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Supplementary Figure 1: A large-scale RNA-Seq analysis of Drosophila S2 cells with TF RNAi (a) A
schematic illustration of the experimental design. dsLacZ. Cells treated with dsRNA against E.coli LacZ
gene. dsDIAP. Cells treated with dsRNA against Drosophila Diap-1 gene (Death-associated inhibitor of apop-
tosis 1) (b) All sample-to-all sample pairwise correlation of gene expression is demonstrated as a heatmap.
Color intensity corresponds to Pearson’s correlation coefficient r. (c) An example of wda gene illustrates how
short reads are mapped to the reference genome. Blue tiles. Reads that are aligned to 5’ to 3’ direction in the
strand-specific RNA-Seq outcome. Red tiles. Reads for 3’ to 5’ direction. Top. The result from the control
cells (dsLacZ ). Bottom. Results from the cells treated with dsRNA for wda. Dot lines indicate the region
for dsRNA targeting. Knockdown efficiencies were measured without reads mapped onto this region from
both control and RNAi samples. (d) A histogram that shows the distribution of knockdown efficiency values,
which are represented as reduction of target gene RNA (log2 Fold Changes between RNAi vs. Control). Dot
red line. 50% reduction of mRNA (log2 Fold Change = - 1). (e) A histogram that shows an incident of
significant off-target effects (adjusted p value ¡ 0.1) from all of the reagents (n = 941). We used BLAT [1]
for the identification of any sequences that have more than 7-bp matching any of the reagents.
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Supplementary Figure 2: The overview of the information flow in the NetREX-CF optimization.
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Supplementary Note 1: GPALM Problem Introduction

We extend the original PALM algorithm [2] and propose the GPALM algorithm that can solve
more general problems. The format of the problem that GPALM can solve is explained in
this section. The actual algorithm and its convergence proof are provided in Supplementary
Note 2.

The problem and basic assumptions

We are interested in solving the non-convex and non-smooth minimization problem with the
following structure

(M) min : Ψ (X, Y, Z) := H (X, Y ) + F (Y, Z) , (1)

where we have the following assumption:

Assumption 1. The assumptions for problem (M) is as follow:

1. H : Rn × Rm → R is a C1 function.

2. F : Rm × Rl → (−∞+∞] is a proper and lower semicontinuous (PLS) function.
And F (Y, Z) has the following structure F (Y, Z) :=

∑m
i=1 pi(Z)gi(Yi) + Q(Z), where

pi : Rl → R is Lipschitz continuous with moduli Li(Z) and pi(Z) > 0, ∀i and gi :
R → R is lower semicontinuous and sup gi(Yi) < λi, ∀i and Q : Rl → R is Lipschitz
continuous with moduli LQ(Z). Y = [Y1, ..., Yi, ..., Ym].

3. infRn×Rm H > −∞ and infRm×Rl F > −∞.

4. For any Y the function X → H(X, Y ) is C1,1
LX(Y ), namely the partial gradient ∇XH(X, Y )

is globally Lipschitz with moduli L1(Y ), that is

‖∇XH(X1, Y )−∇XH(X2, Y )‖ ≤ L1(Y ) ‖X1 −X2‖ . (2)

Likewise, for any fixed X the function Yi → H(X, Yi) is assumed to be C1,1
LYi

(X).

5. For any fixed Y the function Z → F (Y, Z) is assumed to be C1,1
LZ(Y ).

6. ∇H is Lipschitz continuous on bounded subsets of Rn × Rm. In other words, for each
bounded subsets T1 × T2 of Rn × Rm there exist M > 0 such that any (X1, Y1) and
(X2, Y2):

‖(∇XH (X1, Y1)−∇XH (X2, Y2) ,∇YH (X1, Y1)−∇YH (X2, Y2))‖ ≤M ‖(X1 −X2, Y1 − Y2)‖ .
(3)
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Subdifferentials of nonconvex and nonsmooth functions

Definition 1. Let σ : Rd → (−∞,+∞] be a PLS function. For a given x ∈ dom σ, the
Frechet subdifferential of σ at x, written ∂̂σ(x), is the set of all vectors u ∈ Rd which satisfy

lim
y 6=x

inf
y→x

σ(y)− σ(x)− < u, y − x >
‖y − x‖

≥ 0. (4)

When x ∈ dom σ, we set ∂̂σ(x) = Ø.

Proposition 1. ∂(λf(x)) = λ∂f(x) for any λ > 0.

The proposition can be proved based on Definition 1.

Proximal map

Let σ : Rd → (−∞,+∞] be a PLS function. Given x ∈ Rd and t > 0, the proximal map
associate to σ id defined by:

proxσλ (x) := arg min

{
σ(u) +

λ

2
‖u− x‖ , u ∈ Rd

}
(5)

The proximal map has the following important property (Lemma 3.2 in [2]).

Lemma 1. Let h : Rd → R be a continuously differentiable function with gradient ∇h
assumed Lh Lipschitz continuous and let σ : Rd → (−∞,+∞] be a proper and lower semi-
continuous function with infRd σ > −∞. Fix any t > Lh, then for any u ∈ domσ and any
u+ ∈ Rd defined by

u+ ∈ proxσt

(
u− 1

t
∇h(u)

)
, (6)

we have

h(u+) + σ(u+) ≤ h(u) + σ(u)− 1

2
(t− Lh)

∥∥u+ − u
∥∥2
. (7)

Supplementary Note 2: GPALM Algorithm and its Con-

vergence Analysis

The Algorithm

Here we first write out the algorithm that is able to solve the problem (M) with a convergence
guarantee.

Convergence analysis

The proof procedure has followed the proofs introduced in the original PALM algorithm [2].
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Supplementary Table 1: The GPALM algorithm.

Algorithm 1: The algorithm for the problem (M).

Initialization: X0, Y 0, and Z0.
1 for k = 0, 1, ..., K do
2

Xk+1 ∈ prox
H(·,Y k)
µkX

(
Xk
)

(8)

for i = 0, 1, ..., m do
3

Y k+1
i ∈ prox

F(·,Zk)
µkYi

(
Y k
i −

1

µkYi
∇YiH

(
Xk+1, Y k

i

))
(9)

4 end
5

Zk+1 ∈ prox
F(Y k+1,·)
µkZ

(
Zk
)

(10)

6 end

Theorem 1. Assume Ψ(B) is a PLS function with inf Ψ > −∞, the sequence
{
Bk
}
k∈N is a

Cauchy sequence and converges to a critical point of Ψ(B), if the following four conditions
hold [2]:

(i) Sufficiently decreasing: there exist some positive constant ρ1 > 0, such that

Ψ(Bk)−Ψ(Bk+1) ≥ ρ1

∥∥Bk+1 −Bk
∥∥2
, ∀k. (11)

(ii) Relative error: there exist some positive constant ρ2 > 0, such that for any wk ∈
∂Ψ(Bk), ∥∥wk∥∥ ≤ ρ2

∥∥Bk+1 −Bk
∥∥ ,∀k. (12)

(iii) Continuity: there exist a subsequence
{
Bkj
}
j∈N and B∗, such that

Bkj → B∗, Ψ
(
Bkj
)
→ Ψ (B∗) , as j → +∞. (13)

(iv) KL property: Ψ satisfies KL property in its effective domain.

By the theorem above, we only need to check that the sequence generated by Algorithm 6
satisfies the conditions (i) - (iv).

Proposition 2. Algorithm 6 is a global convergence algorithm.

Proof. Follow Theorem 1, we prove Algorithm 6 satisfies conditions (i)- (iv).

Condition (i). Based on (8), we know

Xk+1 ∈ prox
H(·,Y k)
µkX

(
Xk
)

= arg min

{
H
(
X, Y k

)
+

1

µkX

∥∥X −Xk
∥∥ , X ∈ Rn

}
, (14)
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which implies

H
(
Xk+1, Y k

)
+ F

(
Y k, Zk

)
≤ H

(
Xk, Y k

)
+ F

(
Y k, Zk

)
− µkX

2

∥∥Xk+1 −Xk
∥∥ (15)

We then apply Lemma 1 to (9),

H
(
Xk+1, Y k+1

i

)
+F

(
Y k+1
i , Zk

)
≤ H

(
Xk+1, Y k

i

)
+F

(
Y k
i , Z

k
)
−1

2

(
µkYi − LY (Xk+1)

) ∥∥Y k+1
i − Y k

i

∥∥
(16)

Similar to the derivation related to X, for Z we get

H
(
Xk+1, Y k+1

)
+F

(
Y k+1, Zk+1

)
≤ H

(
Xk+1, Y k+1

)
+F

(
Y k+1, Zk

)
−µ

k
Z

2

∥∥Zk+1 − Zk
∥∥ (17)

Let Bk =
(
Xk, Y k, Zk

)
and sum over equations from (15) to (17). We have

Ψ
(
Bk+1

)
≤ Ψ

(
Bk
)
−µ

k
X

2

∥∥Xk+1 −Xk
∥∥−∑

i

1

2

(
µkYi − LYi(X

k+1)
) ∥∥Y k+1

i − Y k
i

∥∥−µkZ
2

∥∥Zk+1 − Zk
∥∥ .

(18)
We know that µkX , µkY , and µkZ have their lower bound and µkYi > LY (Xk+1). Therefore, we

can get ρ1 =
µkY
2

+
∑

i
1
2

(
µkYi − LYi(X

k+1)
)

+
µkZ
2

. Then for Bk =
(
Xk, Y k, Zk

)
we have

Ψ(Bk)−Ψ(Bk+1) ≥ ρ1

∥∥Bk+1 −Bk
∥∥2
,∀k (19)

tha proves condition (i).

Condition (ii). Writing down the optimality condition for (8), we have

∇XH
(
Xk−1, Y k−1

)
+ µk−1

X

(
Xk −Xk−1

)
= 0. (20)

Let wkX := −µk−1
X

(
Xk −Xk−1

)
−∇XH

(
Xk−1, Y k−1

)
+∇XH

(
Xk, Y k

)
. It is easy to prove

that wkX ∈ ∂XΨ
(
Xk, Y k, Zk

)
. Then∥∥wkX∥∥ ≤ µk−1

X

∥∥Xk −Xk−1
∥∥+

∥∥∇XH
(
Xk, Y k

)
−∇XH

(
Xk−1, Y k−1

)∥∥
≤ µk−1

X

∥∥Xk −Xk−1
∥∥+M

(∥∥Xk −Xk−1
∥∥+

∥∥Y k − Y k−1
∥∥)

≤
(
µk−1
X + 2M

) ∥∥Bk −Bk−1
∥∥ . (21)

The first inequality comes from the fact that ∇H is Lipschitz continuous on bounded subset
Rn × Rm as assumed in Assumption 1 (6).
With the optimality condition for (9), we have

∇YiH
(
Xk, Y k−1

i

)
+ µk−1

Yi

(
Y k
i − Y k−1

i

)
+ ∂YiF

(
Y k
i , Z

k−1
)

= 0. (22)
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Let wkYi := −µkYi
(
Y k+1
i − Y k

i

)
− ∇YiH

(
Xk, Y k−1

i

)
+ ∇YiH

(
Xk, Y k

i

)
− ∂YiF

(
Y k
i , Z

k−1
)

+
∂YiF

(
Y k
i , Z

k
)
. Clearly, wkYi ∈ ∂Y Ψ

(
Xk, · · ·, Y k

i−1, Y
k
i , Y

k
i+1, · · ·, Zk

)
, then we have∥∥wkYi∥∥ ≤ µkYi

∥∥Y k+1
i − Y k

i

∥∥+
∥∥∇YiH

(
Xk, Y k

i

)
−∇YiH

(
Xk, Y k−1

i

)∥∥+
∥∥∂YiF (Y k

i , Z
k
)
− ∂YiF

(
Y k
i , Z

k−1
)∥∥

≤ µkYi
∥∥Y k+1

i − Y k
i

∥∥+MYi

∥∥Y k+1
i − Y k

i

∥∥+
∥∥∂Yi (pi(Zk)gi(Yi)

)
− ∂Yi

(
pi(Z

k−1)gi(Yi)
)∥∥

≤ (µkYi +MYi)
∥∥Y k+1

i − Y k
i

∥∥+
∥∥∂gi(Yi) (pi(Zk)− pi(Zk−1)

)∥∥
≤ (µkYi +MYi)

∥∥Y k+1
i − Y k

i

∥∥+MZ
i ‖∂gi(Yi)‖

∥∥(Zk − Zk−1
)∥∥

≤
(
µkYi +MYi +MZ

i UYi
) ∥∥Bk −Bk−1

∥∥ .
(23)

The second inequality utilizes the structure of F (Y,X) introduced in Assumption 1 (2). The
third inequality uses Proposition 1. We set MYi > LYi(X), MZ

i > Li(Z), and UYi > Ui.
Similar to things related to X, writing down the optimality condition for (10),

∇ZF
(
Y k, Zk−1

)
+ µk−1

Z

(
Zk − Zk−1

)
= 0. (24)

Let wkZ := −µk−1
Z

(
Zk − Zk−1

)
− ∇ZF

(
Y k, Zk−1

)
+ ∇ZF

(
Y k, Zk

)
. We find that wkZ ∈

∂ZΨ
(
Xk, Y k, Zk

)
and we have∥∥wkZ∥∥ ≤ (µk−1

Z +MZ

) ∥∥Bk+1 −Bk
∥∥ , (25)

where MZ > LZ(Y ).
Let ρ2 = max

{
µk−1
X + 2M,µkYi +MYi +MZ

i UYi , µ
k−1
Z +MZ

}
and sum (21), (23), (25), we

have ∥∥wk∥∥ ≤ ρ2

∥∥Bk+1 −Bk
∥∥ , (26)

where wk =
(
wkX , ..., w

k
Y , ..., w

k
Z

)
=
(
∂kXΨ, ..., ∂Y k

1
Ψ, ..., ∂ZkΨ

)
= ∂Ψ(Xk, Y k, Xk) ∈ ∂Ψ(Bk).

Condition (iii). Summing (19) from k = 0 to N − 1 we have

ρ1

N−1∑
k

∥∥Bk+1 −Bk
∥∥2 ≤ Ψ(B0)−Ψ(BN) (27)

Since
{

Ψ(BN)
}

is decreasing and inf Ψ > −∞, there exist some Ψ̄ such that Ψ(BN) → Ψ̄
as N → +∞. Therefore, let N → +∞ in (27), we have

ρ1

+∞∑
k

∥∥Bk+1 −Bk
∥∥2 ≤ Ψ(B0)− Ψ̄, (28)

which implies that lim
∥∥Bk −Bk−1

∥∥ = 0. Let B∗ = (X∗, Y ∗, Z∗) be a limit point of{
Bk
}
k∈N =

{
(Xk, Y k, Zk)

}
k∈N. Then (28) indicates that there is a subsequence

{
(Xkj , Y kj , Zkj)

}
j∈N

such that (Xkj , Y kj , Zkj)→ (X∗, Y ∗, Z∗) as j → +∞.
From (9), we know

Y k+1
i ∈ arg min

{
< Y − Y k

i ,∇YiH
(
Xk, Y k

i

)
> +

µkYi
2

∥∥Y − Y k
i

∥∥2
+ F (Y, Zk)

}
(29)
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Let Y = Y ∗i the limiting point of
{
Y k
i

}
k∈N, we have

< Y k+1
i − Y k

i ,∇YiH
(
Xk, Y k

i

)
> +

µkYi
2

∥∥Y k+1
i − Y k

i

∥∥2
+ F (Y k+1

i , Zk)

≤ < Y ∗i − Y k
i ,∇YiH

(
Xk, Y k

i

)
> +

µkYi
2

∥∥Y ∗i − Y k
i

∥∥2
+ F (Y ∗i , Z

k)

(30)

Set k = kj − 1, we obtain

< Y
kj
i − Y

kj−1
i ,∇YiH

(
Xkj−1, Y

kj−1
i

)
> +

µ
kj−1
Yi

2

∥∥∥Y kj
i − Y

kj−1
i

∥∥∥2

+ F (Y
kj
i , Zkj−1)

≤ < Y ∗i − Y
kj−1
i ,∇YiH

(
Xkj−1, Y

kj−1
i

)
> +

µ
kj−1
Yi

2

∥∥∥Y ∗i − Y kj−1
i

∥∥∥2

+ F (Y ∗i , Z
kj−1)

(31)

Let j → +∞, we get
lim

j→+∞
supF (Y

kj
i , Zkj−1) ≤ F (Y ∗i , Z

∗) (32)

From the fact that F is a PLS function, we also have

lim
j→+∞

supF (Y
kj
i , Zkj−1) ≥ F (Y ∗i , Z

∗) (33)

Based on (32) and (33), we know limj→+∞ = F (Y ∗i , Z
∗). Arguing similarly with X, we

finally have

lim
j→+∞

Ψ(Xkj , Y kj , Zkj) = lim
j→+∞

H(Xkj , Y kj) + F (Y kj , Zkj) = Ψ(X∗, Y ∗, Z∗). (34)

Condition (iv). The function Ψ is a semi-algebraic function, which automatically satisfies
the Kurdyka-Lojasiewicz property [2].

Supplementary Note 3: Parameter Selection for Algo-

rithms used in the study

In this section, we introduce how we select parameters for the competing algorithms.

Paramter Selection for PriroSum

PriorSum constructs a predicted GRN by summing overweights from all prior networks
P = {P 1, ..., P d}. Therefore, PriorSum builds a GRN Pij =

∑
k P

k
ij and does not need to

select any parameters.
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Parameter Selection for LassoStARS

LassoStARS [3] is the latest version of Inferelator, it takes an unweighted prior and gene
expression data as input. Because LassoStARS needs an unweighted prior network and the
prior networks we have are weighted prior networks, we choose different cutoffs to construct
prior networks for LassoStARS. We generate prior networks by assigning each gene the top
N TFs based on the Pij. For N , we set N = {10, 20, 30, 40} and we find that N = 10
performs the best and report the results in the main paper. For other parameters used in
LassoStARS, LassoStARS proposed a way to select the optimal parameters, therefore, we
do not need to select other parameters.

Parameter Selection for MerlinP

For reconstructing the GRN for yeast, MerlinP [4] uses the same prior networks and gene
expression to build a GRN and reported in the repository https://github.com/Roy-lab/

merlin-p. We directly download the GRN they build and compared it with other methods.
For reconstructing the S2 cell GRN and cell-specific GRNs, we follow the instruction provided
in https://github.com/Roy-lab/merlin-p.

Parameter Selection for NetREX

NetREX [5] is similar to LassoStARS, taking an unweighted prior and gene expression as
input. So similarly, we generate prior networks for NetREX by assigning each gene the top
N TFs based on the Pij. We set N = {10, 20, 30, 40} and we find that N = 20 performs the
best and report the results in the main paper. For the other parameters, we selected based
on the suggestion provided in https://github.com/ncbi/NetREX.

Parameter Selection for CF

We input CF [6] with Pij =
∑

k P
k
ij. The dimension of the hidden feature vector we set it to

be 100, 200, and 300. The regulation term used by CF is set to be 0.1, 1, 10, 100. We try
all those combinations and report the result with the best performance.

Parameter Selection for NetREX-CF

Based on the formulaiton of NetREX-CF (??), we know that we need to select h, λA, λS, ηij,
λ, and C̄ij. h is the dimension of the hidden feature vector. We find that h = {100, 200, 300}
does not change the performance much. For computational consideration, we set h = 100.
Because λA and λS are used as standard regulation to avoid over-fitting, we set λA = 1.0 and
λS = 1.0 by default. We introduce the selection of ηij and C̄ij in the following subsection.
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Selection of ηij

We need to make sure F (S,X, Y ) is lower semi-continuous. We can first simplify the equation
into

F (S,X, Y ) = λ

[∑
i,j

Ωij

(
‖Sij‖0 + (1− ‖Sij‖0)Bij − xTi yj

)2

]
+
∑
i,j

ηij ‖Sij‖0

= λ

[∑
i,j

(Cij + (C̄ij − Cij) ‖Sij‖0)
(
‖Sij‖0 + (1− ‖Sij‖0)Bij − xTi yj

)2

]
+
∑
i,j

ηij ‖Sij‖0

=
∑
i,j

{
λ
[
C̄ij(1−Bij)(1 + 2(Bij − xTi yj)) + (C̄ij − Cij)(Bij − xTi yj)2

]
+ ηij

}
‖Sij‖0

+
∑
ij

Cij(Bij − xTi yj)2

(35)
F (S,X, Y ) is lower semi-continuous when the parameter before ‖Sij‖0 in the above equation
is larger than 0. After several manipulations, we find out we need to set ηij as follows to
make F (S,X, Y lower semi-continuous.

ηij =

{
≥ 0, Bij = 1,

≥ λ
CijC̄ij

C̄ij−Cij
, Bij = 0.

(36)

Selection of C̄ij

Cij is the penalty when we want to use xTi yj to learn Bij = 1. Similarly, C̄ij is the penalty
when we want to use xTi yj to learn ‖Sij‖0 = 1. There are two siutations. First, when
‖Sij‖0 = 1 and Bij = 1, meaning the sparse NCA-based method confirms the edge in the
prior, then intuitively, we need to set C̄ij = αCij, α ≥ 1. Another situation is that ‖Sij‖0 = 1
and Bij = 0, meaning the sparse NCA-based model confirms an edges recommended by the
CF model but not appeared in the prior networks. For this case, we set C̄ij ∈ [Cij,max(C)],
where max(C) is the largest element in penalty matrix C. In sum, C̄ij = αCij‖Sij‖0Bij +
β‖Sij‖0(1−Bij), where α ≥ 1 and β ∈ [Cij,max(C)].

Consensus of Different Parameter Selections

As explained in the previous, for ηij and C̄ij, we know the range of these parameters but do
not know the exact optimal values. For reconstructing GRN for the yeast experiment, we
set

ηij =

{
≥ θ, Bij = 1,

≥ λ
CijC̄ij

C̄ij−Cij
+ θ, Bij = 0,

(37)

where θ = {0.1, 0.5, 1, 2}. And C̄ij = αCij‖Sij‖0Bij+β‖Sij‖0(1−Bij), where α = {1, 2, 3, 10}
and β = 10, 20, 30, 40. For different set of parameters, we get a GRN and we get a set of
GRNs G = {G1, ...}, where Gi = XTY after applying all theses parameters. The final

perdition is the average overall predictions G∗ =

∑
iG

i

|G|
.
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Supplementary Note 4: Data processing

ScRNA-Seq data

For all scRNA-Seq data used in the manuscript, to reduce the impact of the sparsity of the
scRNA-Seq data, we eliminated cells with less than 500 genes expressed and genes that are
expressed in fewer than 10% of the cells.
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