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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): Expert in spatial transcriptomics and bioinformatics 

Shang and Zhou present their method, SpatialPCA, that performs spatially aware dimensionality 

reduction, which can be used for further downstream analytical tasks common to analysing spatial 

transcriptomics data. SpatialPCA is a probabilistic factor model that incorporates a Guassian kernel to 

relate nearby spatial transcriptomics spots with each other, with the idea that cells near each other in 

physical space are expected to be similar in their gene expression profiles and local cell type proportion 

identities. The SpatialPCA manuscript is well written and very straightforward to follow. The simulations 

are extensive and range of real-data explorations are sufficient, in my opinion, to show comparable or 

superior performance. The authors provide software on Github and all scripts for reproducing the 

analyses are online. Nevertheless, I have some comments that I think, if addressed, would result in an 

improved manuscript. 

Comments: 

- It's unclear whether SpatialPCA can be performed for replicated spatial transcriptomics datasets. That 

is, if multiple distinct tissues are captured which are not near each other in physical space, how would 

one go about using SpatialPCA to embed these data into the same low-dimensional space? 

- The SpatialPCA model includes a kernel bandwidth parameter, gamma, that indicates the degree of 

spatial correlation among cells in proximity to each other. While the authors use a "rule of thumb" 

bandwidth as a reasonable default, I'm curious as to the level of robustness of downstream results (e.g. 

clustering) when varying this parameter. 

- The authors perform comprehensive comparisons against other methods, namely SpaGCN, 

BayesSpace, NMF and stLearn. For the purposes of spatial clustering, it may be worth comparing to 

methods that have specifically been designed with this purpose in mind, e.g. the hidden markov random 

field (HMRF) approach with doi: 10.1038/nbt.4260. 

- I would be interested in the performance of SpatialPCA for a non-spot based spatial transcriptomics 

dataset, e.g. the technologies of ISS/MERFISH/SEQFISH. Does SpatialPCA still outrank other methods if 

the observed data is more likely to be truly single cell - with the exception of segmentation errors? 



- Typical use of PCA for scRNA-seq analysis involves a primary feature selection step, e.g. selecting for 

highly variable genes (HVGs) prior to further dimensionality reduction. While there is some mention of 

HVGs in the manuscript, it's unclear to me whether some a priori feature selection step is taken by 

SpatialPCA other than minimal filtering of detected genes. The authors could clarify this in the Methods 

or Discussion. 

- It may be that the biological relevance of physical coordinates are non-Euclidean, e.g. a long thin tissue 

sample could be twisted in the process of data capture. What approaches could be taken to incorporate 

constraints on the spatial covariance matrix, or introduce a different spot-spot or cell-cell distance 

matrix altogether, for example one that is extracted from the Delaunay triangulation of cells? 

- Spatial imputation, it may be worth reiterating that this relates to points in space that are surrounded 

by observed expression. I would be curious as to what degree of extrapolation outside of the measured 

tissue area would be possible with SpatialPCA, although I do not think this is essential. 

Reviewer #2 (Remarks to the Author): Expert in spatial transcriptomics and bioinformatics 

The authors present a novel computational method for dimensionality reduction of variance-stabilized 

and featuze-normalized high-dimensional spatial transcriptomics data, called SpatialPCA. The method 

builds on an existing factorization method, Probabilistic PCA, by estimating a covariance matrix for the 

Multivariable Gaussian prior distribution for latent factors. This choice encourages the latent factors to 

be spatially smooth. Below I summarize my remarks and concerns about the evaluation of the method. 

The method promises to deliver: 

- Enriched biological signal, however this is not objectively evaluated; 

- Preserved spatial correlation; 

- Ability to impute the low-dimensional components at unmeasured arbitrary spatial locations enabling 

increasing the resolution to be arbitrarily higher than the measured one. Perhaps the SpatialPCA 

generative model is more reliable in interpolation rather than extrapolation regime, meaning predicting 

the expression over locations surrounded by observed locations. Even in this interpolation regime, the 

latent factors are continuous over space, and it remains the user’s discretion how to appropriately 

choose the density of spots they want to impute. 



The output of the SpatialPCA method are latent factors which can be used as an input to downstream 

existing methods. The authors have paired their spatial PCs with three types of downstream methods to 

address the following questions: 

- Spatial transcriptomic visualization - this is done by 1. Dim red via SpatialPCA, 2. More dim red (umap 

or tsne) to three dimensions, 3. assigning RGB to each of the three axes, 4. Plot the colors. 

- Spatial domain detection - pair SpatialPCA with existing clustering method - the method seems to be 

good at detecting spatially contiguous and smoothly varying spatial domains - which is not always a 

realistic assumption, for example in the presence of a stripe pattern. 

- Spatial trajectory inference - they pair SpatialPCA with an existing trajectory inference method. Single-

cell RNA-seq trajectory inference methods are designed to be applied to single cell resolution data. It is 

unclear how reliable such methods are for larger/mixed spatial transcriptomics spots. 

First, the performance of the SpatialPCA method is evaluated through simulations and comparisons to 

other methods. The quality of the factors derived fromSpatialPCA is evaluated in the context of one of 

the downstream tasks – domain detection. The authors simulate a simplified layered tissue consisting of 

4 layers, 10k single cell locations from 4 cell types, across 5000 genes. To match the lack of single-cell 

resolution of many spatial transcriptomics technologies, the authors perform spot aggregation at 

different resolutions. The counts for simulated cells are binned, and not ever “split” between 

neighboring spots, which is likely to happen in technologies such as Slide-seq and ST or Visium, for 

example. This sharing of counts among neighboring spots will lead to artifactually higher spatial 

correlation between spots in real data, and is not well represented in the simulation design. 

Finally, the authors apply their method, SpatialPCA, paired with existing downstream analysis methods, 

to four public spatial transcriptomics datasets from different technologies and different tissue 

structures: cortex, mouse hippocampus, and tumor microenvironment. 

One of the methods chosen as a benchmark is NMF, i.e. Non-negative matrix factorization. As the name 

implies, the method is designed to be applied to non-negative data. However, the authors apply it to 

data after normalization as described in the Methods sections, when the data is no longer non-negative. 

This makes the comparisons to NMF inappropriate. 

A key metric used by the authors in the evaluation of the ability of SpatialPCA to predict pathologist 

annotations is McFadden’s pseudo R^2. This metric is not described in the methods and it remains 

unclear to this reviewer how it can be applied to PCA or NMF, as they are not identified with a 

likelihood. 



The method is reported to not be sensitive to choice of hyperparameters, such as number of factors. 

However, the evaluation is purely visual and subjective (see Figures S5, S10, S14, S19). 

The work has potential to be useful to researchers seeking to identify spatial domains denovo. It should 

be pointed out that the work bares a large degree of similarity with: 

https://doi.org/10.48550/arXiv.2110.06122 Nonnegative spatial factorization by F. William Townes, 

Barbara E. Engelhardt 

https://doi.org/10.1038/s41592-021-01343-9 Identifying temporal and spatial patterns of variation from 

multimodal data using MEFISTO by Velten et al. 

Reviewer #3 (Remarks to the Author): Expert in bioinformatics, cancer genomics, immunology, and 

tumour microenvironment 

In this study, the authors present a dimensionality reduction approach tailored for spatial 

transcriptomics. The authors show the new methods utility across simulations and multiple datasets and 

compared to other methods. Altogether, this is an impressive piece of work in an up-and-coming field of 

research. The method seems sound and there is a lot of work here showing its usability to extract 

insights. 

I focus here on comments on the HER2 tumor data analysis 

1. The original paper provides data on 36 sections, and there are manual annotations in 6 of them. The 

analysis shown here focuses on one sample only, and shows marginal advantage for SpatialPCA over 

other methods, and can be random. I think that it would be much more powerful to show statistics 

across all samples. 

2. From the text it is suggested that there is very high matching between the expert annotation and the 

annotation by SpatialPCA, but by eye it doesn’t look that well. For example, DCIS, cancer and fibrous 

tissue are not distinguished at all. There are many differences. I understand that other methods aren’t 

doing better, but this suggests to me that this whole benchmarking approach – trying to identify major 

domains – might not make much sense. The domains identified by the pathologist are very “high-level” 

and there shouldn’t be much resemblance to the fine-grained analysis that is possible with ST. 



3. “We found that the regional specific genes detected by SpatialPCA are highly enriched 

in pathway of immune response and biological adhesion” – this sentence is unclear to me. 

4. I don’t understand that deconvolution analysis that included only immune cells. This surely creates 

bias. For example, the mast cell result is most probably some kind of bias (to my best knowledge, there 

aren’t supposed to be many mast cells). My guess is that since the reference of mast cells have some 

resemblance to stroma cells, it is “enriched” in this analysis. 

5. “In PCA and NMF, the detected tumor regions are not as smooth and continuous as SpatialPCA.” – of 

couse, SpatialPCA underlying hypothesis is of smoothness, and the method inherently pushes for that. 

6. “with multiple unique features of TLS: the region is located near the tumor; the region primarily 

contains T cells and B cells, all of which are key cell types in TLS” – those are not unique features of TLS, 

but for almost any region enriched with immune cells in the TME. I am not an expert, but there are more 

markers required to determine a region as TLS. See Box 1 here 

https://www.nature.com/articles/s41568-019-0144-6. Since it is possible to identify TLS with H&E, I 

think it would be best to compare predictions of TLS to an expert determination. 

7. The identification of the surrounding region is interesting, but I think there are too many speculations 

here for a results section, and most of the text here should be moved to the discussion. 

Minor comments: 

BayesSpace seems to be better in some of the statistics (PAS and CHAOS). It should be noted. 

Supp figure are not in order (S30, S29) 

Figure S18 – 

a. Missing axes 

b. Measuring variance doesn’t seem like a fair approach. SpatialPCA is actively smoothing the data, so 

variance is expected to be low. 



c. Not clear what is the first row. 

d. Why no comparison to BayesSpace and SpaGCN 

5f-h before 5e 



REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): Expert in spatial transcriptomics and bioinformatics 
 
Shang and Zhou present their method, SpatialPCA, that performs spatially aware dimensionality 
reduction, which can be used for further downstream analytical tasks common to analyzing 
spatial transcriptomics data. SpatialPCA is a probabilistic factor model that incorporates a 
Gaussian kernel to relate nearby spatial transcriptomics spots with each other, with the idea that 
cells near each other in physical space are expected to be similar in their gene expression profiles 
and local cell type proportion identities. The SpatialPCA manuscript is well written and very 
straightforward to follow. The simulations are extensive and range of real-data explorations are 
sufficient, in my opinion, to show comparable or superior performance. The authors provide 
software on Github and all scripts for reproducing the analyses are online. Nevertheless, I have 
some comments that I think, if addressed, would result in an improved manuscript. 
 
Thank you for your constructive comments. Our detailed responses are listed below. 
 
 
Comments: 
 
1. It's unclear whether SpatialPCA can be performed for replicated spatial transcriptomics 
datasets. That is, if multiple distinct tissues are captured which are not near each other in physical 
space, how would one go about using SpatialPCA to embed these data into the same low-
dimensional space? 
 
Thank you for the comment. The previous version of SpatialPCA cannot handle replicated spatial 
transcriptomics datasets. Following your comment, we have developed a new extension of 
SpatialPCA to perform dimension reduction on replicated datasets. In the extension, we take 
advantage of the fact that distinct tissue sections are not near each other in physical space and 
construct the covariance matrix for the latent factors in the form of a block diagonal matrix: it 
consists of the kernel matrices constructed using the spatial location information within each 
dataset, with zero correlation for pairs of locations across datasets. This way, the latent factors 
within each dataset are correlated a priori across spatial locations while the latent factors across 
datasets are not correlated a priori. (Certainly, if one wants to model the a priori correlation 
between latent factors across datasets, due to, for example, their similarity in the features 
extracted from histology images, then one can also modify the kernel matrices by constructing 
them using features other than spatial location information; we did not explore this direction 
further due to time constraint). In addition to the model extension, prior to analysis, we also used 
the IntegrateData function in Seurat to first remove the batch effects from each dataset and 
obtain an integrated gene expression matrix, so that the analyzed datasets are compatible to 
each other and are placed on the same manifold. We have included these technical details for 
the SpatialPCA extension in the Methods section (lines 1001-1017 on page 24).  
 



We have applied the extension of SpatialPCA to analyze the DLPFC data, which consists of tissue 
sections from three individuals. We analyzed one section from each individual using the 
extension of SpatialPCA and we found that the extension of SpatialPCA can help substantially 
improve the spatial domain detection accuracy for some tissue sections but at the slight cost of 
the accuracy loss of other sections. Specifically, the single dataset analysis version of SpatialPCA 
achieves an ARI of 0.540, 0.376 and 0.577 for samples 151507, 151669 and 151673, respectively; 
while the extension of SpatialPCA achieves an ARI of 0.518, 0.431 and 0.552. Therefore, the 
extension of SpatialPCA substantially improves spatial domain detection accuracy on the sample 
151669, which has a poor accuracy when analyzed individually, but at the cost of a small 
reduction in accuracy for the other two samples. The new results are shown in Supplementary 
Figure S10C and are described in detail in the updated Discussion section (lines 583-590 on page 
14). 
 
 
2. The SpatialPCA model includes a kernel bandwidth parameter, gamma, that indicates the 
degree of spatial correlation among cells in proximity to each other. While the authors use a "rule 
of thumb" bandwidth as a reasonable default, I'm curious as to the level of robustness of 
downstream results (e.g. clustering) when varying this parameter. 
 
Thank you for the comment. Following your comment, we have performed additional sensitivity 
analysis to examine the robustness of results with respect to bandwidth selection in the DLPFC 
dataset. Let’s take the sample 151676 as an example. The bandwidth selected for this tissue 
section using the “rule of thumb” is 0.0351, which achieves an ARI of 0.635 for spatial domain 
detection. In the new sensitivity analysis, we varied the bandwidth from 0.02 to 0.05, with an 
increment of 0.001. In the sensitivity analysis, we found that the spatial clustering accuracy by 
SpatialPCA are reasonably robust with respect to the bandwidth parameter, with the median ARI 
being 0.595 (min=0.541, max=0.646) when the bandwidth parameter ranges from 0.02 to 0.05. 
The new results are shown in Supplementary Figure S10A and are described in the updated Result 
section (lines 258-259 on page 7). 

 
 
3. The authors perform comprehensive comparisons against other methods, namely SpaGCN, 
BayesSpace, NMF and stLearn. For the purposes of spatial clustering, it may be worth comparing 
to methods that have specifically been designed with this purpose in mind, e.g. the hidden 
markov random field (HMRF) approach with doi: 10.1038/nbt.4260. 
 
Thank you for the comment. Following your comment, we have included HMRF into comparison 
in both simulations and in all real data applications except for the Slide-seq V2 data. We were 
unable to run HMRF on the Slide-seq V2 data because it required too much memory (>100Gb). 
For all analyses, we fitted HMRF using the Giotto package with default settings[1]. In the analysis, 
for cell-level simulations, HMRF is ranked as the second-best method right after SpatialPCA for 
spatial domain detection in three out of four scenarios and is ranked as the 6th method for the 
remaining scenario. For spot-level simulations, HMRF is ranked as the 3rd method in ten out of 
twelve scenarios and is ranked as 2nd method for the remaining scenarios. In the real data, HMRF 



is ranked as the 5th method in the DLPFC data and 4th in the ST tumor data. The new results are 
shown in Figure 1-5, Supplementary Figures S1-S5, S11-S12, S19, S22-S23, S26, S29, S35-S37, S39 
and S43, Supplementary Tables S1-S5, S7 and S13, and are described in detail in the updated 
Introduction section (lines 95-97 on page 3), Results section (lines 141-144 on page 4, lines 165-
168 on page 5, lines 189-191 on page 5, lines 262 and 267 on page 7, line 313 on page 8, lines 
441, 446-447, and 457-459 on page 11) and Methods section (lines 1045-1051 on page 25). 
 
 
4. I would be interested in the performance of SpatialPCA for a non-spot based spatial 
transcriptomics dataset, e.g. the technologies of ISS/MERFISH/SEQFISH. Does SpatialPCA still 
outrank other methods if the observed data is more likely to be truly single cell - with the 
exception of segmentation errors? 
 
Thank you for the comment. Following your comment, we obtained a MERFISH dataset [2] and 
applied all methods to this data. The MERFISH data is collected on the preoptic region of the 
mouse hypothalamus using the multiplexed error-robust fluorescent in situ hybridization-based 
technology. We obtained all five tissue slices in animal1 (bregma values: -0.04, -0.09, -0.14, -0.19, 
and -0.24), with 155 genes and an average of 5,663 cells. These slices contain ground truth spatial 
domain annotations, which were manually annotated according to cell type distribution and 
marker gene expression in [3]. In the analysis, consistent with the other datasets, we found that 
SpatialPCA outperforms the other methods. Specifically, in terms of spatial clustering accuracy, 
SpatialPCA achieves a median ARI of 0.454, which is higher than the other methods (BayesSpace 
0.1, SpaGCN 0.262, HMRF 0.414, NMF 0.06, PCA 0.07). In terms of spatial continuity of the 
detected spatial domains, SpatialPCA achieves a median PAS of 0.043, which is also lower than 
the other methods (BayesSpace 0.732, SpaGCN 0.359, HMRF 0.048, NMF 0.356, PCA 0.369). The 
new results are shown in Supplementary Figures S43 and are described in detail in the updated 
Discussion section (lines 590-594 on pages 14). 
 
 
5. Typical use of PCA for scRNA-seq analysis involves a primary feature selection step, e.g. 
selecting for highly variable genes (HVGs) prior to further dimensionality reduction. While there 
is some mention of HVGs in the manuscript, it's unclear to me whether some a priori feature 
selection step is taken by SpatialPCA other than minimal filtering of detected genes. The authors 
could clarify this in the Methods or Discussion. 
 
Thank you for the comment. Indeed, we followed standard approaches and selected SVGs prior 
to dimension reduction for all methods including SpatialPCA. These details were previously 
described in the feature selection part inside the “Data normalization and dimension reduction” 
subsection under the “Analysis Details” section in Methods. Following your comment, we have 
made this clearer to readers in the Methods section (lines 924-926 on page 22). 
 
 
6. It may be that the biological relevance of physical coordinates are non-Euclidean, e.g. a long 
thin tissue sample could be twisted in the process of data capture. What approaches could be 



taken to incorporate constraints on the spatial covariance matrix, or introduce a different spot-
spot or cell-cell distance matrix altogether, for example one that is extracted from the Delaunay 
triangulation of cells? 
 
Thank you for the comment. The modeling framework of SpatialPCA is general and can be paired 
with a covariance matrix constructed using non-Euclidean distance. To illustrate such application, 
we have performed additional analysis in the DLPFC dataset using Delaunay triangulation based 
distance. The Delaunay triangulation of the spatial locations on the tissue section is equivalent 
to the Voronoi diagram for the same set of locations [4]. Therefore, we first calculated the 
Voronoi tessellation of all locations and defined pairs of locations as Delaunay neighbors if they 
share a common edge in the Voronoi polygons to construct the Delaunay triangulation. 
Afterwards, we used the delaunayDistance function in the R package spatstat.geom to calculate 
the distance between each pair of locations i and j in the Delaunay triangulation, which is the 
minimum number of edges one must travel through between the two locations. We then 
converted the calculated Delaunay distance to construct the covariance matrix used in 
SpatialPCA. Using the Delaunday distance in SpatialPCA, we obtained an ARI of 0.453 for spatial 
domain detection, which is lower than using the default covariance matrix constructed by 
Euclidean distance (ARI=0.577). While non-Euclidean distance does not work as well as Euclidean 
distance in this particular dataset, we acknowledge that non-Euclidean distance could be 
beneficial in other datasets. Therefore, we have implemented an option in SpatialPCA to 
compute the covariance matrix based on Delaunay triangulation. The new results are shown in 
Supplementary Figures S10B and are described in the updated Discussion section (lines 568-576 
on page 14) and Methods section (lines 948-957 on page 23). 
 
 
7. Spatial imputation, it may be worth reiterating that this relates to points in space that are 
surrounded by observed expression. I would be curious as to what degree of extrapolation 
outside of the measured tissue area would be possible with SpatialPCA, although I do not think 
this is essential. 
 
Thank you for the comment. We have included a few sentences in the Methods section to 
reiterate that the spatial imputation relates to points in space that are surrounded by observed 
expression (lines 1200-1203 on page 28). Indeed, extrapolating outside the measured tissue area 
would be challenging especially when the extrapolated area contains distinct cell type 
composition and transcriptomic profiles as compared to the measured area.  
 
  



Reviewer #2 (Remarks to the Author): Expert in spatial transcriptomics and bioinformatics 
 
The authors present a novel computational method for dimensionality reduction of variance-
stabilized and feature-normalized high-dimensional spatial transcriptomics data, called 
SpatialPCA. The method builds on an existing factorization method, Probabilistic PCA, by 
estimating a covariance matrix for the Multivariable Gaussian prior distribution for latent factors. 
This choice encourages the latent factors to be spatially smooth. Below I summarize my remarks 
and concerns about the evaluation of the method.  
 
Thank you for your constructive comments. Our detailed responses are listed below. 
 
 
(1) The method promises to deliver: 
- Enriched biological signal, however this is not objectively evaluated; 
- Preserved spatial correlation; 
- Ability to impute the low-dimensional components at unmeasured arbitrary spatial locations 
enabling increasing the resolution to be arbitrarily higher than the measured one. Perhaps the 
SpatialPCA generative model is more reliable in interpolation rather than extrapolation regime, 
meaning predicting the expression over locations surrounded by observed locations. Even in this 
interpolation regime, the latent factors are continuous over space, and it remains the user’s 
discretion how to appropriately choose the density of spots they want to impute.  
 
Thank you for the nice summary and comments.  
 
We are a bit lost on your comment on the enriched biological signal. Previously we have 
performed objective and quantitative evaluations to show that the latent factors from SpatialPCA 
contain enriched biological signal, by showing that the latent factors can be used to perform 
multiple downstream analyses, better than the latent factors obtained from other dimension 
reduction methods. For example, the latent factors from SpatialPCA can help detect spatial 
domains more accurately than the other methods, with higher ARI and NMI scores as well as 
lower PAS and CHAOS scores, across datasets. In addition, the latent factors from SpatialPCA can 
be paired with single cell trajectory inference methods and detected the “inside-out” pattern of 
corticogenesis more consistently than the other methods. Our approach of objectively evaluating 
the biology information contained in the latent factors from SpatialPCA follows exactly the long-
standing tradition of single cell genomics in evaluating the biological signal contained in low 
dimensional features through clustering analysis and pseudotime inference [5-8]. We suspect 
that different scientists may have a different interpretation on the term “Enriched” and our use 
of “Enriched” may have led to some level of miscommunication. Therefore, we have removed 
the word “Enriched” from the abstract following your comment and simply state that the latent 
factors from SpatialPCA contain biological information that can be used for various downstream 
analysis.  
 
Besides these existing objective and quantitative evaluations, we have included additional 
qualitative analysis in the revised manuscript to interpret the biological signals contained in the 



latent factors. Specifically, for each examined dataset, we identified genes that are associated 
with each spatial PC and performed gene set enrichment analysis on them to interpret the 
biological signals contained in the spatial PCs. We found that the pathways enriched in spatial PC 
associated genes all make biological sense. For example, in DLPFC data, the top spatial PC 
associated genes are enriched in synapse related, neuron projection, and synaptic signaling 
pathways. In Slide-Seq data, the top spatial PC related genes are enriched in synapse related, 
axon related, synaptic signaling, and oligodendrocyte differentiation pathways. In Slide-seq V2 
data, the top spatial PC associated genes are enriched in synapse related, cilium movement, 
electron transport and neurogenesis pathways. In ST tumor data, the top spatial PC related genes 
are enriched in cell activation, cell-cell adhesion, cell migration, and immune response pathways. 
The new results are shown in Supplementary Figures S8, S18, S25 and S33, with details provided 
in the Results section (lines 252-254 on page 6, lines 302-303 on page 8, lines 370-371 on page 9, 
lines 424-426 on page 10) and Methods section (lines 1254-1256 on page 29).  
 
We fully agree with your comments on imputation. Following your comments, we have included 
a few sentences in the Methods section to reiterate that, just like any other spatial imputation 
approaches, the spatial imputation by SpatialPCA is also recommended to be performed only on 
points in the space that are surrounded by observed expression (lines 1200-1203 on page 28). 
Indeed, extrapolating outside the measured tissue area would be challenging for any methods, 
especially when the extrapolated area contains distinct cell type composition and transcriptomic 
profiles as compared to the measured area. We also agree with your comment on the density of 
spots in imputation. Indeed, likely most spatial imputation methods, the previous version of 
SpatialPCA requires the user to appropriately choose the density of spots they want to impute. 
We note, however, that some reasonable default density choices might be possible for certain 
spatial transcriptomics technologies. For example, the ST technology arrange spots on square 
while the Visium technology arrange spots on hexagonal lattices; both provide a natural way to 
define a neighborhood structure as squares or hexagons. Therefore, following your comments, 
we have followed BayesSpace and implemented the default density choices for these two 
technologies, where we impute nine subspots for each ST spot and impute six subspots for each 
Visium spot. For all other technologies, we simply set the default choice to be imputing on four 
new locations for each measured location. The new implementations are updated in our software 
and are described in the updated Method section (lines 1189-1191 on page 28). 
 
 
(2) The output of the SpatialPCA method are latent factors which can be used as an input to 
downstream existing methods. The authors have paired their spatial PCs with three types of 
downstream methods to address the following questions: 
- Spatial transcriptomic visualization  
- this is done by  
1. Dim red via SpatialPCA,  
2. More dim red (umap or tsne) to three dimensions,  
3. assigning RGB to each of the three axes,  
4. Plot the colors. 
- Spatial domain detection  



- pair SpatialPCA with existing clustering method - the method seems to be good at detecting 
spatially contiguous and smoothly varying spatial domains - which is not always a realistic 
assumption, for example in the presence of a stripe pattern. 
 
Thank you for the nice summary and the last comment on the stripe pattern. Following your 
comment, we have introduced additional simulations with a stripe pattern to examine the 
performance of SpatialPCA and the other methods in detecting spatially non-contiguous and non-
smoothly varying domains (Supplementary Figure S4F). In particular, we divided the tissue into 
six equal-sized stripes and denoted the three odd stripes as domain one and the three even 
stripes as domain two. We set the proportions of the four cell types to be different in the two 
domains: in domain one, the cell types with the highest to lowest proportions are cell types 1, 2, 
3, and 4; in domain two, the four types with the highest to lowest proportions are cell types 2, 3, 
4, and 1. We considered three cell type composition scenarios similar to those used in the original 
simulations. Specifically, in the first scenario, each layer contains two dominant cell types, with 
60% of the cells belonging to the dominant cell types and 40% of the cells belong to the other 
cell types. In the second scenario, each spatial domain contains two major cell types with unequal 
proportion, with one consisting of 60% of cells and the other consisting of 30% of cells, along with 
two minor cell types each consisting of 5% of cells. In the third scenario, each spatial domain 
contains three major cell types, with one consisting of 60% of cells, along with two each consisting 
of 20% of cells. The details are described in detail in the updated Methods section (lines 824-838 
on page 20). 
 
In the new simulations, we found that SpatialPCA also outperforms the other methods in all three 
scenarios in detecting the stripe pattern. Specifically, in the first scenario, SpatialPCA achieves an 
ARI of 0.904, which is higher than the other methods (BayesSpace=0.164, SpaGCN=0.521, 
HMRF=0.859, NMF=0.04, PCA=0.067). In the second scenario, SpatialPCA achieves an ARI of 
0.854, which is higher than the other methods (BayesSpace=0.063, SpaGCN=0.585, HMRF=0.707, 
NMF=0.094, PCA=0.034). In the third scenario, SpatialPCA achieves an ARI of 0.86, which is also 
higher than the other methods (BayesSpace=0, SpaGCN=0.523, HMRF=0.641, NMF=0.166, 
PCA=0.1). The new results are shown in Supplementary Figures S4 and are described in detail in 
the updated Result section (lines 200-204 on page 5).  
 
 
- Spatial trajectory inference  
- they pair SpatialPCA with an existing trajectory inference method. Single-cell RNA-seq trajectory 
inference methods are designed to be applied to single cell resolution data. It is unclear how 
reliable such methods are for larger/mixed spatial transcriptomics spots. 
 
Thank you for the comment. Indeed, the single-cell RNA-seq trajectory inference methods were 
initially designed with single cell data in-mind. However, some recent studies have started to 
explore the use of single-cell RNA-seq trajectory inference methods for larger/mixed spatial 
transcriptomics spots. For example, ref [9] calculated spot level “Spacetime” in 10X Visium data 
using the single-cell trajectory inference method Slingshot. Ref [10] estimated the spot level 
pseudotime in 10X Visium using the single-cell trajectory inference methods PHATE [11] and 



monocle [12]. stLearn [13] applied single-cell trajectory inference method PAGA [14] on spatially 
smoothed gene expression data at spot level. In the present study, we also found that paring 
SpatialPCA with existing single-cell trajectory inference methods appear to be promising in the 
examined spatial transcriptomics datasets. Therefore, following your comments, we have cited 
these existing literatures on applying single-cell trajectory methods for spatial transcriptomics in 
the updated manuscript to support such use (line 1209 on page 28). Certainly, we do fully agree 
with you that the use of single-cell RNAseq trajectory inference methods in spatial 
transcriptomics is likely not optimal. Therefore, following your comment, we have also included 
a couple of sentences in the Discussion section to emphasize that future method development 
for trajectory inference that specifically targeted for larger/mixed spatial transcriptomics spots is 
an important direction and that pairing SpatialPCA with these future methods will likely have 
added benefits and improved accuracy for spatial trajectory inference (lines 576-582 on page 14).  
 
 
(3) First, the performance of the SpatialPCA method is evaluated through simulations and 
comparisons to other methods. The quality of the factors derived from SpatialPCA is evaluated 
in the context of one of the downstream tasks – domain detection. The authors simulate a 
simplified layered tissue consisting of 4 layers, 10k single cell locations from 4 cell types, across 
5000 genes. To match the lack of single-cell resolution of many spatial transcriptomics 
technologies, the authors perform spot aggregation at different resolutions. The counts for 
simulated cells are binned, and not ever “split” between neighboring spots, which is likely to 
happen in technologies such as Slide-seq and ST or Visium, for example. This sharing of counts 
among neighboring spots will lead to artifactually higher spatial correlation between spots in real 
data, and is not well represented in the simulation design. 
 
Thank you for the comment. We originally binned the single cells into pseudo-spots following the 
standard binning strategy used in previous studies (e.g. [15]). The spatial correlation created in 
the simulations from our binning strategy appears to be consist with what we have observed in 
the real datasets. Specifically, the Moran’s I value ranges from -0.001 to 0.286 (median=0.001) in 
the LIBD data; from -0.006 to 0.161 (median=0.004) in the ST tumor data; from -0.0007 to 0.003 
(median=-0.0001) in the Slide-Seq data; and from -0.0005 to 0.058 (median=0.0004) in the Slide-
Seq V2 data. In the simulations created by the binning strategy, the median Moran’s I value is 
0.001, 0.001, and 0.002, when the spot diameter is 90um, 107um, and 145um, respectively. 
Therefore, the spatial correlation created in the previous simulations appear to match the real 
data reasonably well.  
 
In addition, following your comment, we also searched the literature but were unable to find any 
previous studies that used the “split” strategy brought up in your comment. However, we have 
decided to follow your comment and introduced a new set of simulations using a split strategy, 
where we split the cells and introduce additional spatial correlation between spots. Specifically, 
we first obtained 10,000 cells and assigned them to the spatial locations in the same four 
scenarios described in the previous simulations. In the process, we randomly selected 2,500 cells 
to be split. For each of these cells, we randomly split its expression level into four components 
based on uniform random weights that sum up to one. We then added each of the four 



components randomly to the expression level of one of its four nearest neighboring cells. This 
way, we obtain a total of 7,500 pseudo-cells, 86.5% across simulation replicates contain split 
expression level from some of its neighboring cells. Afterwards, we aggregate the 7,500 pseudo-
cells into spots. With this cell split strategy, the nearby spots on the tissue tend to have more 
similar expression profiles than the original binning strategy, thus introducing higher spatial 
correlation between spots. Indeed, the median spatial correlation now increases to 0.003, 0.003, 
and 0.005, when the spot diameter is 90um, 107um, and 145um, respectively. The new 
simulations are described in detail in the updated Method section (lines 840-851 on page 20). 
 
In the new simulations, we found that the performance of all methods improved due to the 
increased spatial correlation, which makes it easier to identify spatial domains. The performance 
of SpatialPCA remains either the highest or very close to the highest among the methods. For 
example, when spot diameter is 90um, the median ARI value achieved by SpatialPCA across 
simulation replicates is 0.954, 0.952, 0.967, and 0.963 for the four scenarios, respectively. 
SpaGCN works well in scenario III when minor cell types have lower proportion in each spatial 
domain, but its performance decays in other scenarios when proportion of minor cell types 
increase in each spatial domain (median ARI=0.933, 0.936, 0.966, and 0.913 in four scenarios). 
HMRF performs worse than SpaGCN in all scenarios (median ARI=0.826, 0.807, 0.905, and 0.853 
in four scenarios). BayesSpace does not perform as well as SpatialPCA or SpaGCN (median 
ARI=0.839, 0.838, 0.905, 0.839 for the four scenarios). While PCA and NMF perform the worst 
(PCA median ARI=0.579, 0.555, 0.77, and 0.602; NMF median ARI=0.625, 0.614, 0.791, and 0.651 
in the four scenarios). The new results are shown in Supplementary Figures S5 and are described 
in the updated Results section (lines 204-208 on page 5). 
 
 
(4) Finally, the authors apply their method, SpatialPCA, paired with existing downstream analysis 
methods, to four public spatial transcriptomics datasets from different technologies and different 
tissue structures: cortex, mouse hippocampus, and tumor microenvironment. 
 
One of the methods chosen as a benchmark is NMF, i.e. Non-negative matrix factorization. As 
the name implies, the method is designed to be applied to non-negative data. However, the 
authors apply it to data after normalization as described in the Methods sections, when the data 
is no longer non-negative. This makes the comparisons to NMF inappropriate. 
 
Thank you for the comment. We previously followed [16] and used SCTransform function to 
normalize the gene expression data and further converted all negative values to zero before 
performing NMF. Therefore, NMF was applied to non-negative data. We apologize for not making 
these details apparent, which were described in the previous Methods section. Following your 
comment, we have performed new analyses using a more common data normalization approach 
for NMF: we first performed log normalization on the gene expression count matrix using 
logNormCounts function in the scater package following the tutorial on 
https://rdrr.io/bioc/scater/man/runNMF.html, and then used the calculateNMF function to 
obtain the PCs from NMF implemented in scater [17] package. Compared to the previous data 
transformation strategy for NMF, the updated NMF has slightly decreased clustering accuracy 



but better spatial continuity. For example, in the DLPFC data, the median ARI reduced by 0.1, and 
the median PAS score also reduced by 0.06. The updated results are shown in Figure 1-5, 
Supplementary Figures S1-S5, S11-S12, S19, S22-S23, S26, S29, S35-S37, S39 and S43, 
Supplementary Tables S1-S5, S7 and S13, and are described in detail in the updated Results (line 
251 on page 6, lines 263 and 269 on page 7, lines 314-315 on page 8, lines 384-385 on page 9, 
line 429 on page 10, lines 440, 448, 457 and 459 on page 11) and Method section (lines 920-922 
and lines 934-372 on page 22). 
 
 
(5) A key metric used by the authors in the evaluation of the ability of SpatialPCA to predict 
pathologist annotations is McFadden’s pseudo R^2. This metric is not described in the methods 
and it remains unclear to this reviewer how it can be applied to PCA or NMF, as they are not 
identified with a likelihood. 
 
Thank you for the comment. These details were previously described in the “Spatial clustering 
performance evaluation” subsection in the Methods section. “Specifically, we treated the true 
spatial domains as the outcome and fitted a multinomial regression model. For the dimension 
reduction methods, we treated the extracted low-dimensional components as predictors in the 
regression model. In the regression model, we computed the McFadden adjusted pseudo-R2 [18] 
to evaluate the predictive ability of the predictor variables in predicting the ground truth. A 
higher pseudo-R2 suggests that the method is capable of extracting informative output in 
predicting the true spatial domains.” (current lines 933-938 on page 22). Following your comment, 
we have included a sentence in the Results section (lines 247-248 on page 6) where we first 
introduced pseudo R^2 to point readers to these important details.  
 
 
(6) The method is reported to not be sensitive to choice of hyperparameters, such as number of 
factors. However, the evaluation is purely visual and subjective (see Figures S5, S10, S14, S19). 
 
Thank you for the comment. Following your comment, we have included additional quantitative 
measurements for the sensitivity analyses. Specifically, we included the comparison on ARI, NMI, 
PAS, and CHAOS scores for the DLPFC and ST tumor datasets where ground truth domain 
annotations are available. We have included comparisons on PAS and CHAOS scores for the Slide-
seq and Slide-seq V2 data where ground truth domain annotations are unavailable. Consistent 
with previous visual inspections, SpatialPCA performs robustly well across different sensitivity 
settings in different datasets. The updated results are shown in the updated Supplementary 
Figures S9, S20, S27, and S34 and are described in the updated Results section (lines 256-258 on 
page 7, lines 307-309 on page 8, lines 376-378 on page 9, lines 441-443 on page 11). 
 
 
(7) The work has potential to be useful to researchers seeking to identify spatial domains de novo. 
It should be pointed out that the work bares a large degree of similarity with: 
https://doi.org/10.48550/arXiv.2110.06122 Nonnegative spatial factorization by F. William 
Townes, Barbara E. Engelhardt 



https://doi.org/10.1038/s41592-021-01343-9 Identifying temporal and spatial patterns of 
variation from multimodal data using MEFISTO by Velten et al. 
 
Thank you. We have included both references to the updated manuscript. (We did not cite these 
two papers in the previous version because these two papers have not been posted when our 
manuscript was initially submitted to and under revised in a different journal almost two years 
ago.)  
 
  



Reviewer #3 (Remarks to the Author): Expert in bioinformatics, cancer genomics, immunology, 
and tumour microenvironment 
 
In this study, the authors present a dimensionality reduction approach tailored for spatial 
transcriptomics. The authors show the new methods utility across simulations and multiple 
datasets and compared to other methods. Altogether, this is an impressive piece of work in an 
up-and-coming field of research. The method seems sound and there is a lot of work here 
showing its usability to extract insights. 
 
I focus here on comments on the HER2 tumor data analysis 
 
Thank you for your constructive comments. Our detailed responses are listed below. 
 
 
1. The original paper provides data on 36 sections, and there are manual annotations in 6 of them. 
The analysis shown here focuses on one sample only, and shows marginal advantage for 
SpatialPCA over other methods, and can be random. I think that it would be much more powerful 
to show statistics across all samples. 
 
Thank you for the comment. The original data paper provided spatial domain annotation for 8 
tissue sections (A1, B1, C1, D1, E1, F1, G2 and H1), among which H1 and G2 contain the TLS region. 
Because H1 has a higher number of spatial locations (n=613) than G2 (n=467), we used it as the 
main example in the original manuscript. 
 
Following your comments, we have included additional analysis on all eight annotated samples 
in the updated manuscript. We did not compare methods in the other 24 tissue sections because 
of a lack of annotations for those sections. The new comparative results are similar to what we 
have observed on the H1 sample. Briefly, SpatialPCA achieves the highest median ARI and NMI 
scores among all compared methods across all eight tissue sections. SpatialPCA achieves similar 
median PAS and CHAOS scores as BayesSpace, both of which have lower scores than the other 
methods, across eight tissue sections. The new results are shown in the updated Supplementary 
Figures S36 and are described in detail in the updated Results section (lines 448-451 on page 11).  
 
 
2. From the text it is suggested that there is very high matching between the expert annotation 
and the annotation by SpatialPCA, but by eye it doesn’t look that well. For example, DCIS, cancer 
and fibrous tissue are not distinguished at all. There are many differences. I understand that other 
methods aren’t doing better, but this suggests to me that this whole benchmarking approach – 
trying to identify major domains – might not make much sense. The domains identified by the 
pathologist are very “high-level” and there shouldn’t be much resemblance to the fine-grained 
analysis that is possible with ST.  
 
Thank you for the comment. We fully agree. Indeed, currently there is an unfortunate lack of 
fine-grained annotations by pathologists in the field of spatial transcriptomics, which impedes 



method comparison at a fine scale. Consequently, most existing studies had to rely on the 
available high-level annotations to evaluate and compare method performance (e.g. [19, 20]), 
which will inevitably miss the fine-grained details that are contained in the collected ST datasets. 
While it is practically infeasible to obtain fine-scaled annotations in the analyzed ST datasets, we 
decided to follow the essence of your comment and performed a set of fine-grained analysis in 
the DCIS cancer dataset. Specifically, we reasoned that gene expression would capture fine-
grained details for the spatial domains on the tissue much better than the high-level annotations 
can. Therefore, if we were able to obtain a list of genes that are specifically expression in a spatial 
domain, then their gene expression on the tissue will likely define the boundary of the spatial 
domain with fine-grained details. To do so, for each spatial domain in turn, we first performed 
differential expression (DE) analysis using MAST on the histologist annotated high-level 
annotations to obtain a list of domain-specific DE genes (# of DE genes ranges from 19 to 408 for 
different domains). Next, for each spatial domain in turn, we obtained the averaged expression 
level of its domain-specific DE genes to serve as the domain-specific meta-gene. The expression 
of the meta-gene for each domain likely contains the fine-grained transcriptomic information and 
can thus be used to evaluate the fine-grained performance of different spatial domain detection 
methods. Therefore, we examined the enrichment of each of the seven meta-genes in the spatial 
domains detected by each method for method evaluation. Intuitively, if the spatial domain 
detection method is better powered to detect fine-grained spatial domains, then the expression 
level of the meta-genes would be enriched in one of the detected spatial domains. We calculated 
an enrichment score as the ratio of the meta-gene expression in the corresponding domain vs 
the other domains. The analysis details are provided in the updated Methods section (lines 1079-
1105 on pages 25-26). As expected, SpatialPCA achieves the highest meta-gene enrichment score 
(1.417) compared with the other methods (BayesSpace 1.269; HMRF 1.202; NMF 1.345; PCA 
1.248; SpaGCN 1.096) on sample H1. SpatialPCA also achieves the highest meta-gene enrichment 
score (1.141) compared with the other methods (BayesSpace 1.082; HMRF 0.916; NMF 0.983; 
PCA 0; SpaGCN 0.822) across all eight annotated samples. The new results support that the spatial 
domains detected by SpatialPCA likely captured the fine-grained transcriptomic architecture on 
the tissue, at least more so than the other methods. The new results are shown in the updated 
Supplementary Figures S36B-S36D and are described in detail in the updated Results section 
(lines 451-459 on page 11). 
 
 
3. “We found that the regional specific genes detected by SpatialPCA are highly enriched in 
pathway of immune response and biological adhesion” – this sentence is unclear to me.  
 
Thank you. To clarify the sentence, we have revised it to read “We found that the DE genes in the 
immune region detected by SpatialPCA are highly enriched in the pathways of immune response, 
while the DE genes in the tumor region detected by SpatialPCA are highly enriched in the 
pathways of biological adhesion” (lines 468-470 on page 11). 
 
 
4. I don’t understand that deconvolution analysis that included only immune cells. This surely 
creates bias. For example, the mast cell result is most probably some kind of bias (to my best 



knowledge, there aren’t supposed to be many mast cells). My guess is that since the reference 
of mast cells have some resemblance to stroma cells, it is “enriched” in this analysis. 
 
Thank you for the comment. We previously performed two different types of deconvolution 
analyses: one using only the immune cells while the other using both immune cells and malignant 
cells. The first type of deconvolution analysis primarily follows the standard practice in the field 
of performing deconvolution of the tumor tissue using only immune cells (e.g. following 
CIBERSORT[21] and quanTIseq[22]). Using immune cells for deconvolution allows us to focus on 
examining the composition and density of immune cells in the tumor microenvironment, which 
is a critical indicator of tumor growth, cancer progression, and the success of anticancer therapies 
(e.g. [22]). We fully agree with your comment that bias, especially bias of mast cells, may occur 
in the first type of deconvolution analysis. Because of this potential bias, we previously also 
performed the second type of deconvolution analysis using a range of cell types beyond immune 
cells, which yields qualitatively similar results as the first type of deconvolution analysis. 
Following your comment, we removed the first type of deconvolution analysis, which does not 
alter the conclusion of the paper.  
 
 
5. “In PCA and NMF, the detected tumor regions are not as smooth and continuous as SpatialPCA.” 
– of course, SpatialPCA underlying hypothesis is of smoothness, and the method inherently 
pushes for that. 
 
Thank you for the comment. We fully agree. To make this explicit to readers, we have modified 
this sentence to “In PCA and NMF, the detected tumor regions are not as smooth and continuous 
as SpatialPCA, as the later explicitly models spatial correlation in dimension reduction.” (lines 
475-477 on page 11).  
 
We also note that, while the spatial smoothness assumption is not employed in dimension 
reduction methods PCA and NMF, such spatial smoothness assumption is commonly employed 
for almost all spatial domain detection methods. For example, BayesSpace uses a Potts model to 
borrow the information from nearby spots to achieve spatial smoothing. SpaGCN induces spatial 
smoothness by aggregating spatial locations and histology information into a graph convolution 
layer. stLearn uses a morphological normalization step to incorporate spatial smoothness into 
the gene expression. HMRF builds a graph to represent the spatial relationship among the cells 
and detects spatial domain by comparing the gene expression of each cell with its surroundings 
to search for coherent spatial patterns. Therefore, while the detected tumor regions from 
SpatialPCA are expected to be smoother and more continuous that that from PCA and NMF, such 
a priori expectation does not hold for comparing SpatialPCA with the other methods.  
 
 
6. “with multiple unique features of TLS: the region is located near the tumor; the region primarily 
contains T cells and B cells, all of which are key cell types in TLS” – those are not unique features 
of TLS, but for almost any region enriched with immune cells in the TME. I am not an expert, but 
there are more markers required to determine a region as TLS. See Box 1 here 



https://www.nature.com/articles/s41568-019-0144-6. Since it is possible to identify TLS with 
H&E, I think it would be best to compare predictions of TLS to an expert determination. 
 
Thank you for the comment. To address your comment, (1) we have removed “unique” in the 
sentence following your suggestion. (2) We note that we actually previously relied on the TLS 
marker genes listed in Box 1 in your referred paper https://www.nature.com/articles/s41568-
019-0144-6 and selected those that are marker genes for breast cancer and those that are 
expressed in our data for the analysis (e.g. Figure 5). We now make this important point clear in 
the updated Results section (lines 483-484 on page 11). (3) In addition, we have performed 
additional analysis by obtaining the TLS score for each tissue location from the original study [23]. 
The TLS score was computed in the original study based on the interaction strength between B 
cells and T cells in each spatial location, which is a key feature of TLS. We indeed found that the 
TLS scores are highly enriched in the TLS region detected by SpatialPCA (Supplementary Figure 
S40). The new results are shown in the updated Supplementary Figures S36B-S36D and are 
described in detail in the updated Results section (lines 484-487 on pages 11-12).  
 
7. The identification of the surrounding region is interesting, but I think there are too many 
speculations here for a results section, and most of the text here should be moved to the 
discussion.  
 
Thank you for the comment. Following your comment, we have moved part of the results on 
tumor surrounding region detection and interpretation to the Discussion section (lines 542-545 
on page 13). We kept the other part of the results on tumor surrounding region in the Results 
section in order to address your comment #6.   
 
 
Minor comments: 
 
BayesSpace seems to be better in some of the statistics (PAS and CHAOS). It should be noted. 
 
Thank you. We have noted in the Results section that BayesSpace is better in some statistics in 
some datasets (e.g. lines 444-445 on page 11).  
 
 
Supp figure are not in order (S30, S29) 
 
Figure S18 –  
a. Missing axes 
b. Measuring variance doesn’t seem like a fair approach. SpatialPCA is actively smoothing the 
data, so variance is expected to be low. 
c. Not clear what is the first row. 
d. Why no comparison to BayesSpace and SpaGCN 
 
5f-h before 5e 



 
Thank you. We have fixed these issues in the updated manuscript. For b, this is actually exactly 
the point we want to make. By modeling spatial correlation and smoothing the data in a spatial 
fashion, SpatialPCA will produce lower variance. We added a sentence in the figure legend to 
make this point clear. For Figure S18 (current Figure S32), we did not compare to BayesSpace and 
SpaGCN in the RGB plot in (d) because RGB plot is used for visualizing low dimensional 
components, but these two methods are not dimension reduction methods and thus do not 
produce low dimensional components.  
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REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

I thank the authors for their careful and detailed work in addressing my comments. The revised 

manuscript is much improved with a methodological extension to multiple distinct spatial samples, 

sensitivity analysis with gamma parameter choice, demonstration of applicability to spatial FISH data, 

and added functionality to non-euclidean distances. I have no further concerns. 

NOTE FROM THE EDITOR: Reviewer #1 considered that the concerns from Reviewer #2 were addressed. 

Reviewer #3 (Remarks to the Author): 

The authors' response to my concerns is satisfactory. 

One issue that bothers me is regarding reviewer 1's comment about the gamma parameter. I see the 

response, however, it seems that the range used for the parameter (0.02 to 0.05) is quite specific. I think 

it would be worth expanding this range to understand how it changes the results. Actually, the ARI 

changed quite considerably for this small range (0.54-0.646), suggesting that the model isn't robust for 

this change. 



Reviewer #3 (Remarks to the Author): 
The authors' response to my concerns is satisfactory. 
One issue that bothers me is regarding reviewer 1's comment about the gamma parameter. I 
see the response, however, it seems that the range used for the parameter (0.02 to 0.05) is 
quite specific. I think it would be worth expanding this range to understand how it changes the 
results. Actually, the ARI changed quite considerably for this small range (0.54-0.646), 
suggesting that the model isn't robust for this change. 
 
Thank you for the comment. We note that the ARI range of 0.54-0.646 is actually not large and 
does not affect our conclusion. As a comparison, we have varied the bandwidth parameter of 
SpaGCN in the same range (0.02 to 0.05) and the resulting ARI from SpaGCN varied from 0.29 to 
0.48. Importantly, SpatialPCA outperforms SpaGCN in all 31 bandwidth values, with an average 
ARI improvement of 62%. In addition, we expanded the bandwidth range from 0.01 to 1 and 
found the ARI from SpatialPCA ranges from 0.49 to 0.65 while the ARI from SpaGCN ranges from 
0.25 to 0.50. In these settings, SpatialPCA again outperforms SpaGCN in 52 out of these 55 
bandwidth values, with an average ARI improvement of 46%. The new results are shown in 
Supplementary Figure S10A (attached here for convenience) and described in the corresponding 
figure legend. 
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