mean fluorescence intensity) of Ly6c and PDL1 on the CD4<sup>+</sup>T cell population (bottom). c. Statistical differences within intratumoral and TdLN DC subsets (shown in Fig 3e) between treatments. One-way ANOVA (All DCs) or Twoway ANOVA (DC subsets) with Tukey's multiple comparisons test. d. Proportion of intratumoral monocytes (Monos), macrophages (M $\Phi$ ) and neutrophils upon treatment.

way ANOVA with Tukey's multiple comparisons test. **e**. The heat maps show the relative expression (mean MFI) of activation markers in intratumoral and TdLN pDCs. Two-way ANOVA with Holm-Sidak's multiple comparisons test (vs untreated). All data in bar graphs are presented as mean  $\pm$  standard deviation. \* p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001, \*\*\*\* p < 0.0001.



Supplementary Figure 5. Characterization of immune cells and safety assessment upon Flt3L+NDV treatment. a. Proportion and activation of splenic DCs in GFP<sup>+</sup> A20 tumorbearing mice treated with Flt3L and NDV as shown in Fig 3c. Analyzed by spectral flow cytometry (n=5). One-way ANOVA with Tukey's multiple comparisons test. b. Maintained body weight (percent change) in untreated and Flt3L+NDV-treated tumor-bearing mice. c. Analysis of serum liver and kidney enzymes shows slightly elevated ALT levels prior to NDV treatment, which equalizes after initiation of treatment, and a mild improvement (decreased levels) of ALP in the Flt3L+NDV cohort. b-c. Time points indicate days post tumor inoculation. Two-way ANOVA with Bonferroni's multiple comparisons test; n=6 mice per group. d. Activation of intratumoral NK cells in GFP<sup>+</sup> A20 tumor-bearing mice treated with Flt3L and NDV as shown in Fig 3c. Analyzed by spectral flow cytometry (n=5). One-way ANOVA with Tukey's multiple comparisons test. e. TdLNs and spleens from NDV-alone or Flt3L+NDV-treated GFP<sup>+</sup> A20 tumor-bearing mice were harvested and IFN-y, Tbet, CXCR3 and Ki67 were analyzed in Ly6C<sup>+</sup> vs Ly6C<sup>-</sup> CD4<sup>+</sup> T cells. Paired or unpaired (within and between treatment conditions, respectively) two-tailed t-test; NDV, n=6; NDV+Flt3L n=8. Representative from 2 independent experiments. All data in bar graphs are presented as mean  $\pm$  standard deviation.



#### Supplementary Figure 6. Characterization of T cells upon Flt3L+NDV treatment.

**a.** A20 lymphoma cells were treated with active or UV-inactivated NDV (iNDV), and NDVinfectivity and cell viability was analyzed by flow cytometry after 24h. **b.** TdLNs from untreated (ctrl), NDV- or NDV+Flt3L-treated A20 tumor-bearing mice were harvested and cocultured with CD11c<sup>+</sup> DCs: unstimulated (No stim) or pulsed with iNDV. NDV-reactivity in CD44<sup>+</sup>PD1<sup>+</sup> CD4<sup>+</sup> and CD8<sup>+</sup> T cells (measured as IFN- $\gamma$  production) was analyzed after 24h. The bar graphs show data from untreated (Untr: n=4), NDV (n=9) and NDV+Flt3L (n=7) groups pooled from 2 independent experiments. Paired, two-tailed t test (No stim vs iNDV) or one-way ANOVA with Tukey's multiple comparisons test for comparison between treatments. **c-f.** GFP<sup>+</sup> A20-tumor-bearing mice were treated with Flt3L and NDV. 1 × 10<sup>6</sup> CD45.1<sup>+</sup> anti-GFP CD8<sup>+</sup> T cells were adoptively transferred 2 days before NDV treatment and intratumoral T cells were analyzed after 5 days by spectral flow cytometry, n=5 mice per group. Bar graphs showing CD25 and CD69 expression in intratumoral CD8<sup>+</sup> and CD4<sup>+</sup> T cells (**c**) and IFN- $\gamma$ , TNF and Tbet expression in intratumoral endogenous (CD45.1<sup>-</sup>) and JEDI (tetramer<sup>+</sup> CD45.1<sup>+</sup>) CD8<sup>+</sup> T cells (**d**); one-way ANOVA with Dunnett's multiple comparisons test. **e.** CD19depleted tumor samples were treated for 6h with GFP-peptide (or control media, Unstim) and CD8<sup>+</sup> T cell IFN- $\gamma$  and Tbet expression was analyzed by flow cytometry; paired, two-tailed t test. **f.** Bar graphs showing expression of exhaustion markers on intratumoral CD8<sup>+</sup> T cells. All data in bar graphs are presented as mean  $\pm$  standard deviation.





to the "No pept" condition (right). **e.** TdLN cells isolated from A20 tumor-bearing mice treated with NDV alone or Flt3L+NDV were co-cultured with peptide pool 2- or Lrrk1<sub>mut</sub> peptide-pulsed DCs and T cells were analyzed after 24h. Representative contour plots and graph showing IFN- $\gamma$  production in CD44<sup>+</sup>PD1<sup>+</sup> CD8<sup>+</sup> T cells, normalized to the "No pept" condition. Paired, two-tailed t test (vs No pept.). NDV, n=8; Flt3L+NDV, n=7, pooled data from 2 independent experiments. All data are presented as mean ± standard deviation.



Supplementary Figure 8. Batf3-DCs are critical for the anti-tumor effects of Flt3L+NDV. a-c. GFP<sup>+</sup> A20 tumor-bearing Wt and Batf3<sup>-/-</sup> mice were treated with Flt3L and one dose of NDV as shown in Fig 3c, and tumors were analyzed by spectral flow cytometry after 24h. Representative viSNE plots showing that major intratumoral immune cell populations are not significantly altered (a), and bar graphs reflecting maintained Flt3L+NDV-induced early T and NK cell activation (**b-c**) in Batf3<sup>-/-</sup> mice compared to Wt mice. One-way ANOVA with Tukey's multiple comparisons test; n=5 mice per group. d. TdLNs from Flt3L+NDV-treated A20 tumorbearing Wt (n=4) and Batf3<sup>-/-</sup> (n=2) mice were harvested and co-cultured with isolated splenic CD11c<sup>+</sup> DCs: unstimulated (No stim) or pulsed with UV-inactivated NDV (iNDV). NDVreactivity in CD44<sup>+</sup>PD1<sup>+</sup> CD4<sup>+</sup> and CD8<sup>+</sup> T cells (measured as IFN- $\gamma$  production) was analyzed after 24h. e. GFP<sup>+</sup> A20 tumor-bearing Wt mice treated with anti-CD8, anti-CD4, anti-IFNAR or isotype control antibodies were treated with Flt3L and NDV as indicated and followed for tumor growth and survival. f. Blood was drawn from mice in (e) 1 week after completed treatment and analyzed for tetramer<sup>+</sup> anti-GFP CD8<sup>+</sup> T cells by flow cytometry. Bar graphs shows the percent anti-GFP T cells in the CD44<sup>+</sup> PD1<sup>+</sup> CD8<sup>+</sup> T cell population after intratumoral anti-IFNAR blockade (left) or in CD4-depleted mice (right). n=8 (IgG2b), n=9 (undepleted, IgG1, aIFNAR), n=10 (aCD4). Unpaired, two-tailed t test. All data are presented as mean  $\pm$  standard deviation.



Supplementary Figure 9. Example gating strategies for flow cytometry data. Gating strategy for (a) singlets and live cells (used in all analyses), and (b) for identifying B220<sup>+</sup> B cells, TCR- $\beta^+$  CD4<sup>+</sup> or CD8<sup>+</sup> T cells, and CD44<sup>+</sup>PD1<sup>+</sup> antigen-experienced (CD4<sup>+</sup> or CD8<sup>+</sup>) T cells (from live cells). c. Gating strategies for murine CD11c<sup>+</sup>I-Ad<sup>+</sup> cDCs and subsets (XCR1<sup>+</sup> cDC1 and CD11b<sup>+</sup> cDC2 subsets, upper panel) and B220<sup>+</sup>Ly6C<sup>+</sup> pDCs (also confirmed to be CD11c<sup>low</sup>I-Ad<sup>low</sup> and to express CD317 and CD11b, lower panel). d. Gating strategy for human CD11c<sup>+</sup>HLA-DR<sup>+</sup> cDCs and subsets (CD141<sup>+</sup> cDC1 and CD11c<sup>+</sup> cDC2) and CD123<sup>+</sup> pDCs. Lin, lineage.

|        | Peptide number | Neoepitope peptide (mutation)            | MHC Allele | Gene     |
|--------|----------------|------------------------------------------|------------|----------|
| pool 1 | 1              | YFLNLNSRSPEY <b><u>R</u>SLFIDDKLKKGV</b> | H-2-Dd     | Cul3     |
|        | 3              | SKLLIYGRPVYV <u>P</u> LIARRSSRFAGT       | H-2-Dd     | Fig4     |
|        | 4              | QKKSQNLAREER <u>V</u> GPPKDLASLGSL       | H-2-Dd     | Fbf1     |
|        | 5              | TPERREEKGTSP <b>R</b> DYRHYLRMWAKE       | H-2-Dd     | Tbc1d9b  |
|        | 6              | EYTTIHYKYMCN <u>G</u> SCMGGMNRRPIL       | H-2-Kd     | Trp53    |
| tide   | 7              | ARSTREMPSALS <u>S</u> LLLGVAYFKGQW       | H-2-Ld     | Serpinf1 |
| epi    | 8              | YASRFIQLVRSK <u>S</u> PKITYFTRYAKC       | H-2-Dd     | Plk4     |
| H      | 9              | RQREARKSGSKP <u>D</u> NFALISVSPHPS       | H-2-Dd     | Kmt2e    |
|        | 10             | WLKKQRSIVKNW <u>P</u> QRYFVLRAQQLY       | H-2-Dd     | Arhgap25 |
|        | 11             | LDLMGASQHSLR <u>P</u> LSWRRLYLSRAK       | H-2-Ld     | Orai3    |
|        | 12             | CVVWGGASYAVG <u>V</u> AALRGPMQLSLA       | H-2-Kd     | Tmem160  |
|        | 14             | NHEGEVNRARYM <u>L</u> QNPHIIATKTPS       | H-2-Kd     | Rbbp7    |
| ~      | 18             | LDLSANCLPSLP <u>F</u> IIPWGLINLKKL       | H-2-Ld     | Lrrk1    |
| g      | 19             | VVWGGASYAVGL <u>G</u> ALRGPMQLSLAG       | H-2-Kd     | Tmem160  |
| od     | 20             | SYVHKVPQFQPF <u>A</u> GSSMFAPLKTLP       | H-2-Ld     | Med131   |
| tide   | 21             | LSRAYLDLLTTW <b>P</b> TRLHYDLQKGAW       | H-2-Ld     | Fancf    |
| ep     | 23             | YSTCSPRKLSPF <u>C</u> SFASTELFHFHV       | H-2-Ld     | Tmem8b   |
| I      | 24             | LLGLVHRQDPRF <u>A</u> PQAELLLLRGGI       | H-2-Ld     | Tmem102  |
|        | 25             | DFCRHKVLPQLL <u>I</u> AFEFGNAGAVVL       | H-2-Ld     | Scyl1    |
|        | 26             | EFAEKRRPFQAN <u>S</u> ISLSNLVKHLGM       | H-2-Ld     | Gba2     |
|        | 27             | LGDPKPRPLPAC <b>R</b> HLSWAKPQPLNE       | H-2-Ld     | Mbtps1   |
|        | 28             | ETAPRLLRFPWS <u>L</u> KLTSSRPPEALM       | H-2-Ld     | Mark4    |
| ~      | 29             | ESTRAPLPESIS <u>L</u> PQANQAPSLEAM       | H-2-Ld     | Dnaaf3   |
| o      | 30             | FSFIISLLPLLM <u>F</u> FHNNMEYMITTW       | H-2-Ld     | mt-Nd5   |
| od     | 31             | IKEWAAYKGKSP <u>K</u> TPELVEALAFRE       | H-2-Dd     | Fam120a  |
| tide   | 33             | LDASAILDTAKY <u>G</u> ALVKVLGKHSRL       | H-2-Kd     | Lrpprc   |
| ep     | 34             | GPEVFPMSRLWD <u>A</u> RLRHYLGSRYDA       | H-2-Ld     | Dnaaf3   |
| I      | 35             | SLDERLFSPRLA <b>Q</b> PVASSQVLIVAA       | H-2-Dd     | Cbarp    |
|        | 36             | EEDSFSLCFPKR <u>I</u> TRNLQKMRMGKT       | H-2-Ld     | Brca2    |
|        | 37             | PWWRKRFVSAMP <u>N</u> APIPFRKKEKQE       | H-2-Ld     | Gapvd1   |
|        | 38             | WIVLREPITVSS <b>K</b> QMSHFRTLNFNE       | H-2-Kd     | Car2     |
|        | 39             | VDRRRQRSIFRALLHFVEGGECEEE                | H-2-Dd     | Ifrd2    |
|        | 40             | FCYRSYLREHYR <mark>M</mark> HSGEYPYKCEEC | H-2-Kd     | Zfp874b  |
| ol 4   | 41             | PALTEDGSPTAALGALHSPLPLSPL                | H-2-Ld     | Wiz      |
| od     | 42             | GAPVIYPAASNH <u>N</u> SLSFDGGLSGQG       | H-2-Kd     | R3hdm1   |
| tide   | 44             | SCRSCSHALAAH <u>I</u> SHLENVSEEEMD       | H-2-Kd     | Kat2b    |
| ep     | 45             | FGVLLWTKVLGP <u>F</u> IGVQVPQEKVER       | H-2-Dd     | Gstt2    |
| Ц      | 46             | GKSPAQILIRFQ <u>F</u> QRNLIVIPKSVT       | H-2-Ld     | Akr1e1   |
|        | 47             | VPEAPKETPTPQWKGLRSSALRPKR                | H-2-Ld     | Bptf     |
|        | 48             | SSLSNNSLKSSK <u>¥</u> SSLRTTSSTATA       | H-2-Kd     | Ankrd50  |
|        | 49             | WPDGQQDITEVT <u>N</u> RPLTAGTLFKNS       | H-2-Ld     | Myo1g    |
|        | 50             | GYHVSAKCFGYMMQQLMNLAGGAVV                | H-2-Dd     | Hdac7    |
|        | 51             | WAGLTDQHVKLP <u>L</u> GMTAENLAAKYN       | H-2-Ld     | Acaa2    |
| ol 5   | 52             | DGLPKNSPNNIS <u>A</u> ISNPPGTPRDDG       | H-2-Dd     | Ssbp3    |
| boi    | 53             | VKETCAACQKTV <b>F</b> PMERLVADKLIF       | H-2-Ld     | Limd2    |
| ide    | 54             | LEGLETMRQLRNPLRKSTVGRSLKD                | H-2-Dd     | Mpg      |
| ept    | 56             | EEVLTVQDLVDFFPVYRCLHIYSAL                | H-2-Ld     | Exoc6    |
| Ц      | 57             | MLLPSDVARLALGYLQQENLTST                  | H-2-Ld     | Npat     |
|        | 58             | EAIYFCALWYSNLF                           | H-2-Kd     | Iglv1    |
|        | 60             | ISLPSMIREIFAAFTRPLALLYENS                | H-2-Ld     | Rif1     |

## Supplementary Table 1. Neoepitope peptides.

| ý     | 61 | TTISKSGGDYAY <u>I</u> LEVYGSLPAFLK        | H-2-Dd | Slc7a5  |
|-------|----|-------------------------------------------|--------|---------|
|       | 62 | GQGPYQAMPQDM <u>A</u> NTPDMFSPDQSS        | H-2-Ld | Bc191   |
|       | 64 | GGLIILEPRFTG <u>G</u> TLAMLLNIPPQK        | H-2-Dd | Ppfibp2 |
| ol (  | 65 | GRPDNTGRGYVL <b>I</b> RILRRAVRYSHE        | H-2-Dd | Aars    |
| od a  | 66 | IIKEPVPDSGLL <u>G</u> LFQGQSPLTSC         | H-2-Ld | Isoc2a  |
| tide  | 67 | RRARDDCVYQVE <u><b>R</b></u> ERLKLKQLEEDK | H-2-Kd | Cep120  |
| ep    | 68 | NKEQVSQLLPEK <u>L</u> AEQLIRVYCKKK        | H-2-Ld | Samhd1  |
| ł     | 69 | RQNNDSDCGAFV <u>S</u> QYCKHLALSQPF        | H-2-Ld | Senp3   |
|       | 70 | LCRSKNMPKSTI <u>K</u> SALKTEKNKGIY        | H-2-Ld | Taco1   |
|       | 71 | ANNPYVLMVLYK <u>A</u> KVYNIQIRYQEE        | H-2-Kd | Lcp2    |
|       | 72 | DATLTQYVKWTN <u>G</u> KSLGGIEGCLSK        | H-2-Kd | Ttc38   |
|       | 74 | LSQKARQKTDVF <u>T</u> PDYIAGVSPFAE        | H-2-Kd | Nob1    |
|       | 76 | DPHRRPDFASIL <u>H</u> QLEALEAQVLRE        | H-2-Ld | Map3k11 |
| 7     | 77 | GLRSDELLGLTH <u>A</u> YSVRWSETSVEH        | H-2-Kd | Tm9sf1  |
| ol    | 78 | LYMGVSSLQGIQ <u>L</u> FDRLKLFGMPAK        | H-2-Dd | Slc4a8  |
| od a  | 79 | DKVDLLNQVDWN <u>A</u> WLYAPGLPPVKP        | H-2-Ld | Lta4h   |
| tide  | 80 | HILACAPSNSGA <u>G</u> LLCQRLRVHLPS        | H-2-Ld | Mov10   |
| Pep   | 81 | LHTAGGKGYFDA <u>P</u> ALAMDYRSLGFR        | H-2-Dd | Hey1    |
|       | 83 | ELDGAVGALMTT <u>L</u> GDLGLLEETLVI        | H-2-Dd | Arsa    |
|       | 84 | WRDAAYHKSVWR <b>R</b> VEAKLHLRRANP        | H-2-Kd | Fbx114  |
|       | 86 | SLGSSPALQLLM <u>S</u> TMESETEAAVPE        | H-2-Ld | Pprc1   |
|       | 87 | GVYDYLMYVGRV <u>G</u> FQVPDWLHHLLM        | H-2-Kd | Snx14   |
|       | 13 | SAVPVILPQAPS <u>A</u> PSYAIYLQPAQA        | H-2-Dd | E2f8    |
|       | 15 | LSISNIQPEDEA <u>M</u> YICGVGDTIKEQ        | H-2-Kd | Iglv3   |
| *     | 17 | MTRQCPPQESG <u>P</u> ALSGSVLAEAAV         | H-2-Dd | Dolk    |
| ol 8; | 22 | SSSGADRYLSIS <u>D</u> IQPEDEAIYICG        | H-2-Kd | Iglv3   |
| poc   | 59 | ASFSLGASAKLT <u>Y</u> TLSSQHSTYTIE        | H-2-Dd | Iglv3   |
| de    | 63 | YLSISNIQPEDE <u>P</u> IYICGVGDTIKE        | H-2-Kd | Iglv3   |
| ept   | 75 | WLTDNTYKYEDL <u>L</u> RVMGEIISALEG        | H-2-Kd | Ccnf    |
| P     | 85 | GYMDPTEPSFVA <u>V</u> VITIVFNPLFWN        | H-2-Kd | Pemt    |
|       | 89 | GADRYLSISNIQ <u>A</u> EDEAIYICGVGD        | H-2-Kd | Iglv3   |
|       | 90 | KHGFFVNPSDSVGVIAANIFSIPYF                 | H-2-Dd | Pgm2    |

\*Dissolved in DMSO

| Marker       | Fluorophore                | Clone              | Company        | Species    | Cat#     |
|--------------|----------------------------|--------------------|----------------|------------|----------|
| CD11c        | FITC                       | B-ly6              | BD Biosciences | anti-human | 561355   |
| CD123        | Brilliant Violet 650       | 6H6                | Biolegend      | anti-human | 306019   |
| CD14         | Brilliant Violet 570       | M5E2               | Biolegend      | anti-human | 301832   |
| CD14         | FITC                       | M5E2               | Biolegend      | anti-human | 982502   |
| CD141        | Brilliant Violet 605       | M80                | Biolegend      | anti-human | 344117   |
| CD16         | Alexa Fluor 700            | 3G8                | Biolegend      | anti-human | 302026   |
| CD19         | APC                        | HIB-19             | Biolegend      | anti-human | 302212   |
| CD19         | Pacific Blue               | HIB-19             | Biolegend      | anti-human | 302232   |
| CD19         | PE-Cv7                     | HIB-19             | Biolegend      | anti-human | 302216   |
| CD19         | PerCP-Cy5.5                | HIB-19             | Biolegend      | anti-human | 302230   |
| CD1c         | PerCP-eFluor 710           | L161               | eBioScience    | anti-human | 46001542 |
| CD20         | PE                         | 2H7                | BD Biosciences | anti-human | 556633   |
| CD25         | Brilliant Violet 785       | M-A251             | Biolegend      | anti-human | 356140   |
| CD3          | PE-Cv5                     | UCHT1              | Biolegend      | anti-human | 300410   |
| CD3          | PE-Cv7                     | UCHT1              | Biolegend      | anti-human | 300420   |
| CD3          | PerCP-Cv5.5                | UCHT1              | Biolegend      | anti-human | 300430   |
| CD4          | Alexa Eluor 700            | RPA-T4             | Biolegend      | anti-human | 300526   |
| CD40         | APC                        | 5C3                | BD Biosciences | anti-human | 555591   |
| CD40         | Brilliant Violet 711       | 5C3                | Biolegend      | anti-human | 334334   |
| CD56         | PerCP-Cv5 5                | 5 1H11             | Biolegend      | anti-human | 362506   |
| CD8          | Brilliant Violet 650       | PPA_T8             | Biolegend      | anti-human | 301042   |
| CD80         | Brilliant Violet 421       | 2D10               | Biolegend      | anti-human | 305222   |
| CD83         | Alexa Eluor 647            | HB15e              | Biolegend      | anti-human | 305316   |
| CD86         | Prilliont Violet 711       |                    | Biologend      | anti-human | 205440   |
| CD86         | DE Dazzla504               | IT2.2              | Biologond      | anti human | 205424   |
|              | Prilliont Violat 510       | 112.2<br>W6/22     | Diologend      | anti human | 211426   |
|              | Alava Eluar 700            | W 0/32             | Biologend      | anti human | 207626   |
|              | Alexa Fluor 700            | L245               | Diolegend      | anu-numan  | 307020   |
| IEN v        | PE-Cy/                     | L245               | Diologend      | anti-human | 502500   |
|              | FL<br>Drilliont Violet 711 | 45.D5<br>EU12 2017 | Diologend      | anti human | 220028   |
|              | DE                         | 20E 2 A 2          | Diologend      | anti-human | 329928   |
|              | PE                         | 29E.2A5            | Diolegend      |            | 529700   |
|              | Alexa Fluor 047            | MANISDS            | Diolegena      |            | 302910   |
| AXI<br>GD102 | APC                        | MAXL8DS            | eBioScience    | anti-mouse | 17108482 |
| CD103        | PE                         | 2e7                | Biolegend      | anti-mouse | 121406   |
| CDIIc        | Alexa Fluor 700            | N418               | Biolegend      | anti-mouse | 11/319   |
| CDIIc        | PE-Cy/                     | N418               | Biolegend      | anti-mouse | 11/31/   |
| CDIIc        | PE                         | HL3                | BD Biosciences | anti-mouse | 557401   |
| CDIIc        | Alexa Fluor 532            | N418               | eBioScience    | anti-mouse | 58011480 |
| CDIIc        | FIIC                       | HL3                | BD Biosciences | anti-mouse | 553801   |
| CD127        | APC-eFluor/80              | A/R34              | eBioScience    | anti-mouse | 4/12/182 |
| CD132        | PE                         | TUGm2              | Biolegend      | anti-mouse | 132306   |
| CD16.2       | Pacific Blue               | 9E9                | Biolegend      | anti-mouse | 149528   |
| CD169        | PE-Dazzle594               | 3D6.112            | Biolegend      | anti-mouse | 142424   |
| CD197/CCR7   | PE-Cy5                     | 4B12               | Biolegend      | anti-mouse | 120114   |
| CD25         | Brilliant Violet 785       | PC61               | Biolegend      | anti-mouse | 102051   |
| CD25         | Brilliant Violet 650       | PC61               | Biolegend      | anti-mouse | 102037   |
| CD25         | PE                         | PC61               | Biolegend      | anti-mouse | 102008   |
| CD25         | PerCP-eFluor 710           | PC61.5             | eBioScience    | anti-mouse | 46025182 |
| CD25         | Alexa Fluor 700            | PC61               | Biolegend      | anti-mouse | 102024   |
| CD3          | PerCP-Cy5.5                | 145-2C11           | Biolegend      | anti-mouse | 100328   |

## Supplementary Table 2. Antibodies used for conventional and spectral flow cytometry.

| CD3          | PE-Cy7               | 145-2C11  | Biolegend      | anti-mouse | 100320     |
|--------------|----------------------|-----------|----------------|------------|------------|
| CD3          | Brilliant Violet 421 | 145-2C11  | Biolegend      | anti-mouse | 100336     |
| CD317        | Brilliant Violet 605 | 927       | Biolegend      | anti-mouse | 127025     |
| CD4          | Alexa Fluor 700      | RM4-5     | Biolegend      | anti-mouse | 100536     |
| CD4          | Brilliant Violet 650 | RM4-5     | Biolegend      | anti-mouse | 100546     |
| CD4          | Brilliant Violet 785 | RM4-5     | Biolegend      | anti-mouse | 100552     |
| CD4          | FITC                 | RM4-5     | Biolegend      | anti-mouse | 100510     |
| CD4          | PE                   | RM4-5     | Biolegend      | anti-mouse | 100512     |
| CD4          | PE-Dazzle594         | GK1.5     | Biolegend      | anti-mouse | 100455     |
| CD40         | PE-Cy5               | 3/23      | Biolegend      | anti-mouse | 124617     |
| CD40         | PE-Cy7               | 3/23      | Biolegend      | anti-mouse | 124622     |
| CD40         | APC                  | 3/23      | Biolegend      | anti-mouse | 124612     |
| CD44         | Alexa Fluor 647      | IM7       | Biolegend      | anti-mouse | 103018     |
| CD44         | PE-Cy5               | IM7       | Biolegend      | anti-mouse | 103010     |
| CD45         | Brilliant Violet 750 | 30-F11    | Biolegend      | anti-mouse | 103157     |
| CD45.1       | Alexa Fluor 700      | A20       | Biolegend      | anti-mouse | 110724     |
| CD45.1       | Brilliant Violet 421 | A20       | Biolegend      | anti-mouse | 110732     |
| CD49b        | Alexa Fluor 647      | DX5       | Biolegend      | anti-mouse | 108912     |
| CD49b        | PerCP-Cy5.5          | DX5       | Biolegend      | anti-mouse | 108915     |
| CD49b        | Brilliant Violet 421 | DX5       | BD Biosciences | anti-mouse | 563063     |
| CD62L        | Brilliant Violet 570 | MEL-14    | Biolegend      | anti-mouse | 104433     |
| CD69         | APC                  | H1.2F3    | Biolegend      | anti-mouse | 104514     |
| CD69         | Alexa Fluor 700      | H1.2F3    | Biolegend      | anti-mouse | 104539     |
| CD69         | Brilliant Violet 510 | H1.2F3    | Biolegend      | anti-mouse | 104531     |
| CD8          | Alexa Fluor 700      | 53-6.7    | Biolegend      | anti-mouse | 100730     |
| CD8          | Brilliant Violet 480 | 53-6.7    | BD Biosciences | anti-mouse | 566096     |
| CD8          | Brilliant Violet 711 | 53-6.7    | Biolegend      | anti-mouse | 100748     |
| CD8          | PerCP-Cy5.5          | 53-6.7    | Biolegend      | anti-mouse | 100734     |
| CD8          | Pacific Orange       | 5H10      | Thermofisher   | anti-mouse | MCD0830    |
| CD8          | BV510                | 53-6.7    | Biolegend      | anti-mouse | 100751     |
| CD80         | Brilliant Violet 421 | 16-10A1   | Biolegend      | anti-mouse | 104726     |
| CD80         | V450                 | 16-10A1   | BD Biosciences | anti-mouse | 560523     |
| CD80         | PE-Cy7               | 16-10A1   | Biolegend      | anti-mouse | 104734     |
| CD86         | Alexa Fluor 700      | GL-1      | Biolegend      | anti-mouse | 105024     |
| CD86         | Brilliant Violet 650 | GL-1      | Biolegend      | anti-mouse | 105036     |
| CD86         | Brilliant Violet 421 | PO3       | BD Biosciences | anti-mouse | 740034     |
| Clec9A       | Brilliant Violet 711 | 10B4      | BD Biosciences | anti-mouse | 744513     |
| CTLA-4       | PE-Dazzle594         | UC10-4B9  | Biolegend      | anti-mouse | 106318     |
| CXCR3        | Brilliant Violet 650 | CXCR3-173 | Biolegend      | anti-mouse | 126531     |
| F4/80        | Brilliant Violet 421 | BM8       | Biolegend      | anti-mouse | 123137     |
| F4/80        | Brilliant Violet 711 | T45-2342  | BD Biosciences | anti-mouse | 565612     |
| F4/80        | Brilliant Violet 510 | BM8       | Biolegend      | anti-mouse | 123135     |
| Foxp3        | Alexa Fluor 647      | MF-14     | Biolegend      | anti-mouse | 126408     |
| Galectin-9   | PerCP-eFluor 710     | RG9-35    | eBioScience    | anti-mouse | 46-9211-82 |
| Granzyme B   | Alexa Fluor 647      | GB11      | Biolegend      | anti-mouse | 515406     |
| H2Kd         | PerCP-Cy5.5          | SF1-1.1   | Biolegend      | anti-mouse | 116618     |
| I-Ad         | Alexa Fluor 647      | 39-10-8   | Biolegend      | anti-mouse | 115010     |
| I-Ad         | FITC                 | 39-10-8   | Biolegend      | anti-mouse | 115006     |
| IFN-γ        | PE-Cy7               | XMG1.2    | Biolegend      | anti-mouse | 505826     |
| IFN-γ        | PE                   | XMG1.2    | Biolegend      | anti-mouse | 505808     |
| KLRG1        | Brilliant Violet 711 | 2F1       | Biolegend      | anti-mouse | 138427     |
| Ki67         | PerCP-efluor710      | SolA15    | eBioScience    | anti-mouse | 46569882   |
| Lag3 (CD223) | PE                   | C9B7W     | Biolegend      | anti-mouse | 125208     |

| Ly6A/E Sca-1           | Alexa Fluor 700      | D7        | Biolegend      | anti-mouse            | 108142 |
|------------------------|----------------------|-----------|----------------|-----------------------|--------|
| Ly6C                   | Alexa Fluor 700      | HK1.4     | Biolegend      | anti-mouse            | 128024 |
| Ly6C                   | Brilliant Violet 785 | HK1.4     | Biolegend      | anti-mouse            | 128041 |
| Lубс                   | BV421                | HK1.4     | Biolegend      | anti-mouse            | 128032 |
| Ly6C                   | PerCP-Cy5.5          | HK1.4     | Biolegend      | anti-mouse            | 128012 |
| Ly6G                   | Brilliant Violet 510 | 1A8       | Biolegend      | anti-mouse            | 127633 |
| Ly6G                   | Brilliant Violet 570 | 1A8       | Biolegend      | anti-mouse            | 127629 |
| MHC-Ib Qa-2            | Alexa Fluor 647      | 695H1-9-9 | Biolegend      | anti-mouse            | 121708 |
| OX40                   | Brilliant Violet 421 | OX86      | Biolegend      | anti-mouse            | 119411 |
| PD1                    | Brilliant Violet 421 | 29F.1A12  | Biolegend      | anti-mouse            | 135217 |
| PD1                    | Brilliant Violet 605 | 29F.1A12  | Biolegend      | anti-mouse            | 135219 |
| PDL1                   | Brilliant Violet 711 | MIH5      | BD Biosciences | anti-mouse            | 563369 |
| PDL1                   | PE                   | MIH7      | Biolegend      | anti-mouse            | 155404 |
| TCR-β                  | Alexa Fluor 700      | H57-597   | Biolegend      | anti-mouse            | 109224 |
| TCR-β                  | Brilliant Violet 421 | H57-597   | Biolegend      | anti-mouse            | 109230 |
| TCR-β                  | Brilliant Violet 570 | H57-597   | Biolegend      | anti-mouse            | 109231 |
| TCR-β                  | PE-Cy7               | H57-597   | Biolegend      | anti-mouse            | 109222 |
| Tim3                   | PE-Dazzle594         | B8.2C12   | Biolegend      | anti-mouse            | 134014 |
| TNF                    | APC                  | MP6-XT22  | Biolegend      | anti-mouse            | 506308 |
| TNF                    | Brilliant Violet 711 | MP6-XT22  | Biolegend      | anti-mouse            | 506349 |
| XCR1                   | Brilliant Violet 650 | ZET       | Biolegend      | anti-mouse            | 148220 |
| B220                   | Brilliant Violet 750 | RA3-6B2   | Biolegend      | anti-mouse/anti-human | 103261 |
| B220                   | Brilliant Violet 421 | RA3-6B2   | Biolegend      | anti-mouse/anti-human | 103239 |
| B220                   | PerCP-Cy5.5          | RA3-6B2   | Biolegend      | anti-mouse/anti-human | 103236 |
| B220                   | Brilliant Violet 711 | RA3-6B2   | Biolegend      | anti-mouse/anti-human | 103255 |
| B220                   | BUV496               | RA3-6B2   | BD Biosciences | anti-mouse/anti-human | 612950 |
| CD11b                  | APC-Cy7              | M1/70     | Biolegend      | anti-mouse/anti-human | 101225 |
| CD11b                  | APC                  | M1/70     | Biolegend      | anti-mouse/anti-human | 101211 |
| CD11b                  | PE                   | M1/70     | Biolegend      | anti-mouse/anti-human | 101208 |
| Tbet                   | Brilliant Violet 785 | 4B10      | Biolegend      | anti-mouse/anti-human | 644835 |
| Tbet                   | PE                   | 4B10      | Biolegend      | anti-mouse/anti-human | 644810 |
| donkey anti-rabbit IgG | Alexa Fluor 647      | Poly4064  | Biolegend      | anti-rabbit           | 406414 |

| Gene   | Forward primer sequence  | Reverse primer sequence | Species      |
|--------|--------------------------|-------------------------|--------------|
| CCL2   | TCGCCTCCATCATGAAAGTC     | TTGCATCTGGCTGAGCGAG     | Human        |
| CCL5   | CGGCACGCCTCGCTGTCATC     | GCAAGCAGAAACAGGCAAAT    | Human        |
| CXCL10 | GGAACCTCCAGTCTCAGCACCA   | AGACATCTCTTCTCACCCTTC   | Human        |
| IFNB1  | CAGCTCCAAGAAAGGACGAAC    | GGCAGTGTAACTCTTCTGCAT   | Mouse        |
| IFNB1  | TCTGGCACAACAGGTAGTAGGC   | GAGAAGCACAACAGGAGAGCAA  | Human        |
| IL6    | CTGCAAGAGACTTCCATCCAG    | AGTGGTATAGACAGGTCTGTTGG | Mouse        |
| IL6    | AGAGGCACTGGCAGAAAACAAC   | AGGCAAGTCTCCTCATTGAATCC | Human        |
| IL10   | GGGTTGCCAAGCCTTATCG      | TCTCACCCAGGGAATTCAAATG  | Mouse        |
| IL1B   | CTCGCCAGTGAAATGATGGCT    | GTCGGAGATTCGTAGCTGGAT   | Human        |
| ISG15  | GGTGTCCGTGACTAACTCCAT    | TGGAAAGGGTAAGACCGTCCT   | Mouse        |
| ISG15  | TCCTGGTGAGGAATAACAAGGG   | GTCAGCCAGAACAGGTCGTC    | Human        |
| MX1    | GACCATAGGGGTCTTGACCAA    | AGACTTGCTCTTTCTGAAAAGCC | Mouse        |
| MX1    | GTTTCCGAAGTGGACATCGCA    | GAAGGGCAACTCCTGACAGT    | Human        |
| STAT1  | TCACAGTGGTTCGAGCTTCAG    | GCAAACGAGACATCATAGGCA   | Mouse        |
| STAT1  | ATGTCTCAGTGGTACGAACTTCA  | TGTGCCAGGTACTGTCTGATT   | Human        |
| TNF    | AGAAACACAAGATGCTGGGACAGT | CCTTTGCAGAACTCAGGAATGG  | Mouse        |
| TNF    | ATGAGCACTGAAAGCATGATCC   | GAGGGCTGATTAGAGAGAGGTC  | Human        |
| F      | CCTTTCTTCTCTAGCAGTGGGAC  | TTGAGGACTGTTGTCGGTGAAGC | LaSota virus |

# Supplementary Table 3. RT- qPCR primer sequences (5' to 3' end).