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Supplementary Note 1 
Algorithm for SpatialPCA 
 
We describe the detailed algorithm for SpatialPCA. Specifically, we first integrate out both 𝑩 and 𝒁 to obtain a 
marginal likelihood, based on which we infer 𝜏, 𝜎!" and 𝑾. We then estimate 𝒁 by computing their posterior mean 
conditional on the estimated 𝜏, 𝜎!" and 𝑾.  
 
We first integrate out 𝑩. To simplify notation, we denote 𝑴 = 𝑰# − 𝑿(𝑿$𝑿)%𝟏𝑿$ and 𝒀∗ = (𝒀 −𝑾𝒁)$, where 
we have 𝑌(∗~𝑀𝑉𝑁(𝑋(𝑩, 𝜎!"𝑰#). The marginal distribution for 𝒀∗ after integrating out B is: 
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(1) 
The marginal distribution for 𝒀∗ can be simplified as: 

𝑝(𝒀∗ ∣ 𝜎!") ∝ (𝜎!")
%0(#%9)" exp	(𝑡𝑟 H−

𝒀∗$𝑴𝒀∗

2𝜎!"
I). 

(2) 
The distribution for 𝒀, conditional on 𝒁, thus becomes: 
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(3) 
The joint likelihood of 𝒀, 𝒁 is 
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(4) 
Next, we integrate out 𝒁 to obtain the marginal distribution for 𝒀: 
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(5) 
Based on the marginal distribution of 𝒀, we can obtain the maximum likelihood estimator of 𝜎!" as 
 

𝜎V!" =
𝑡𝑟	(𝒀𝑴𝒀$) − ∑;<*=  𝒘;

$𝒀𝑴(𝑴+ 𝜏%*𝑲%*)%*𝑴𝒀$𝒘;

𝑚(𝑛 − 𝑞) . 

(6) 
Above, 𝒘; is the l-th column of the loading matrix 𝑾. 
 
Denote	𝑆 = 𝑡𝑟	(𝒀𝑴𝒀$) − ∑;<*=  𝒘;

$𝒀𝑴(𝑴+ 𝜏%*𝑲%*)%*𝑴𝒀$𝒘;, plugging the maximum likelihood estimator of 
𝜎!" back to the marginal distribution of 𝒀 in equation (5) gives 
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(7) 
We further maximize the above marginal distribution to obtain the estimators for 𝑾 and 𝜏: 
 

𝑾] = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑾

	∑;<*=   𝒘;
$𝒀𝑴(𝑴+ 𝜏%*𝑲%*)%*𝑴𝒀$𝒘; , 	 s.t. 	𝑾$𝑾 = 𝑰= , 

(8) 
𝜏̂ 	= 𝑎𝑟𝑔𝑚𝑎𝑥	

?
𝑝(𝒀 ∣ 𝑾], 𝜏). 

(9) 
We use the Brent’s optimization method implemented in the optim function in R to obtain the estimation of 𝜏 in 
equation (9). We obtain the closed-form expression1,2 of 𝑾] in the form of 𝑾] = 𝑳𝑹,	where 𝑳	is a m by d matrix 
for the first d eigenvectors of 𝒀𝑴(𝑴+ 𝜏%*𝑲%*)%*𝑴𝒀$and 𝑹	is an arbitrary d by d orthogonal rotation matrix.  
 
In addition, based on equation (4), we can obtain the maximum likelihood estimate for each 𝒁; as 
 

𝒁;|𝒀,𝑾], 𝜎V!", 𝜏̂	~𝑀𝑉𝑁d𝒁B; , 𝜮B@'f, 
(10) 



 
where 𝒁B; = (𝑴+ 𝜏̂%*𝑲%*)%*𝑴𝒀$𝒘;g , and 𝜮B@' = 𝜎V!"(𝑴 + 𝜏̂%*𝑲%*)%*. From equation (1) we can further obtain 
𝑩B = (𝑿$𝑿)%*𝑿$(𝒀$ − 𝒁B$𝑾]$). 
  
Carrying out the above inference algorithm requires calculating the following three quantities: (𝑴 + 𝜏%*𝑲%*)%* 
in equations (6), (8) and (10), as well as |𝜏𝑲 + 𝑰#| and |𝑿$(𝜏𝑲 + 𝑰#)%*𝑿| in equation (7). Each quantity in 
equations (6)-(8) needs to be re-evaluated in each iteration of the inference algorithm as 𝜏 is being updated while 
the quantity in equation (10) needs to be evaluated once at the last iteration. To improve the computation 
efficiency of the above inference algorithm, we first perform eigen decomposition on the kernel matrix 𝑲 =
𝑼𝑫𝑼$ at the beginning of the optimization, where 𝐃 = 𝑑𝑖𝑎𝑔(𝛿*, … , 𝛿#) with 𝛿( being the eigen values, and 𝑼 is 
the eigenvector matrix. With the eigen decomposition of 𝑲, we can simplify the calculation of the three quantities.  
 
Specifically, for (𝑴 + 𝜏%*𝑲%*)%*, it can be calculated using the Woodbury formula as: 

(𝑴 + 𝜏%*𝑲%*)%*

= (𝑰 − 𝑿(𝑿$𝑿)%*𝑿$ + 𝜏%*𝑲%*)%*

= (𝑰 + 𝜏%*𝑲%* + 𝑿(−(𝑿$𝑿)%*)𝑿$)%*

= (𝑰 + 𝜏%*𝑲%*)%* − (𝑰 + 𝜏%*𝑲%*)%*𝑿[−𝑿$𝑿 + 𝑿$(𝑰 + 𝜏%*𝑲%*)%*𝑿]%*𝑿$(𝑰 + 𝜏%*𝑲%*)%*.

 

where 

(𝑰 + 𝜏%*𝑲%*)%*

= (𝑰 + 𝑼(𝜏%*𝑫%*)𝑼$)%*

= 𝑼(𝑰 + 𝜏%*𝑫%*)%*𝑼$
 

(11) 

Therefore, we can compute 𝑼$𝑴𝒀$at the beginning of the algorithm and then evaluate the quantities in equations 
(6) and (8) in each iteration of algorithm with a linear complexity with respect to n. In addition, we can evaluate 
(𝑴 + 𝜏%*𝑲%*)%*𝑴𝒀$in equation (10) in the last iteration with a quadratic complexity with respect to n.  

For |𝜏𝑲 + 𝑰#|, we can express it as |𝜏𝑲 + 𝑰#| = |𝜏𝑫 + 𝑰#|, which has a linear complexity with respect to n. For 
|𝑿$(𝜏𝑲 + 𝑰#)%*𝑿|, we first calculate (𝜏𝑲 + 𝑰#)%* = 𝑼(𝑰# + 𝜏𝑫)%*𝑼$  and then calculate (𝜏𝑲 + 𝑰#)%*𝑿 and 
𝑿$(𝜏𝑲 + 𝑰#)%*𝑿 before taking its determinant. Because we can compute 𝑼$𝑿 at the beginning of the algorithm, 
evaluating |𝑿$(𝜏𝑲 + 𝑰#)%*𝑿| in each iteration has a linear complexity with respect to n. 
 
To further facilitate computation, we applied low-rank approximation in the eigen decomposition step for 𝑲. In 
particular, we use the “RSpectra” R package in the eigen decomposition to only obtain the top r eigenvectors and 
r eigenvalues. Therefore, both 𝑼 and 𝑫 become low-rank matrices with dimension n by r for 𝑼 and r by r for 𝑫.  
In this case, we calculate (𝑰 + 𝜏%*𝑲%*)%* in equation (11) as  

(𝑰 + 𝜏%*𝑲%*)%* = 𝑰 − 𝑼(𝜏𝑫 + 𝑼$𝑼)%*𝑼$ , 
(12) 

and evaluate 𝒁B in equation (10) as 
𝒁B = 𝑾]𝑻𝒀𝑴(𝑴+ 𝜏%*𝑲%*)%* = 𝜏̂𝑾]𝑻𝒀𝑴𝑲−	 𝜏̂𝑾]𝑻𝒀𝑴𝑼(𝜏%*𝑫%* + 𝑼$𝑴𝑼)%*𝑼$𝑴𝑲. 

(13) 

In the above low-rank approximation, we choose the rank r as a function of sample size. Specifically, for data 
with a large sample size (n>5,000), we evaluated quantities in equations (6) and (8) in each iteration using a small 
r=20, since these quantities are insensitive to the choice of rank r. We obtained the estimates 𝒁B; in equation (10) 
using a relatively large r, with r set to be 10% of the sample size n, which ensures the top r eigen values to explain 
at least 90% of the variance in the present study. For data with a small sample size (n≤5,000), we use the same r 



to evaluate quantities in equations (6), (8) and (10), with r chosen to ensure that the top r eigen values explain at 
least 90% of the variance. Our software implementation also allows users to specify their own choice of r.  
 
Overall, the computational time complexity of our algorithm is O(tdm2+rn2), where t represents the number of 
iterations in the optimization algorithm, with memory requirement being O(mn+n2). 



Supplementary Figures 

 

 
 
 
Supplementary Figure 1. Simulation results for spatial domain clustering and cell type clustering in single 
cell resolution. a. The mean and variance relationship between real scRNA-seq count data and simulated single 
cell count data are consistent. b. Spatial domain clustering results using different methods paired with spatially 
variable genes (SVGs), highly variable genes (HVGs) and all genes in four simulation scenarios (n=10,000 cells). 
c. Cell type clustering results using different methods (n=10,000 cells). In SpatialPCA, we aim to identify spatial 
domains. In the simulations, SpatialPCA has highest adjusted Rand index (ARI, the higher the better) in spatial 
domain clustering and lowest ARI in cell type clustering, highlights the different goals in spatial domain and cell 
type detection. d. After controlling for cell types as covariates in SpatialPCA, the clustering performance is the 
best when there is one dominant cell type in each spatial domain (scenario 1), and the performance reduces when 
there are multiple cell types mixed in each spatial domain (scenario 2, 3 and 4, sample size n=10,000 cells). In 
the boxplots in b-d, the center line, box limits and whiskers denote the median, upper and lower quartiles, and 
1.5× interquartile range, respectively. These results highlight the spatial domains are driven by the cell type 
compositions.    



   

 
 
Supplementary Figure 2. Simulation results for spatial domain clustering in single cell resolution. Spatial 
domain clustering results using different methods paired with SVGs, HVGs and all genes in four simulation 
scenarios (n=10,000 cells), in terms of a. Normalized mutual information (NMI, the higher the better), b. 
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Percentage of abnormal spots (PAS, the lower the better), c. Spatial chaos score (CHAOS, the lower the better), 
and d. Local inverse Simpson’s index (LISI, the lower the better) scores. In the boxplots in a-d, the center line, 
box limits and whiskers denote the median, upper and lower quartiles, and 1.5× interquartile range, respectively. 
  



 
 
Supplementary Figure 3. Simulation results for spatial domain clustering at spot level. a-b. Spatial domain 
clustering results in adjusted Rand index (ARI, the higher the better) and spatial chaos score (CHAOS, the lower 
the better) using different methods at spot diameter being 90um (n=5,077 spots). c-d. Spatial domain clustering 
results in ARI and CHAOS using different methods at spot diameter being 107um (n=3,602 spots). e-f. Spatial 
domain clustering results in ARI and CHAOS using different methods at spot diameter being 145um (n=1,948 
spots). In the boxplots in a-f, the center line, box limits and whiskers denote the median, upper and lower quartiles, 
and 1.5× interquartile range, respectively. 
  



 
 
Supplementary Figure 4. Simulation results for spatial domain clustering at cell level with stripe pattern. 
Spatial domain clustering results using different methods in terms of a. Adjusted Rand index (ARI), left: scenario 
1; middle: scenario 2; right: scenario 3. b. Normalized mutual information (NMI, the higher the better), c. 
Percentage of abnormal spots (PAS, the lower the better), d. Spatial chaos score (CHAOS, the lower the better) 
and e. Local inverse Simpson’s index (LISI, the lower the better) in 10,000 cells. f. The designed ground truth 
stripe pattern. In the boxplots in a-e, the center line, box limits and whiskers denote the median, upper and lower 
quartiles, and 1.5× interquartile range, respectively. 
  



 

 
 
Supplementary Figure 5. Simulation results for spatial domain clustering at spot level with artifactual 
spatial correlation between spots. a-b. Spatial domain clustering results using different methods at spot diameter 
being 90um (n=5,077 spots) in terms of adjusted Rand index (ARI, the higher the better) and spatial chaos score 
(CHAOS, the lower the better). c-d. Spatial domain clustering results using different methods at spot diameter 
being 107um (n=3,602 spots) in terms of ARI and CHAOS. e-f. Spatial domain clustering results using different 
methods at spot diameter being 145um (n=1,948 spots) in terms of ARI and CHAOS. In the boxplots in a-f, the 
center line, box limits and whiskers denote the median, upper and lower quartiles, and 1.5× interquartile range, 
respectively. 
 
  



 

 
Supplementary Figure 6. High resolution spatial map reconstruction and gene expression imputation 
simulation. a. High resolution spatial map clustering results for spot level simulation in four scenarios at spot 
diameter being 145um (n=1,948 spots). We compared SpatialPCA with BayesSpace in terms of adjusted Rand 
index (ARI, the higher the better), normalized mutual information (NMI, the higher the better), percentage of 
abnormal spots (PAS, the lower the better) and spatial chaos score (CHAOS, the lower the better). b. High 
resolution gene expression prediction results for spot level simulation in four scenarios at spot diameter being 
145um (n=1,948 spots). We compared SpatialPCA with BayesSpace for the Pearson’s correlation between 
predicted gene expression with ground truth expression. In the boxplots in a-b, the center line, box limits and 
whiskers denote the median, upper and lower quartiles, and 1.5× interquartile range, respectively. 
 



         

 
Supplementary Figure 7. RGB plots for the DLPFC data. a-f. For SpatialPCA, PCA, and NMF, we 
summarized the inferred low dimensional components into three UMAP (a, c, e) or tSNE components (b, d, f) 
and visualized the three resulting components with red/green/blue (RGB) colors through the RGB plot. Color 
code corresponds to the RGB values of each location’s three UMAP or tSNE components inferred from low 
dimensional components in dimension reduction. Different colors indicate different values for each of the three 
UMAP or tSNE components on the tissue section, highlighting the difference of the low dimensional components 
from different methods included in the panel. The RGB plot from SpatialPCA displays laminar organization of 
the cortex and show less color differences within a local area. We also scaled up spatial PCs/regular PCs 10 times 
(c-d) and 20 times (e-f) to see the influence of range of the PCs to RGB plots. The tSNE/UMAP results and RGB 
plots in figures (c-f) have very similar patterns as shown at the original scale (a-b). g. We found in SpatialPCA, 
the weighted RGB values have lower variance than PCA or NMF in nearby spots (n=3,460 spots).  h. The RGB 
plots in SpatialPCA show a smoother transition of colors between adjacent cortical layers (n=3,460 spots). The 
cortical layers are labeled based on ground truth annotations. In the boxplots in g-h, the center line, box limits 
and whiskers denote the median, upper and lower quartiles, and 1.5× interquartile range, respectively.   
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Supplementary Figure 8. Gene set enrichment analysis on the genes associated with Spatial PC values in 
the DLPFC data sample 151676. The top 10 enriched gene sets are shown for each of the top 7 spatial PCs. No 
significant genes were detected in the rest 13 spatial PCs. Color represents different data sources for annotating 
the gene sets. The enrichment is given as -log10 adjusted p-value (g:SCS correction, details in Methods) of the 
genes associated with spatial PC values.  
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Supplementary Figure 9. Sensitivity analyses for the DLPFC data. a. Clustering results from SpatialPCA are 
shown for different analytic settings. Setting 1: using top 3000 spatially variable genes detected by SPARK. 
Setting 2: using top 1000 spatially variable genes detected by SPARK. Setting 3: using all spatially variable genes 
detected by SPARK. Setting 4: using all highly variable genes detected by Seurat. Setting 5: using top 10 Spatial 
PCs. Setting 6: using top 20 Spatial PCs. Setting 7: using top 30 Spatial PCs. Setting 8: using top 50 Spatial PCs. 
Setting 9: using Gaussian kernel. Setting 10: using Cauchy kernel. Setting 11: using quadratic kernel. Setting 12: 
controlling for cell types when selecting SVGs in SPARK-X. Setting 13: controlling for cell types in SpatialPCA. 
Setting 14: controlling for cell types by regressing them out from the input gene expression and taking the 
residuals. Setting 15: controlling for cell density in the spots. Setting 16: gene expression normalized through 
SCTransform normalization. Setting 17: gene expression normalized through log normalization. Setting 18: 
taking the histology information as a third dimension in location matrix. b. Clustering accuracy as measured by 
adjusted Rand index (ARI, the higher the better) for different settings. c. Clustering accuracy as measured by 
normalized mutual information (NMI, the higher the better) for different settings. d. Spatial continuity of the 
inferred clusters as measured by percentage of abnormal spots (PAS, the lower the better) for different settings. 
e. Spatial continuity of the inferred clusters as measured by spatial chaos score (CHAOS, the lower the better) for 
different settings. 
  



 

  
 

 
Supplementary Figure 10. Additional sensitivity analyses for the DLPFC data. a. The spatial clustering 
results from SpatialPCA and SpaGCN as measured by adjusted Rand index (ARI, the higher the better, y-axis) 
across different values of the bandwidth parameter (x-axis) in sample 151676. Results are obtained using the 
Gaussian kernel, with the red dash line representing the ARI value at the default bandwidth obtained from the SJ 
method. b. Left: visualization of the spatial domains detected in SpatialPCA with a distance matrix calculated 
from Delaunay triangulation. Right: comparison of spatial clustering accuracy measured by ARI for using 
Delaunay distance versus using the Euclidian distance. c. Left: spatial clusters obtained by jointly modeling 
multiple tissue sections (samples 151507, 151069, and 151673) using SpatialPCA. Right: comparison of spatial 
clustering accuracy by ARI for joint modeling of multiple tissue sections versus modeling each section separately. 
  



 
  
Supplementary Figure 11. Clustering results obtained based on different methods in the DLPFC data. a. 
Clustering results measured by adjusted Rand index (ARI, the higher the better) in all 12 sections. In dimension 
reduction methods (SpatialPCA, PCA, and NMF), clustering was performed based on the inferred low-
dimensional components. For spatial domain clustering methods (BayesSpace, SpaGCN and HMRF), clustering 
was performed based the default settings. All the methods are paired with SVGs, HVGs and all genes. b-d. 
Clustering results measured by normalized mutual information (NMI, the higher the better), percentage of 
abnormal spots (PAS, the lower the better), and local inverse Simpson’s index (LISI, the lower the better) in 
different methods with their default settings in all 12 sections. Clustering results of PCA and NMF are obtained 
with SVGs. In the boxplots in a-d, the center line, box limits and whiskers denote the median, upper and lower 
quartiles, and 1.5× interquartile range, respectively.   



  

 
 
Supplementary Figure 12. Clustering results of different spatial domain detection methods in DLPFC 
across all twelve samples. First row: Ground truth annotation of all twelve samples. Second row: SpatialPCA 
clustering results. Third row: BayesSpace clustering results. Fourth row: SpaGCN clustering results. Fifth row: 
stLearn clustering results. Sixth row: HMRF clustering results. Seventh row: PCA clustering results. Eighth 
row: NMF clustering results. Clustering results of PCA and NMF are obtained with SVGs. 
 
 
 
  



 
 
Supplementary Figure 13. Gene set enrichment analysis on the region-specific genes in the DLPFC data 
sample 151676. a. The top 10 enriched gene sets are shown for each of the seven detected tissue regions. Color 
represents different data sources for annotating the gene sets. The enrichment is given as -log10 adjusted p-value 
(g:SCS correction, details in Methods) of the region specific genes. The cluster annotations are shown in b.  
  



    
 
Supplementary Figure 14. Clustering results obtained with and without histology information in different 
methods in DLPFC data and ST tumor data. a. Visualization of the histology information extracted from the 
RGB values of the H&E image in DLPFC data through SpaGCN. b. Clustering results with and without histology 
information in SpatialPCA, SpaGCN, and stLearn in DLPFC data in all 12 sections. The adjusted Rand index 
(ARI, the higher the better) in stLearn was calculated based on SVGs. In the boxplot, the center line, box limits 
and whiskers denote the median, upper and lower quartiles, and 1.5× interquartile range, respectively. c. 
Visualization of the histology information extracted from the RGB values of the H&E image in ST tumor data 
through SpaGCN. d. Clustering results with and without histology information in SpatialPCA, SpaGCN, and 
stLearn in the ST tumor data (n=607 spots). The ground truth annotations are from the ST tumor data original 
paper (Andersson et al. 2020).  
  



   
 
Supplementary Figure 15. Spatial trajectory inference results in the DLPFC data. a. Visualizaton of the 
trajectory inferred by SpatialPCA. Left: Arrows point from tissue locations with low pseudo-time to tissue 
locations with high pseudo-time. Color represents different tissue regions. Right: Visualization of pseudotime 
inferred from spatial PCs in SpatialPCA. b-c. Visualizaton of the trajectories inferred from PCs in PCA and NMF. 
d. Visualizaton of the pseudotime inferred by stLearn. We plotted the arrows in the same way as in SpatialPCA. 
e. Visualization of trajectories inferred by stLearn. The stLearn considers a pair of clusters at each time and find 
the order between clusters. 
  



 
a. DLPFC 

  
b. Slide-seq V2 cortical layers 

 
c. ST tumor 

 

 
 
Supplementary Figure 16. Gene set enrichment analysis on the pseudo-time associated genes. The top 10 
enriched gene sets are shown for each of the three detected trajectories. Color represents different data sources 
for annotating the gene sets. a. The enriched gene sets in DLPFC data. b. The enriched gene sets in cortical layers 
of the Slide-seq V2 data. c. The enriched gene sets in ST tumor data. The enrichment in a-c are given as -log10 
adjusted p-value (g:SCS correction, details in Methods) of the genes associated with pseudo-time. 
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Supplementary Figure 17. RGB plots for the Slide-seq data. a-f. For SpatialPCA, PCA, and NMF, we 
summarized the inferred low dimensional components into three UMAP (a, c, e) or tSNE components (b, d, f) 
and visualized the three resulting components with red/green/blue (RGB) colors through the RGB plot. Color 
code corresponds to the RGB values of each location’s three UMAP or tSNE components inferred from low 
dimensional components in dimension reduction. Different colors indicate different values for each of the three 
UMAP or tSNE components on the tissue section, highlighting the difference of the low dimensional components 
from different methods included in the panel. The RGB plot from SpatialPCA displays laminar organization of 
the cortex and show less color differences within a local area. We also scaled up spatial PCs/regular PCs 10 times 
(c-d) and 20 times (e-f) to see the influence of range of the PCs to RGB plots. The tSNE/UMAP results and RGB 
plots in figures (c-f) have very similar patterns as shown at the original scale (a-b). g-h. The weighted RGB values 
in SpatialPCA have lower variance than PCA or NMF in nearby spots (n=20,982 locations). The RGB plot from 
SpatialPCA displays tissue structure organization of the cerebellum and show less color differences within a local 
area. In the boxplots in g-h, the center line, box limits and whiskers denote the median, upper and lower quartiles, 
and 1.5× interquartile range, respectively.  i-j. Spatial continuity of the inferred clusters as measured by percentage 
of abnormal spots (PAS, the lower the better) and spatial chaos score (CHAOS, the lower the better) in 
SpatialPCA is the lowest compared with BayesSpace, SpaGCN, HMRF, PCA and NMF.  
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Supplementary Figure 18. Gene set enrichment analysis on the genes associated with Spatial PC values in 
the Slide-seq data. The top 10 enriched gene sets are shown for each of the 20 spatial PCs. Color represents 
different data sources for annotating the gene sets. The enrichment is given as -log10 adjusted p-value (g:SCS 
correction, details in Methods) of the genes associated with spatial PC values.   



 

 
 
Supplementary Figure 19. Visualization of each spatial domain detected by different methods in the Slide-
seq data. a. Visualization of the spatial domains detected by SpatialPCA. b. Visualization of the spatial domains 
detected by BayesSpace. c. Visualization of the spatial domains detected by SpaGCN. d. Visualization of the 
spatial domains detected by HMRF. e. Visualization of the spatial domains detected by PCA. f. Visualization of 
the spatial domains detected by NMF.  
  



 

 
 
Supplementary Figure 20. Sensitivity analyses for the Slide-seq data. a. Clustering results from SpatialPCA 
are shown for different analytic settings. Setting 1: with 8 clusters. Setting 2: with 7 clusters. Setting 3: with 9 
clusters. Setting 4: using top 500 spatially variable genes detected by SPARK-X. Setting 5: using top all spatially 
variable genes detected by SPARK-X. Setting 6: using all spatially variable genes detected by SPARK. Setting 
7: using all highly variable genes detected by Seurat. Setting 8: using Gaussian kernel. Setting 9: using Cauchy 
kernel. Setting 10: using quadratic kernel. Setting 11: using top 10 Spatial PCs. Setting 12: using top 20 Spatial 
PCs. Setting 13: using top 30 Spatial PCs. Setting 14: controlling for cell types when selecting SVGs in SPARK-
X. Setting 15: controlling for cell types in SpatialPCA. Setting 16: controlling for cell types by regressing them 
out from the input gene expression and take the residuals. Setting 15: controlling for cell density in the spots. 
Setting 17: gene expression normalized through SCTransform normalization. Setting 18: gene expression 
normalized through log normalization. b. Spatial continuity of the inferred clusters as measured by percentage of 
abnormal spots (PAS, the lower the better) for different settings. c. Spatial continuity of the inferred clusters as 
measured by spatial chaos score (CHAOS, the lower the better) for different settings.   



 

  

  

  

  
 
Supplementary Figure 21. Gene set enrichment analysis on the region-specific genes in the Slide-seq data. 
The top 10 enriched gene sets are shown for each of the eight detected tissue regions. Color represents different 
data sources for annotating the gene sets. The enrichment is given as -log10 adjusted p-value (g:SCS correction, 
details in Methods) of the region specific genes. 
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Supplementary Figure 22. Comparison of the cell type composition of the spatial domains detected by 
different methods in the Slide-seq data. The percentage of cell types annotated (y-axis) is shown on each tissue 
domain (x-axis) detected by different methods. Examined methods include SpatialPCA, SpaGCN, BayesSpace, 
HMRF, PCA, and NMF. a. Results are scaled with respect to each spatial domain, such that the summation of the 
cell type percentages in each domain is 100%. b. Results are scaled with respect to the cell types, such that the 
summation of all cell types across all tissue regions is 100%. c. Clustering results in each method. The clustering 
labels correspond to the x-axis in the left and middle panel.  
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Supplementary Figure 23. Distribution of cell types in each cluster for different methods in the Slide-seq 
data. The summation of the cell type percentages in all clusters is 100% for SpatialPCA (a), BayesSpace (b), 
SpaGCN (c), HMRF (d), PCA (e) and NMF (f). The Bergmann glia cells and Purkinje neurons are located in the 
Purkinje layer, the choroid plexus cells are located in the choroid plexus, the granule cells are located in the 
granule cell layer, the oligodendrocyte cells are located in white matter.  
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Supplementary Figure 24. RGB plots for the Slide-seq V2 data. a-f. For SpatialPCA, PCA, and NMF, we 
summarized the inferred low dimensional components into three tSNE (a, c, e) or UMAP components (b, d, f) 
and visualized the three resulting components with red/green/blue (RGB) colors through the RGB plot. Color 
code corresponds to the RGB values of each location’s three UMAP or tSNE components inferred from low 
dimensional components in dimension reduction. Different colors indicate different values for each of the three 
UMAP or tSNE components on the tissue section, highlighting the difference of the low dimensional components 
from different methods included in the panel. The RGB plot from SpatialPCA displays tissue structure 
organization of the hippocampus region and show less color differences within a local area. We also scaled up 
spatial PCs/regular PCs 10 times (c-d) and 20 times (e-f) to see the influence of range of the PCs to RGB plots, 
the tSNE/UMAP results and RGB plots have very similar patterns as shown at the original scale (a-b). g-h. The 
weighted RGB values in SpatialPCA have lower variance than PCA or NMF in nearby spots (n=51,398 locations). 
In the boxplots in g-h, the center line, box limits and whiskers denote the median, upper and lower quartiles, and 
1.5× interquartile range, respectively. i-j. Spatial continuity of the inferred clusters as measured by percentage of 
abnormal spots (PAS, the lower the better) and spatial chaos score (CHAOS, the lower the better) in SpatialPCA 
is the lowest compared with BayesSpace, SpaGCN, PCA and NMF.  
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Supplementary Figure 25. Gene set enrichment analysis on the genes associated with Spatial PC values in 
the Slide-seq V2 data. The top 10 enriched gene sets are shown for each of the 20 spatial PCs. Color represents 
different data sources for annotating the gene sets. The enrichment is given as -log10 adjusted p-value (g:SCS 
correction, details in Methods) of the genes associated with spatial PC values. 
  



  

 
 
Supplementary Figure 26. Visualization of each spatial domain detected by each method separately in 
Slide-seq V2 data. a. Visualization of the spatial domains detected by SpatialPCA. b. Visualization of the spatial 
domains detected by SpaGCN. c. Visualization of the spatial domains detected by PCA. d. Visualization of the 
spatial domains detected by NMF.  



  
Supplementary Figure 27. Sensitivity analyses in the Slide-seq V2 data. a. Setting 1: clustering results 
obtained with 14 clusters. Setting 2: clustering results obtained with 15 clusters. Setting 3: clustering results 
obtained with 13 clusters. Setting 4: clustering results obtained using top 2000 spatially variable genes detected 
by SPARK-X. Setting 5: clustering results obtained using top 3000 spatially variable genes detected by SPARK-
X. Setting 6: clustering results obtained using top 4000 spatially variable genes detected by SPARK-X. Setting 7: 
clustering results obtained using all highly variable genes detected by Seurat. Setting 8: clustering results obtained 
using top 10 Spatial PCs. Setting 9: clustering results obtained using top 20 Spatial PCs. Setting 10: clustering 
results obtained using top 30 Spatial PCs. Setting 11: clustering results obtained by controlling cell types in 
SpatialPCA. Setting 12: clustering results obtained through controlling cell types by regressing them out from the 
input gene expression and take the residuals. Setting 13: clustering results obtained by controlling for cell density 
in the spots. Setting 14: clustering results obtained by SpatialPCA with gene expression normalized through 
SCTransform normalization. Setting 15: clustering results obtained by SpatialPCA with gene expression 
normalized through log normalization. b. Clustering spatial continuity measured by percentage of abnormal spots 
(PAS, the lower the better) in different settings. c. Clustering spatial continuity measured by spatial chaos score 
(CHAOS, the lower the better) in different settings. 
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Supplementary Figure 28. Gene set enrichment analysis on the region-specific genes in the Slide-seq V2 
data. The top 10 enriched gene sets are shown for each of the eight detected tissue regions. Color represents 
different data sources for annotating the gene sets. The enrichment is given as -log10 adjusted p-value (g:SCS 
correction, details in Methods) of the region specific genes. 
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Supplementary Figure 29. Comparison of the cell type composition of the spatial domains detected by 
different methods in the Slide-seq V2 data. The percentage of cell types annotated (y-axis) is shown on each 
tissue domain (x-axis) detected by different methods. Examined methods include SpatialPCA, SpaGCN, PCA, 
and NMF. a. results are scaled with respect to each spatial domain, such that the summation of the cell type 
percentages in each domain is 100%. b. results are scaled with respect to the cell types, such that the summation 
of all cell types across all tissue regions is 100%. c. Clustering results in each method. The clustering labels 
correspond to the x-axis in b.  
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Supplementary Figure 30. Distribution of cell types in each cluster for different methods in Slide-seq V2 
data. The summation of the cell type percentages in all clusters is 100% for SpatialPCA (a), SpaGCN (b), PCA 
(c) and NMF (d). The entorhinal cortex cells are located in the cortical layers 4-6; the CA1 principal cells (anterior) 
are located in the CA1 region; the CA3 principal cells are located in the CA3 region; the choroid plexus are 
located in the third ventricle; the dentate principle cells are located in the dentate gyrus; and the oligodendrocyte 
are located in the corpus callosum as detected by SpatialPCA. 



 

 
 
Supplementary Figure 31. Spatial trajectory inference results in the cortical layers of the Slide-seq V2 data. 
a. Visualizaton of the pseudo-time for the inferred trajectory in cortical layers of the Slide-seq V2 data in 
SpatialPCA. b. Boxplot showing the pseudotime of locations inferred by SpatialPCA in cortical layer 4, 5, and 6 
(n=13,195 locations). In the boxplot, the center line, box limits and whiskers denote the median, upper and lower 
quartiles, and 1.5× interquartile range, respectively.  c. Visualizaton of the inferred pseudo-time for seven 
trajectories (from left to right) in cortical layers of the Slide-seq V2 data in PCA. d. Visualizaton of the inferred 
pseudo-time for five trajectories (from left to right) in cortical layers of the Slide-seq V2 data in NMF. 
  



       

 
 

Supplementary Figure 32. RGB plots for the ST data. a-f. For SpatialPCA, PCA, and NMF, we summarized 
the inferred low dimensional components into three UMAP components (a, c, e) and tSNE (b, d, f) and visualized 
the three resulting components with red/green/blue (RGB) colors through the RGB plot. Color code corresponds 
to the RGB values of each location’s three UMAP or tSNE components inferred from low dimensional 
components in dimension reduction. Different colors indicate different values for each of the three UMAP or 
tSNE components on the tissue section, highlighting the difference of the low dimensional components from 
different methods included in the panel. The RGB plot from SpatialPCA displays tissue structure organization of 
the breast tumor and show less color differences within a local area. We also scaled up spatial PCs/regular PCs 
10 times (c-d) and 20 times (e-f) to see the influence of range of the PCs to RGB plots, the tSNE/UMAP results 
and RGB plots have very similar patterns as shown at the original scale (a-b). g-h. The weighted RGB values in 
SpatialPCA have lower variance than PCA or NMF in nearby spots (n=607 spots). In the boxplots in g-h, the 
center line, box limits and whiskers denote the median, upper and lower quartiles, and 1.5× interquartile range, 
respectively. 
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Supplementary Figure 33. Gene set enrichment analysis on the genes associated with Spatial PC values in 
the ST tumor data. The top 10 enriched gene sets are shown for each of the 20 spatial PCs. Color represents 
different data sources for annotating the gene sets. The enrichment is given as -log10 adjusted p-value (g:SCS 
correction, details in Methods) of the genes associated with spatial PC values.   



 

  
 
Supplementary Figure 34. Sensitivity analyses for the ST data. a. Clustering results from SpatialPCA are 
shown for different analytic settings. Setting 1: using top 10 Spatial PCs. Setting 2: using top 20 Spatial PCs. 
Setting 3: using top 30 Spatial PCs. Setting 4: using top 50 Spatial PCs. Setting 5: using all spatially variable 
genes detected by SPARK. Setting 6: using all highly variable genes detected by Seurat. Setting 7: using all 
spatially variable genes detected by SPARK-X. Setting 8: using Gaussian kernel. Setting 9: using Cauchy kernel. 
Setting 10: using quadratic kernel. Setting 11: controlling for cell types when selecting SVGs in SPARK-X. 
Setting 12: controlling for cell types in SpatialPCA. Setting 13: controlling for cell types by regressing them out 
from the input gene expression and take the residuals. Setting 14: gene expression normalized through 
SCTransform normalization. Setting 15: gene expression normalized through log normalization. Setting 16: 
taking the histology information as a third dimension in location matrix. b. Clustering accuracy as measured by 
adjusted Rand index (ARI, the higher the better) for different settings. c. Clustering accuracy as measured by 
normalized mutual information (NMI, the higher the better) for different settings. d. Spatial continuity of the 
inferred clusters as measured by percentage of abnormal spots (PAS, the lower the better) for different settings. 
e. Spatial continuity of the inferred clusters as measured by spatial chaos score (CHAOS, the lower the better) for 
different settings. 
 
  



 
Supplementary Figure 35. Clustering results obtained using different methods for the ST data. a. Clustering 
accuracy measured by adjusted Rand index (ARI, the higher the better). In dimension reduction methods 
(SpatialPCA, PCA, and NMF), clustering was performed based on the inferred low-dimensional components. For 
spatial domain clustering methods (BayesSpace, SpaGCN and HMRF), clustering was performed based the 
default settings. All methods are performed under three different analytic settings: either using SVGs, HVGs, or 
all genes. b-e. Clustering accuracy measured by normalized mutual information (NMI, the higher the better), and 
spatial continuity measured by percentage of abnormal spots (PAS, the lower the better), spatial chaos score 
(CHAOS, the lower the better) and local inverse Simpson’s index (LISI, the lower the better) for different methods 
on 607 spots. In the boxplot in e, the center line, box limits and whiskers denote the median, upper and lower 
quartiles, and 1.5× interquartile range, respectively. 
  



 
 
Supplementary Figure 36. Clustering results in the ST data. a. Clustering accuracy of different methods are 
measured by adjusted Rand index (ARI, the higher the better) and normalized mutual information (NMI, the 
higher the better), while the spatial continuity of the clusters from different methods are measured by percentage 
of abnormal spots (PAS, the lower the better) and spatial chaos score (CHAOS, the lower the better). Results are 
shown for all 8 annotated samples in the form of boxplots. b. The enrichment scores for the seven domain-specific 
metagenes from each method is shown in the form of a boxplot in the H1 sample. Higher score indicates better 
retrieving of the fine-grained transcriptomic details of the detected spatial regions. Results are shown for all 8 
annotated samples in the form of boxplots. c. The metagene enrichment score for each method is shown across 
all 8 annotated samples in the form of a boxplot. d. Ranking of different methods in terms of the metagene 
enrichment score across all 8 annotated tissue samples. In the boxplots in a-d, the center line, box limits and 
whiskers denote the median, upper and lower quartiles, and 1.5× interquartile range, respectively. 



   
 

Supplementary Figure 37. Metagene expression in the ST data. a. The expression of eight domain specific 
metagenes is displayed in the H1 sample. The eight metagenes are specifically expressed in eight tissue domains 
that include adipose tissue, breast glands, cancer in situ, connective tissue, immune infiltrate, invasive cancer, and 
undetermined. b-h. The average expression of each metagene within each spatial domain detected by different 
methods are displayed in the H1 sample. Different methods include pathologist annotation (b), SpatialPCA (c), 
BayesSpace (d), SpaGCN (e), HMRF (f), PCA (g), or NMF (h).  
  



 
Supplementary Figure 38. Gene set enrichment analysis on the region-specific genes in the ST tumor data. 
The top 10 enriched gene sets are shown for each of the seven detected tissue regions. Color represents different 
data sources for annotating the gene sets. The enrichment is given as -log10 adjusted p-value (g:SCS correction, 
details in Methods) of the region specific genes. 
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Supplementary Figure 39. Comparison of the cell type composition of the spatial domains detected by 
different methods in the ST tumor data. The percentage of cell types annotated (y-axis) is shown on each tissue 
domain (x-axis) detected by different methods. Examined methods include SpatialPCA, BayesSpace, SpaGCN, 
HMRF, PCA, and NMF. a. Results are scaled with respect to each spatial domain, such that the summation of the 
cell type percentages in each domain is 100%. b. Results are scaled with respect to the cell types, such that the 
summation of all cell types across all tissue regions is 100%. c. Clustering results in each method. The clustering 
labels correspond to the x-axis in the left and middle panel. The clustering labels correspond to the x-axis in the 
left and middle panel. The reference scRNA-seq data for ST data that contain immune cell types and malignant 
cell types is collected on breast cancer via the InDrop platform. 



 
Supplementary Figure 40. TLS score in ST tumor data. a. Visualization of TLS score in the H1 sample. b. 
The distribution of TLS scores in different spatial domains detected by SpatialPCA across all 607 spots. Cluster 
4 is the TLS region detected by SpatialPCA. In the boxplot, the center line, box limits and whiskers denote the 
median, upper and lower quartiles, and 1.5× interquartile range, respectively. 
  



 
 
 
Supplementary Figure 41. Spatial trajectory inference results in tumor and surrounding regions in the ST 
tumor data. a. Visualization of the trajectory inferred by SpatialPCA in the original data. Left: Arrows point 
from tissue locations with low pseudo-time to tissue locations with high pseudo-time. Color represents different 
tissue regions. Right: Visualization of pseudotime inferred from spatial PCs in SpatialPCA. b. Visualization of 
the trajectory inferred by PCA. c. Visualization of the trajectory inferred by NMF. d. Visualizaton of the three 
trajectories inferred by SpatialPCA on the SpatialPCA constructed high-resolution spatial map. In all panels, 
arrows point from tissue locations with low pseudo-time to tissue locations with high pseudo-time. Color 
represents different tissue regions. 
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Supplementary Figure 42. Visualization of high-resolution spatial map prediction in the ST data. a. The 
spatial domain clustering results using SpatialPCA based on the original resolution. b. Visualization of high-
resolution spatial map prediction in SpatialPCA with default setting. c. Visualization of high-resolution spatial 
map prediction in BayesSpace with default setting.  
  



 

 
Supplementary Figure 43. Comparison of the spatial domains clustering results by different methods in 
the MERFISH data. a. Clustering results for different tissue sections (rows) by different methods (columns). 
The ground truth annotation (1st column) is manually annotated according to the cell type and marker gene 
expression in3. The examined methods include SpatialPCA (2nd column), BayesSpace (3rd column), SpaGCN (4th 
column), HMRF (5th column), NMF (6th column), and PCA (7th column). The MERFISH sample4 is measured on 
155 genes and an average of 5,663 cells and includes five tissue sections collected at bregma values -0.04, -0.09, 
-0.14, -0.19, and -0.24. b. Clustering results measured by adjusted Rand index (ARI, the higher the better), 
normalized mutual information (NMI, the higher the better), spatial chaos score (CHAOS, the lower the better), 
and percentage of abnormal spots (PAS, the lower the better) for different methods with their default settings 
across 5 sections. Clustering results of PCA and NMF are obtained with SVGs. The MERFISH data4 is collected 
on the preoptic region of the mouse hypothalamus using the multiplexed error-robust fluorescent in situ 
hybridization-based technology. In the boxplots in b, the center line, box limits and whiskers denote the median, 
upper and lower quartiles, and 1.5× interquartile range, respectively. 
  



Supplementary Tables 

Supplementary Table 1. Median ARI values of simulations in four scenarios at single cell level. (Default 
settings in each method are shaded in green color.) 

      Methods    scenario1  scenario2  scenario3  scenario4 

SpatialPCA SVGs 0.942 0.877 0.931 0.439 

SpatialPCA HVGs 0.901 0.864 0.882 0.504 

SpatialPCA all genes 0.893 0.851 0.877 0.518 

BayesSpace SVGs 0.312 0.08 0.205 0.005 

BayesSpace HVGs 0.367 0.225 0.286 0.075 

BayesSpace all genes 0.363 0.167 0.215 0.064 

SpaGCN SVGs 0.635 0.264 0.411 0.091 

SpaGCN HVGs 0.626 0.278 0.408 0.091 

SpaGCN all genes 0.625 0.277 0.412 0.138 

HMRF_SVGs 0.9 0.341 0.845 0.01 

HMRF HVGs 0.83 0.285 0.718 0 

HMRF all genes 0.773 0.279 0.671 0.002 

NMF SVGs 0.365 0.119 0.285 0.071 

NMF HVGs 0.343 0.21 0.27 0.07 

NMF all genes 0.339 0.206 0.264 0 

PCA SVGs 0.362 0.109 0.264 0.075 

PCA HVGs 0.363 0.221 0.283 0.075 

PCA all genes 0.367 0.225 0.286 0.439 

 
Supplementary Table 2. Median ARI values of simulations in four scenarios at spot level (spot diameter 
is 90um).  

Methods            scenario1  scenario2  scenario3  scenario4 

SpatialPCA 0.955 0.953 0.969 0.962 

BayesSpace 0.759 0.759 0.864 0.763 

SpaGCN 0.719 0.925 0.966 0.874 
HMRF 0.82 0.806 0.898 0.843 

NMF 0.573 0.57 0.749 0.598 

PCA 0.564 0.543 0.757 0.592 
 
Supplementary Table 3. Median NMI values of simulations in four scenarios at spot level (spot diameter 
is 90um).  

        Methods    scenario1  scenario2  scenario3  scenario4 

SpatialPCA 0.927 0.925 0.946 0.933 

BayesSpace 0.697 0.672 0.792 0.733 

SpaGCN 0.709 0.876 0.942 0.834 

HMRF 0.74 0.726 0.836 0.763 



NMF 0.515 0.484 0.66 0.581 

PCA 0.535 0.465 0.674 0.622 

 
Supplementary Table 4. Median CHAOS values of simulations in four scenarios at spot level (spot 
diameter is 90um).  

    Methods        scenario1  scenario2  scenario3  scenario4 

SpatialPCA 0.042 0.042 0.042 0.042 

BayesSpace 0.048 0.05 0.049 0.045 

SpaGCN 0.045 0.044 0.043 0.044 

HMRF 0.047 0.048 0.047 0.047 
NMF 0.051 0.053 0.051 0.049 

PCA 0.05 0.053 0.05 0.047 
 

Supplementary Table 5. Median PAS values of simulations in four scenarios at spot level (spot diameter 
is 90um).  

Methods            scenario1  scenario2  scenario3  scenario4 

SpatialPCA 0.007 0.007 0.005 0.009 

BayesSpace 0.109 0.109 0.062 0.112 

SpaGCN 0.101 0.03 0.013 0.051 

HMRF 0.07 0.075 0.039 0.063 
NMF 0.211 0.209 0.116 0.207 

PCA 0.214 0.226 0.111 0.218 
 
Supplementary Table 6. Number of genes associated with spatial PC values detected. The results are shown 
in DLPFC data sample 151676 (first column), Slide-seq data (second column), Slide-seq V2 data (third column), 
and ST tumor data (fourth column).  

Spatial PCs DLPFC Slide-seq Slide-seqV2 ST 
SpatialPC1 929 263 1288 133 
SpatialPC2 395 126 1342 32 
SpatialPC3 287 126 833 40 
SpatialPC4 165 95 1034 19 
SpatialPC5 64 112 799 13 
SpatialPC6 53 77 470 18 
SpatialPC7 42 28 668 11 
SpatialPC8 51 48 564 9 
SpatialPC9 18 46 431 10 
SpatialPC10 18 57 554 8 
SpatialPC11 12 58 258 8 
SpatialPC12 9 44 465 2 
SpatialPC13 10 38 475 8 
SpatialPC14 8 26 247 6 
SpatialPC15 9 36 284 10 
SpatialPC16 2 35 387 2 
SpatialPC17 3 57 293 3 
SpatialPC18 5 37 303 8 
SpatialPC19 5 45 202 3 
SpatialPC20 6 36 296 1 

 
 



Supplementary Table 7. Median ARI values of 12 samples in the DLPFC data. Default settings in each 
method are shaded in green color. The default setting in stLearn is to use marker genes, median ARI=0.470. 

Methods/Gene 
type 

SVGs HVGs All genes 

SpatialPCA 0.542 0.450 0.303 

BayesSpace 0.479 0.438 0.449 

SpaGCN 0.190 0.208 0.443 

HMRF 0.310 0.292 0.304 

stLearn 0.311 0.341 0.345 

PCA 0.358 0.305 0.345 

NMF 0.262 0.123 0.263 

 
 
Supplementary Table 8. Number of region-specific genes in each of the seven spatial domains detected 
using SpatialPCA in the DLPFC data (sample 151676).  

Spatial domain name Number of region-specific genes 
Cluster 1  79 
Cluster 2 777 
Cluster 3 124 
Cluster 4 66 
Cluster 5 127 
Cluster 6 153 
Cluster 7 203 

 
Supplementary Table 9. Number of pseudo-time associated genes in the DLPFC data (sample 151676), 
cortical layers in Slide-seq V2 data, and tumor regions in ST tumor data. 

Dataset Trajectory number Number of pseudo-time associated genes 
DLPFC 1 716 

Slide-seq V2 cortical layers 1 883 
ST tumor 1 40 

 
Supplementary Table 10. Number of region-specific genes in each of the eight spatial domains detected 
using SpatialPCA in the Slide-seq data. 

Spatial domain name Number of region-specific genes 
Choroid plexus  3 
White matter  9 

GCL middle layer  7 
GCL inner sublayer  2 
Cerebellum nuclei 4 
Molecular layer 9 
GCL outer layer 3 
Purkinje layer 14 

 
Supplementary Table 11. Number of region-specific genes in each of the 14 spatial domains detected using 
SpatialPCA in the Slide-seq V2 data. 

Spatial domain name Number of region-specific 
genes 

Spatial domain name Number of region-
specific genes 

CA1 72 Dentate gyrus 61 
Third ventricle 34 CA3 114 

Layer 6 20 Corpus callosum 66 
Hippocampus (slm) 39 Thalamus subregion1 24 

Layer 4 32 Thalamus subregion 3 38 
Hippocampus (so/sr) 32 Thalamus subregion 2 16 

Layer 5 14 Hippocampus (so) 17 



 
Supplementary Table 12. Number of region-specific genes detected in each of the seven spatial domains 
detected using SpatialPCA in the ST tumor data.  

Spatial domain name Number of region-specific genes 
Fibrous tissue near normal glands  132 

Fat tissue  25 
Immune region 72 

Tumor surrounding region  0 
Tumor region 240 

Fibrous tissue near tumor 14 
Normal glands 53 

 
 
Supplementary Table 13. Computation time and peak memory usage for SpatialPCA, BayesSpace, 
SpaGCN, HMRF, PCA, and NMF in the three real data applications. Computing time is recorded in dataset 
using a single thread on an Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz processor. 

 
DLPFC data 

sample 151676 
(n=3460) 

Slide-seq data  
(n=25,551) 

Slide-seq V2 data 
(n=53,208) 

ST data  
(n=613) 

SpatialPCA 
Time / Memory 6min / 2212Mb 23min / 11Gb 6.1 hours / 70Gb 

11s / 157 Mb, 
high resolution: 1s 

(322Mb) 

BayesSpace 
Time / Memory 27min / 10.5Gb 4.1 hours / 40Gb >100Gb, did not 

run 

85s / 713Mb,  
high resolution: 
22min / 1026Mb 

SpaGCN 
Time / Memory 28s / 1095Mb 6min / 7Gb 1.2 hours / 45Gb 11s / 89Mb 

stLearn 
Time / Memory 5min / 201Mb - - - 

HMRF 
Time / Memory 3min/3873Mb 58min/18Gb >100Gb, did not 

run  1min/326Mb 

PCA 
Time / Memory 3s / 542Mb 8s / 882Mb 2.8min / 3.8Gb 1s / 21Mb 

NMF 
Time / Memory 4s / 172Mb 6s / 806Mb 19s / 1070Mb 1s / 30Mb 
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