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GhostKnockoff inference empowers identification of putative 
causal variants in genome-wide association studies



REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

He et al propose GhostKnockoff, a method for performing feature selection in GWAS using only 

summary statistics (and a reference panel). This work extends recent work that uses the "knockoff" 

technique but with individual-level data, resulting in a method that is more applicable (because in many 

cases, it is not possible to obtain individual-level data) and faster. 

I am impressed by the methods of this paper. I had not previously heard of the knockoff technique (to 

which end, I first read existing literature on the method, including this helpful article 

https://www.stat.cmu.edu/~ryantibs/journalclub/knockoff.pdf, and partly read the authors previous 

work https://www.nature.com/articles/s41467-021-22889-4 of which this is an extension). While 

extending from individual-level data to summary statistics is usually fairly straightforward, I believe this 

is the first example in this setting (i.e., for knockoffs, which are quite different to "conventional 

analyses"). Further, the authors appear thorough in their consideration of special cases (e.g., a method 

of meta-analysis for cohorts with overlapping samples, that appears novel). 

However, I am less impressed by the application. The main challenge is showing their results are 

meaningful - i.e., that the associations they declare are correct (true) or useful. However, this paper's 

first comparisons (from UKBB) are hard to interpret because they use False Discovery Rate (FDR) to 

define significant associations from their method, but FWER to define associations from the standard 

approach. The former is much less strict - I estimate the FWER threshold corresponds to a FDR of about 

0.05/50 = 0.001, much lower than the threshold of 0.1 they use for their new method (while the authors 

recognise this difference, it remains an important issue in my view). The authors argue that their results 

are more interesting because they are "more independent" (46% less variants within each locus), but I 

find this hard to appreciate. Saying this, I do appreciate that the nature of results from knockoffs and 

conventional GWAS are systematically different, which means it is possible the former are providing 

new information. 

Then for the AD example, it seems that the novel associations could mainly be because they are using 

more samples (they combine results from nine cohorts, then compare to results from only three 

cohorts, albeit I believe the largest three), instead of due to better methods. I appreciate they described 

the function / Phred score of the novel associations, although I see this as quite speculative. 

My personal strategy to demonstrate the method would be to apply your method to a subset of 

samples, and show that the hits you find are validated (also found or are marginally significant) when 

you increase the sample size (or use a larger, independent sample). This typically requires individual-



level data (e.g., UKBB data, so that you can create summary statistics corresponding to different subsets 

of individuals). Otherwise, you could instead use pseudo-summary statistics (see below). 

So in summary, I like the methods, but did not think the application was strong, because the 

comparisons were of fundamentally different methods (ie FDR vs FWER correction), and there was no 

attempt to replicate novel associations. 

Major comments 

1 - As I say above, the methods are generally convincing, but the application less so. 

2 - Many summary statistic methods can suffer, for example, when there are regions of high LD (eg the 

MHC). Was this an issue? More generally, were there ever convergence problems (eg with the 

optimization of the weightings?) or other issues common to summary statistics (eg mismatch of 

reference panel). 

Minor comments 

3 - In the methods, I believe Sigma is the SNP-SNP correlation matrix across the whole genome. But this 

is impractical to obtain (compute a 1M x 1M matrix). How therefore do you go about this? Do you divide 

the genome into blocks? Or is there a way to avoid explicitly computing Sigma. Further, for the multiple 

knockoffs, it seemed you had a pM x pM matrix (so M times bigger than above). How is this feasible? 

4 - The definition of independent loci (>200kb) is very unusual. A more common definition is 1Mb, or 

1cM, or 3Mb/3cm (usually with an r2jk threshold, of say 0.1). 

5 - I do not approve of reporting times across multiple CPUs - in my view, it is harder for fair comparison 

and can give misleading impression of time. In my view, it would be better to report times for one CPU 

(then you coudl add speed up through parallelization in brackets) 



6 - Page 3, Line 10 - p (no of snps) is not defined. Further, please define this (and other symbols) at the 

start of the methods (so that the methods can be standalone) 

7 - Could you perhaps summarize the advantage of knockoffs over making null test statistics, by 

sampling Z (tilda) score from N(0,R), where R is SNP-SNP correlation matrix (or equiv, the advantage of 

knockoffs with individual-level data versus permutation analyses). 

8 - P8 - L 14 "We applied GhostKnockoff separately to each of the 1,403 binary phenotype" - I think this 

should be "each of 1,403" (you have 1403 binary phenotypes, but it is not the case that UKBB contains 

exactly 1,403 phenotypes - sorry if this is a bit pedantic). Further, your paper text gave the impression 

you ran SAIGE yourself, which would be impressive, but only in data availability is it clear you instead 

used results from another group. 

9 - P8 - L 20 "Due to the relatively small sample size of the 1000 Genomes Project (503 individuals of 

European ancestry) used to estimate the LD matrices, we restrict the analyses to common and low-

frequency variants with minor allele frequency >1%." Wile I am fine with your threshold, is there ever a 

situation you would use lower threshold (as in, regardless of the sample size of the ref panel, can you 

ever confidently estimate LD for rare variants?) 

10 - On figure 4b, it would be nice to see the standard weights (prop to 1/sample size for each study) as 

a comparison (ie to see how much difference your clever weighting scheme makes). 

11 - In general, I did not like that the results section contained primarily methods. I realise that given the 

journal's format requirement (that methods should be at the end), it becomes necessary to insert some 

methods in the results, but usually, this would be a quick summary (not five or six pages). However, the 

editor can advise. 

12 - It seems this knockout approach has similarities with my "pseudo summary statistics" 

(https://www.nature.com/articles/s41467-021-24485-y), which create fake summary statistics (equiv to 

z scores), but with less association with outcome, instead of none. Please note, I may well be wrong, and 

there is no similarity, or the similarity is slight / inconsequential, in which case, you are certainly not 

required to discuss the similarity in the paper. 

13 - The extension to overlapping samples is nice 



14 - Can you provide an explanation (perhaps only to me) of the use of the weights sj. It seems their 

introduction is to ensure V is positive definite. Further are there ever problems finding a solution to the 

optimization problem. For example, does the method suffer if only able to find a poor solution. 

Signed Doug Speed 

Sorry that I am slightly slower to submit this review than I hoped (23 days). 

Reviewer #2 (Remarks to the Author): 

The authors propose a novel method, GhostKnockoff, that leverages a knockoff inference framework to 

prioritize putative causal variants at a locus using summary statistics. This method accounts for linkage 

disequilibrium patterns and can generate knockoff feature importance scores without the generation of 

individual-level knockoffs for improved computational efficiency. The authors demonstrate the 

performance of their method using data on over one thousand phenotypes from the UK biobank and a 

separate meta-analysis of Alzheimer’s disease studies. They identified 55 AD loci (31 of which appear to 

be novel) and significantly improved statistical power compared to conventional GWAS. Overall, this 

appears to be a powerful new addition to the genetics toolbox and I have only minor 

queries/suggestions. 

  

Minor suggestions 

1. Pooling whole genome data with whole exome data as well as combining multiple overlapping studies 

requires a lot of careful technical consideration. The ability to combine these types of datasets using a 

single tool at the summary stats level sounds nearly too good to be true! How do differences in data 

generation, genotype coverage, and imputation impact the validity of inferred study overlap and 

subsequent analytical results? 

2. It would be great to see a PRS performance prediction comparison between GhostKnockoff and one 

of the individual summary stats in the AD meta-analysis section. It would be compelling to see improved 

performance using your novel method. 



3. Take this as a not required but greatly-appreciated-if-addressed suggestion: Something that would 

add even more value to this manuscript is a proof-of-concept assessment of two GWAS with different LD 

patterns (e.g., from different genetic ancestries) to highlight the flexibility and increased power of 

GhostKnockoff in this type of scenario. 

Other small issues:  

-Line 14 page 3: explain what type of data was used from UK Biobank (WGS) to be consistent with the 

data description of the meta-analysis 

-APOE e4 status in the single-cell section should be reported and assessed with relation to the DEG 

findings (previous studies have shown that there is an association between differentially expressed 

genes and APOE e4 status) 

-It would be good for the authors to mention the caveat that the most proximal gene is not necessarily 

the most likely [functional] candidate 

-Chr 22 label is missing in Figure 4 



We thank the reviewers for their detailed and insightful comments. In the revised version, we have 
made several important modifications to address these concerns. Specifically, we have clarified 
the main difference between knockoff inference and the conventional GWAS, revised the analysis 
sections, and changed the interpretation of the results. We have also added additional analyses to 
validate the results from the knockoff inference, using a strategy suggested by reviewer #1. Finally, 
we have expanded upon the limitations in the Discussion section to address the comments.  

Reviewer #1 (Remarks to the Author): 

He et al propose GhostKnockoff, a method for performing feature selection in GWAS using only 
summary statistics (and a reference panel). This work extends recent work that uses the "knockoff" 
technique but with individual-level data, resulting in a method that is more applicable (because in 
many cases, it is not possible to obtain individual-level data) and faster. 

I am impressed by the methods of this paper. I had not previously heard of the knockoff technique 
(to which end, I first read existing literature on the method, including this helpful 
article https://www.stat.cmu.edu/~ryantibs/journalclub/knockoff.pdf, and partly read the authors 
previous work https://www.nature.com/articles/s41467-021-22889-4 of which this is an 
extension). While extending from individual-level data to summary statistics is usually fairly 
straightforward, I believe this is the first example in this setting (i.e., for knockoffs, which are quite 
different to "conventional analyses"). Further, the authors appear thorough in their consideration 
of special cases (e.g., a method of meta-analysis for cohorts with overlapping samples, that 
appears novel). 

However, I am less impressed by the application. The main challenge is showing their results are 
meaningful - i.e., that the associations they declare are correct (true) or useful. However, this 
paper's first comparisons (from UKBB) are hard to interpret because they use False Discovery 
Rate (FDR) to define significant associations from their method, but FWER to define associations 
from the standard approach. The former is much less strict - I estimate the FWER threshold 
corresponds to a FDR of about 0.05/50 = 0.001, much lower than the threshold of 0.1 they use for 
their new method (while the authors recognise this difference, it remains an important issue in my 
view). The authors argue that their results are more interesting because they are "more 
independent" (46% less variants within each locus), but I find this hard to appreciate. Saying this, 
I do appreciate that the nature of results from knockoffs and conventional GWAS are 
systematically different, which means it is possible the former are providing new information. 

Then for the AD example, it seems that the novel associations could mainly be because they are 
using more samples (they combine results from nine cohorts, then compare to results from only 
three cohorts, albeit I believe the largest three), instead of due to better methods. I appreciate they 
described the function / Phred score of the novel associations, although I see this as quite 
speculative. 
My personal strategy to demonstrate the method would be to apply your method to a subset of 
samples, and show that the hits you find are validated (also found or are marginally significant) 
when you increase the sample size (or use a larger, independent sample). This typically requires 
individual-level data (e.g., UKBB data, so that you can create summary statistics corresponding 
to different subsets of individuals). Otherwise, you could instead use pseudo-summary statistics 
(see below). 

https://www.stat.cmu.edu/
https://www.nature.com/articles/s41467-021-22889-4


So in summary, I like the methods, but did not think the application was strong, because the 
comparisons were of fundamentally different methods (ie FDR vs FWER correction), and there 
was no attempt to replicate novel associations. 

Response: Thank you very much for the nice summary, and the helpful comments. Below please 
find our responses to your comments.  

Major comments: 

1 - As I say above, the methods are generally convincing, but the application less so. 

Response: We agree with the reviewer that the proposed knockoff inference is systematically 
different from the conventional GWAS. Specifically, conventional GWAS performs a marginal 
association test and controls for FWER. It tests against hypothesis  

𝐻0: 𝑌 ⊥ 𝐺𝑗 for 𝑗 = 1,… , 𝑝

where 𝑌  is the outcome; 𝐺𝑗  is the 𝑗 -th genetic variant. The knockoff inference performs a 

conditional test and controls for FDR. It tests against hypothesis  

𝐻0: 𝑌 ⊥ 𝐺𝑗|𝑮−𝒋 for 𝑗 = 1,… , 𝑝

where 𝑮−𝒋 includes all genetic variants except the 𝑗-th variant.  

Marginal test vs. conditional test. Marginal test often identifies a cluster of proxy variants at the 
same locus that are correlated with the true causal variant. Conditional on the true causal variant, 
the proxy variants are no longer associated with the outcome. The knockoff inference performs 
conditional tests that account for linkage disequilibrium (LD) thereby reducing false positive 
findings due to LD confounding at each locus. Consequently, we showed in the UK biobank 
analysis that the number of proxy variant at each locus is reduced by using knockoff inference.  

FWER vs. FDR. Although we are not sure we follow  the estimation derived by reviewer (0.05/50) 
for the connection between the two, we agree that the FDR control is indeed more liberal compared 
to FWER. The knockoff inference adopts the FDR control to identify small effect risk loci that 
currently lie below the genome-wide significance threshold even in large GWAS. We 
demonstrated this property in the UK biobank analysis, where the number of identified loci is 
increased. We also showed that the additional loci are informative by functional enrichment 
analysis. However, we do acknowledge that the increase in the number of loci is due to a more 
liberal criterion (note that the knockoff provide control of FDR in presence of arbitrary correlations, 
while the conventional FDR procedures do not).  

In the new manuscript, we have clarified the difference in methods (Page 3, line 32), revised the 
analysis sections, and changed the interpretation of the results. Particularly, we have rephrased the 
comparison as a way to explain the difference, instead of demonstrating that one is superior to the 
other (Page 10, line 26). 



In addition, we have added additional analysis to validate the results from the knockoff inference 
(Page 9, line 14). We adopted the strategy suggested by the reviewer, i.e. to apply the method to a 
subset of samples, and show that the identified variants are also found when we increase the sample 
size. Specifically, we considered GhostKnockoff analysis of Kunkle et al. (2019), 
Schwartzentruber et al. (2021), and all nine studies. Note that data from Kunkle et al. (2019) is a 
subset of Schwartzentruber et al. (2021); Schwartzentruber et al. (2021) is a subset of the meta-
analysis. We considered replication of genetic variants. A genetic variant is replicated if the same 
variant is also identified in the larger study with the same direction of effect. We present the results 
for FDR=0.05 and FDR=0.10 in Table 1 (Table 1 in this letter) and Supplementary Figure 3 (Figure 
1 in this letter). 

At FDR=0.05, we observed that 345 out of 385 (89.6%) variants by GhostKnockoff analysis of 
Kunkle et al. (2019) are also identified in the analysis of Schwartzentruber et al. (2021); 525 out 
of 634 (83%) variants identified by GhostKnockoff analysis of Schwartzentruber et al. (2021) are 
also identified in the proposed meta-analysis of all nine studies. At FDR=0.10, 378 out of 448 
(84.4%) variants identified by GhostKnockoff analysis of Kunkle et al. (2019) are also identified 
in the analysis of Schwartzentruber et al. (2021); 599 out of 724 (82.7%) variants identified by 
GhostKnockoff analysis of Schwartzentruber et al. (2021) are also identified in the proposed meta-
analysis of all nine studies. Overall, we conclude that the proposed GhostKnockoff (conditional 
test + FDR control), though systematically different from the conventional GWAS, is a valid 
approach to make reproducible genetic discoveries. 

Table 1: Replication of variants identified by GhostKnockoff in larger studies. The analysis reflects the application of the 
proposed method to a subset of samples and the validation of the findings when we increase the sample size. We present the number 
of identified variants by applying GhostKnockoff to summary statistics from Kunkle et al. (2019), Schwartzentruber et al. (2021) 
(a study aggregating samples from Kunkle et al. (2019) and UK Biobank based on a proxy AD phenotype), and the proposed 
GhostKnockoff meta-analysis based on the optimal weights combining nine studies. A genetic variant is replicated if the same 
variant is also identified in the next larger study with the same direction of effect. 

Source of summary statistics 

Kunkle et al. 
(2019) 

Schwartzentruber et al. 
(2021) 

Proposed meta-analysis of all 
nine studies 

FDR=0.05 Total number 385 634 764 

Number (proportion) of 
replicated discoveries 

345 (89.6%) 525 (83%) - 

FDR=0.10 Total number 448 724 935 

Number (proportion) of 
replicated discoveries 

378 (84.4%) 599 (82.7%) - 



Figure 1: Replication of variants and loci identified by GhostKnockoff in larger studies. The analysis reflects the application 
of the proposed method to a subset of samples and the validation of the findings when we increase the sample size. We present the 
Manhattan plot of W statistics (truncated at 100 for clear visualization) from GhostKnockoff with target FDR at 0.05 (red dotted 
line; loci are highlighted in red) and 0.10 (blue dotted line; loci are highlighted in blue). A. GhostKnockoff analysis based on 
summary statistics from Kunkle et al. (2019). B. GhostKnockoff analysis based on summary statistics from Schwartzentruber et al. 
(2021), a study aggregating samples from Kunkle et al. (2019) and UK Biobank based on a proxy AD phenotype. C. The proposed 
GhostKnockoff meta-analysis based on the optimal weights combining nine studies. Variant density is shown at the bottom of 
Manhattan plot (number of variants per 1Mb).  



2 - Many summary statistic methods can suffer, for example, when there are regions of high LD 
(eg the MHC). Was this an issue? More generally, were there ever convergence problems (eg with 
the optimization of the weightings?) or other issues common to summary statistics (eg mismatch 
of reference panel). 

Response: We appreciate the reviewer’s thoughtful comments. For the issue related to high LD 
region, we think that it is certainly a limitation of the proposed method as already discussed in the 
subsection “Practical strategy for tightly linked variants” and in the Discussion section. We expect 
that the proposed method won’t be able to distinguish the causal variant from the proxy ones in 
high LD regions like the MHC. We have further added this to the Discussion section (page 12, line 
4).  

For the potential convergence problems raised by the reviewer, particularly with the optimization 
of the weighting in the meta-analysis, we clarify that it is a convex optimization problem with a 
unique solution which can be efficiently solved by standard software such as the CVXR package 
in R. We did not experience any convergence issue. We have added this information to the paper 
(page 24, line 24). 

For the mismatch of reference panel, we agree that this is a potential issue, similar to other 
summary statistics-based methods. The current method assumes a matched reference panel to 
ensure the equivalence between knockoff inference based on individual level data and 
GhostKnockoff. We have discussed this in the Discussion section (page 11, line 33). 

Minor comments: 

3 - In the methods, I believe Sigma is the SNP-SNP correlation matrix across the whole genome. 
But this is impractical to obtain (compute a 1M x 1M matrix). How therefore do you go about this? 
Do you divide the genome into blocks? Or is there a way to avoid explicitly computing Sigma. 
Further, for the multiple knockoffs, it seemed you had a pM x pM matrix (so M times bigger than 
above). How is this feasible? 

Response: Thank you for the valuable comment. It is not feasible to work with the genome-wide 
correlation matrix. In practice, we divided the genome into blocks that can be loaded into memory 
and performed the intermediate calculation of the knockoff statistics. Then the knockoff statistics 
from all blocks are aggregated for a genome-wide feature selection. This practical solution does 
not model inter-block correlation. Consequently, the current method cannot attenuate the 
confounding effect of long-range LD. We have added this limitation to the Method section (Page 
19, line 20) 

4 - The definition of independent loci (>200kb) is very unusual. A more common definition is 1Mb, 
or 1cM, or 3Mb/3cm (usually with an r2jk threshold, of say 0.1). 

Response: We have changed the definition of independent loci to 1Mb and updated the analysis 
results. 



5 - I do not approve of reporting times across multiple CPUs - in my view, it is harder for fair 
comparison and can give misleading impression of time. In my view, it would be better to report 
times for one CPU (then you coudl add speed up through parallelization in brackets). 

Response: We have made the change to report time based on one CPU (Page 3, line 20; Page 6, 
line 12). For the AD meta-analysis, we compute the time for chromosome 1 based on one CPU 
and then extrapolated the time for the genome based on the chromosome size. For the UK biobank 
data, it was originally based on one CPU per phenotype. So we simply made the change to report 
that time.  

6 - Page 3, Line 10 - p (no of snps) is not defined. Further, please define this (and other symbols) 
at the start of the methods (so that the methods can be standalone). 

Response: We have made the changes. 

7 - Could you perhaps summarize the advantage of knockoffs over making null test statistics, by 
sampling Z (tilda) score from N(0,R), where R is SNP-SNP correlation matrix (or equiv, the 
advantage of knockoffs with individual-level data versus permutation analyses). 

Response: The main difference is that permutation analysis still tests against hypothesis 

𝐻0: 𝑌 ⊥ 𝐺𝑗 for 𝑗 = 1,… , 𝑝

while the knockoff inference tests against hypothesis  

𝐻0: 𝑌 ⊥ 𝐺𝑗|𝑮−𝒋

This way knockoff inference attenuates the confounding effect of LD. We have clarified this in 
the manuscript (Page 4, line 1). 

8 - P8 - L 14 "We applied GhostKnockoff separately to each of the 1,403 binary phenotype" - I 
think this should be "each of 1,403" (you have 1403 binary phenotypes, but it is not the case that 
UKBB contains exactly 1,403 phenotypes - sorry if this is a bit pedantic). Further, your paper text 
gave the impression you ran SAIGE yourself, which would be impressive, but only in data 
availability is it clear you instead used results from another group. 

Response: We have made the changes. In addition, we have cited the source of SAIGE summary 
statistics. 

9 - P8 - L 20 "Due to the relatively small sample size of the 1000 Genomes Project (503 individuals 
of European ancestry) used to estimate the LD matrices, we restrict the analyses to common and 
low-frequency variants with minor allele frequency >1%." Wile I am fine with your threshold, is 



there ever a situation you would use lower threshold (as in, regardless of the sample size of the ref 
panel, can you ever confidently estimate LD for rare variants?) 

Response: We agree that it is more challenging to confidently estimate LD for rare variants. 
However, we think that the valid estimation of LD depends on the frequency and the sample size 
of the reference panel. For example, recent studies have shown that imputation quality of rare 
variants can be significantly improved by using better reference panels with larger sample sizes, 
e.g. the TOPMed reference (Figure 2 in this letter). We believe that we will be able to study 
variants with minor allele frequency <1% in the future. Certainly, the estimation of LD will be less 
accurate for variants with lower frequency. We have expanded our discussion to address this issue 
(Page 11, line 41). 

Figure 2. Imputation quality of different panels. 

Source Michigan imputation server: 
https://twitter.com/umimpute/status/1248365773850136578/photo/1 

10 - On figure 4b, it would be nice to see the standard weights (prop to 1/sample size for each 
study) as a comparison (ie to see how much difference your clever weighting scheme makes). 

Response: We have added the results based on standard weights (prop to 1/sample size) 
(Supplementary Figure 4; Figure 3 in this letter). We observed that GhostKnockoff with Standard 
weights identified 29 loci at FDR 0.05 and 46 loci at FDR 0.10, while GhostKnockoff with 
proposed weighting scheme identified 34 loci at FDR 0.05 and 50 loci at FDR 0.10. 

https://twitter.com/umimpute/status/1248365773850136578/photo/1


Figure 3: Comparison between sample size weights (top panel; 29 loci at FDR 0.05; 46 loci at FDR 0.10) vs. optimal weights 
(bottom panel; 34 loci at FDR 0.05; 50 loci at FDR 0.10). We present the Manhattan plot of W statistics (truncated at 100 for 
clear visualization) from GhostKnockoff with target FDR at 0.05 (red) and 0.10 (blue). Variant density is shown at the bottom of 
Manhattan plot (number of variants per 1Mb).  

11 - In general, I did not like that the results section contained primarily methods. I realise that 
given the journal's format requirement (that methods should be at the end), it becomes necessary 
to insert some methods in the results, but usually, this would be a quick summary (not five or six 
pages). However, the editor can advise. 

Response: Thank you for the suggestion. We would be happy to shorten this section if the editor 
finds it appropriate.  

12 - It seems this knockout approach has similarities with my "pseudo summary statistics" 
(https://www.nature.com/articles/s41467-021-24485-y), which create fake summary statistics 
(equiv to z scores), but with less association with outcome, instead of none. Please note, I may well 
be wrong, and there is no similarity, or the similarity is slight / inconsequential, in which case, 
you are certainly not required to discuss the similarity in the paper.

https://www.nature.com/articles/s41467-021-24485-y


Response: We carefully read the suggested paper. We think that the pseudo summary statistics 
approach is very interesting and allows one to validate a prediction model without individual level 
data. However, we feel that it is different from the knockoff generation which requires strong 
exchangeability conditions.  

13 - The extension to overlapping samples is nice.

Response: Thanks a lot. 

14 - Can you provide an explanation (perhaps only to me) of the use of the weights sj. It seems 
their introduction is to ensure V is positive definite. Further are there ever problems finding a 
solution to the optimization problem. For example, does the method suffer if only able to find a 
poor solution.

Response: Intuitively, the 𝑠𝑗 values quantify the distance between original feature and knockoffs. 

Since the feature selection is based on the contrast between the original feature and its knockoffs, 
the power of feature selection is related to the magnitude of 𝑠𝑗. Therefore, the algorithm aims to 

maximize 𝑠𝑗 while ensuring the exchangeability condition. It solves a semidefinite programming 

problem which usually has a unique solution. If it numerically ends up with a poor solution  
(i.e. 𝑠𝑗 = 0), where will be no power to identify the corresponding variant. 

Reviewer #2 (Remarks to the Author): 

The authors propose a novel method, GhostKnockoff, that leverages a knockoff inference 
framework to prioritize putative causal variants at a locus using summary statistics. This method 
accounts for linkage disequilibrium patterns and can generate knockoff feature importance scores 
without the generation of individual-level knockoffs for improved computational efficiency. The 
authors demonstrate the performance of their method using data on over one thousand phenotypes 
from the UK biobank and a separate meta-analysis of Alzheimer’s disease studies. They identified 
55 AD loci (31 of which appear to be novel) and significantly improved statistical power compared 
to conventional GWAS. Overall, this appears to be a powerful new addition to the genetics toolbox 
and I have only minor queries/suggestions. 

Minor suggestions: 

1. Pooling whole genome data with whole exome data as well as combining multiple overlapping 
studies requires a lot of careful technical consideration. The ability to combine these types of 
datasets using a single tool at the summary stats level sounds nearly too good to be true! How do 
differences in data generation, genotype coverage, and imputation impact the validity of inferred 
study overlap and subsequent analytical results? 



Response: Thank you for this valuable comment. We focus on sample overlap because it is one of 

the main sources of study correlation, but the method can be more general to quantify study 

correlation due to other factors such as data generation, genotype coverage, imputation, and 

phenotype definition. In fact, the proposed estimation of study correlation is valid as long as the 

correlation of genome-wide Z-scores is correctly inferred (this is reflected in the derivations in 

section “Study correlations and effective sample size”). Our proposed method for estimating the 

correlation is data driven. If other factors increase/decrease the correlation, we think that the data-

driven estimation of the study correlation will remain valid. However, we do require that p-values 

from different datasets are valid, and correctly reflecting the same disease-genetics association. If 

the p-values in the original study are deflated or inflated, the meta-analysis results can be biased. 

In addition, the dependency factor for knockoff generation was derived based on sample 

overlapping. In practice, we found that the analysis based on this dependency factor reasonably 

reflects other factors, but the theoretical guarantee will require future investigations. We have 

added this to the Discussion (Page 12, line 15). 

2. It would be great to see a PRS performance prediction comparison between GhostKnockoff and 
one of the individual summary stats in the AD meta-analysis section. It would be compelling to see 
improved performance using your novel method.

Response: We agree that it is a very interesting question. We think that the improvement can be 
by leveraging more independent loci and by accounting for the LD confounding effect. However, 
we currently do not have a hold-out dataset that is independent of all studies considered in this 
paper to test the PRS constructed via GhostKnockoff. It will be important to study this in the future.

3. Take this as a not required but greatly-appreciated-if-addressed suggestion: Something that 
would add even more value to this manuscript is a proof-of-concept assessment of two GWAS with 
different LD patterns (e.g., from different genetic ancestries) to highlight the flexibility and 
increased power of GhostKnockoff in this type of scenario.

Response: We thank the reviewer for this suggestion. We are indeed working on a separate paper 
to focus on GhostKnockoff inference of multiple ancestry groups, and particularly to improve its 
performance for minority populations.  

Other small issues: 

-Line 14 page 3: explain what type of data was used from UK Biobank (WGS) to be consistent with 
the data description of the meta-analysis.

Response: We have made the changes. 



-APOE e4 status in the single-cell section should be reported and assessed with relation to the 
DEG findings (previous studies have shown that there is an association between differentially 
expressed genes and APOE e4 status).

Response: We agree that APOE e4 status is important in the analysis of Alzheimer’s disease 
transcriptomics. However, the current single-cell dataset does not include the APOE status as part 
of the study.  

-It would be good for the authors to mention the caveat that the most proximal gene is not 
necessarily the most likely [functional] candidate.

Response: We have clarified this in the relevant section (Page 8, line 42) 

-Chr 22 label is missing in Figure 4.

Response: We have added the label. 



REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

In general, the authors have replied carefully to my comments. However, I have two moderately 

negative comments. 

------- 

I appreciate the authors adding Table 1 (replication at different sample sizes). However, this does not to 

me seem to demonstrate replication. So for example, you find that 448 SNPs are signifcant for sample 

size "1" (Kunkle), of which 378 are significant for sample size "2" (Schwartzentruber). I cant tell from 

these numbers if this is good. To give an example, suppose a SNP has positive effect and p-value 1e-6 for 

sample size "1", then positive effect and p-value 1e-5 for sample size "2". Your table would count this as 

a "replication", but actually this scenario is consistent with the SNP being a false positive for sample size 

"1" (due to the fact there is sample overlap). 

Im sorry if my original comment was not clear. The standard way to replicate would be to analyze for 

Kunkle, then analyze for the samples in Schwartzentruber but not in Kunkle (i.e., a dataset independent 

of Kunkle), then see if the significant SNPs from the first are also significant in the second analysis. I 

appreciate this is hard / impossible, because you can not obtain the second dataset (and even if you 

could, it might be so small you dont have power to replicate). 

Therefore, my suggestion would be to do what you did, but for the SNPs significant for sample size "1", 

report the proportion that are more significant for sample size "2" (and in the same direction, as you 

already have done). 

Ideally, the proportion would be high (and if you wished, you could test if it was significantly greater 

than 0.5). 

------- 

While I was happy with the responses to my other comments (particularly my very technical ones), I was 

not happy with the response to R2, Point 3. The authors claim to have carefully read my paper (their 



response to my Point 12), and yet that paper exactly provides a way to do the PRS analysis R2 suggested 

(by allowing them to generate a pseudo independent dataset. As in, they can divide the summary 

statistics from all samples into pseudo training ss and pseudo test ss, then use the former to construct 

the PRS, and the latter to test... 

Lastly, it seems from the response, that the editor has not yet responded to my Point 11. 

Signed, Doug Speed 

ps, I sign my name both in an effort to improve transparency of the review process, and because I am 

happy for authors to contact me with queries (it seems more efficient than only allowing 

communication between authors and reviewers through submissions). Therefore, if you would like 

clarification, please email me. 

Reviewer #2 (Remarks to the Author): 

Thank you for addressing my questions. I have no additional concerns. 



We thank the reviewer #1 once again for their thorough examination of our manuscript and for his 
additional comments. In the revised version, we have made modifications to address these 
concerns by updating the validation of the results from the knockoff inference. We also appreciate 
the comment and suggestion on the PRS analysis which was originally raised by reviewer #2. We 
curated additional individual-level datasets and performed analyses to address the comment, 
although we do consider it to be slightly outside the scope of the current manuscript which focuses 
on feature selection instead of prediction.  

Reviewer #1 (Remarks to the Author): 

In general, the authors have replied carefully to my comments. However, I have two moderately 
negative comments. 

1. I appreciate the authors adding Table 1 (replication at different sample sizes). However, this 
does not to me seem to demonstrate replication. So for example, you find that 448 SNPs are 
signifcant for sample size "1" (Kunkle), of which 378 are significant for sample size "2" 
(Schwartzentruber). I cant tell from these numbers if this is good. To give an example, suppose a 
SNP has positive effect and p-value 1e-6 for sample size "1", then positive effect and p-value 1e-5 
for sample size "2". Your table would count this as a "replication", but actually this scenario is 
consistent with the SNP being a false positive for sample size "1" (due to the fact there is sample 
overlap). 

Im sorry if my original comment was not clear. The standard way to replicate would be to analyze 
for Kunkle, then analyze for the samples in Schwartzentruber but not in Kunkle (i.e., a dataset 
independent of Kunkle), then see if the significant SNPs from the first are also significant in the 
second analysis. I appreciate this is hard / impossible, because you can not obtain the second 
dataset (and even if you could, it might be so small you dont have power to replicate). 

Therefore, my suggestion would be to do what you did, but for the SNPs significant for sample size 
"1", report the proportion that are more significant for sample size "2" (and in the same direction, 
as you already have done). 

Ideally, the proportion would be high (and if you wished, you could test if it was significantly 
greater than 0.5). 

Response: We appreciate the reviewer’s suggestion on further improving the validation of the 
results. We followed the suggestion to revise our analysis. Specifically, we now define a variant 
is replicated if the same variant is also identified in the next larger study with a smaller p-value 
and the same direction of effect. We present the results in Table 1 (Table 1 in this letter). We also 
include the previous results in the letter for comparison purpose (Table 2 in this letter). 

At FDR=0.05, we observed that 338 out of 385 (87.8%) variants by GhostKnockoff analysis of 
Kunkle et al. (2019) are also replicated in the analysis of Schwartzentruber et al. (2021); 447 out 
of 634 (70.5%) variants identified by GhostKnockoff analysis of Schwartzentruber et al. (2021) 
are also replicated in the proposed meta-analysis of all nine studies. At FDR=0.10, 370 out of 448 
(82.6%) variants identified by GhostKnockoff analysis of Kunkle et al. (2019) are also replicated 
in the analysis of Schwartzentruber et al. (2021); 510 out of 724 (70.4%) variants identified by 
GhostKnockoff analysis of Schwartzentruber et al. (2021) are also replicated in the proposed meta-
analysis of all nine studies. Both proportions remain higher than 0.5. The lower proportion for 
Schewartzentruber vs. the meta-analysis is likely due to the fact that the meta-analysis aggregates 



many other studies with different design, where many p-values are unnecessarily monotone as 
more studies are included. 

Overall, we conclude that the proposed GhostKnockoff (conditional test + FDR control), though 
systematically different from the conventional GWAS, is a valid approach to make reproducible 
genetic discoveries. 

Table 1. Replication of variants identified by GhostKnockoff in larger studies. The analysis reflects the application of the 
proposed method to a subset of samples and the validation of the findings when we increase the sample size. We present the number 
of identified variants by applying GhostKnockoff to summary statistics from Kunkle et al. (2019), Schwartzentruber et al. (2021) 
(a study aggregating samples from Kunkle et al. (2019) and UK Biobank based on a proxy AD phenotype), and the proposed 
GhostKnockoff meta-analysis based on the optimal weights combining nine studies. A genetic variant is replicated if the same 
variant is also identified in the next larger study with a smaller p-value and the same direction of effect. 

Source of summary statistics 

Kunkle et al. 
(2019) 

Schwartzentruber et al. 
(2021) 

Proposed meta-analysis of all 
nine studies 

FDR=0.05 Total number of discoveries 385 634 764 

Number (proportion) of 
replicated discoveries 

338 (87.8%) 447 (70.5%) - 

FDR=0.10 Total number of discoveries 448 724 935 

Number (proportion) of 
replicated discoveries 

370 (82.6%) 510 (70.4%) - 

Previous Table 1: Replication of variants identified by GhostKnockoff in larger studies. The analysis reflects the application 
of the proposed method to a subset of samples and the validation of the findings when we increase the sample size. We present the 
number of identified variants by applying GhostKnockoff to summary statistics from Kunkle et al. (2019), Schwartzentruber et al. 
(2021) (a study aggregating samples from Kunkle et al. (2019) and UK Biobank based on a proxy AD phenotype), and the proposed 
GhostKnockoff meta-analysis based on the optimal weights combining nine studies. A genetic variant is replicated if the same 
variant is also identified in the next larger study with the same direction of effect. 

Source of summary statistics 

Kunkle et al. 
(2019) 

Schwartzentruber et al. 
(2021) 

Proposed meta-analysis of all 
nine studies 

FDR=0.05 Total number 385 634 764 

Number (proportion) of 
replicated discoveries 

345 (89.6%) 525 (83%) - 

FDR=0.10 Total number 448 724 935 

Number (proportion) of 
replicated discoveries 

378 (84.4%) 599 (82.7%) - 

2. While I was happy with the responses to my other comments (particularly my very technical 
ones), I was not happy with the response to R2, Point 3. The authors claim to have carefully read 
my paper (their response to my Point 12), and yet that paper exactly provides a way to do the PRS 
analysis R2 suggested (by allowing them to generate a pseudo independent dataset. As in, they can 
divide the summary statistics from all samples into pseudo training ss and pseudo test ss, then use 
the former to construct the PRS, and the latter to test... 

Response: We would like to clarify that the current manuscript focuses on feature selection instead 
of prediction. Therefore, we consider the PRS comparison to be slightly outside the scope of the 



current manuscript. However, we still curated additional individual-level datasets and performed 
analyses to address this valuable comment.  

We first applied the proposed GhostKnockoff method to the summary statistics from Kunkle et al. 
(2019). We used variants identified by our GhostKnockoff to construct PRS and compared it 
against PRS obtained from the variants identified by the conventional approach. To make such a 
comparison, we curated individual-level data from the UK biobank, which consists of 388,051 
unrelated participants independent of Kunkel et al. (2019) after pre-processing steps. We split the 
data into training and testing with an 80:20 ratio and stratification based on the phenotype labels. 
Based on the same number of top variants identified by GhostKnockoff (defined by the W statistics) 
and conventional GWAS (defined by p-values from Kunkle et al. 2019), we trained the PRS using 
the Lasso model based on 5-fold cross-validation. We compared the AUC using the test data and 
present the results in Figure 1 in this letter. To make robust comparisons, we report the result of 
mean AUC from 5 random train-test split. 

We observed that the PRS constructed based on the results of GhostKnockoff is slightly higher 
than that constructed based on conventional approach. This is presumably due to the facts that 
GhostKnockoff tends to identify variants that carry independent information. However, the current 
improvement is not substantial (<0.01 in AUC). We think these preliminary results set the stage 
for an interesting discussion about the PRS based on knockoff inference which might be of great 
interest to the scientific community in the future. Should Reviewer 1 wish us to engage further in 
this discussion, we would be happy to do so, but at present believe that it may be outside the scope 
of our current work. 

Figure 1. Comparison between AUC obtained from variants discovered from the conventional setup and variants 
discovered from the proposed knockoff framework.  

Lastly, it seems from the response, that the editor has not yet responded to my Point 11. 

Response: We have revised the paper to shorten the overview of methods in the Results section. 



REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

Thank you for the responses, I am satisfied. 

Regarding 1 - thank you for the additional numbers, and for adding my suggestion. 

Regarding 2 - I agree that PRS is not required. Thank you for the analyses; I believe these results are only 

in the response to reviewer (not also in the paper), which is absolutely fine. 


