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Supplementary Note 1: Crystal growth and characterization

Single crystals of SrAs3 were grown by Bridgman method. A stoichiometric mixture of Sr

(99.99%) and As (99.99%) pieces was sealed in an evacuated quartz tube. The quartz tube

was then heated up to 550 ◦C and annealed for 2 hours, followed by slow heating up to 750

◦C for 4 days and annealing of 2 days. After characterization using X-ray powder diffraction

and energy-dispersive spectroscopy, the precursor powder was sealed in an graphitized quartz

ampoule with a conical-shaped tip for controlled nucleation of single crystal growth using the

Bridgman method. The evacuated quartz ampoule with precursor powder was suspended

and heated up to 800 ◦C and kept in 1 day for complete melting. Then this ampoule

was slowly moved with a speed of 0.5 mm/hour from the hot to the cold zone with a

temperature gradient of 5 K/mm. The obtained crystal boules have a cylindrical-rod shape

with a diameter, same as the inner one of the ampoule, ∼ 12 mm. The X-ray diffraction

of the SrAs3 crystal shows sharp (00l) peaks, which confirm high crystallinity of crystals

(Supplementary Fig. 1e).

SrAs3 consists of buckled As planes and staked along the c-axis in monoclinic structure

(space group C2/m) as shwon in Supplementary Figs. 1a and 1b. The As layers form

channels in the a–b direction and Sr atoms are inserted into the channels. The mirror plane

is defined perpendicular to b axis as indicated by the dashed line in Supplementary Fig.

1b. The scanning transmission electron microscopy (STEM) clearly visualizes the structure

of SrAs3 (Supplementary Figs. 1c and 1d). The STEM image normal to the b-axis reveal

the buckled network of As atoms, together with the Sr atoms inserted. The magnified view

matches well with the crystal structure with lattice constants of a = 9.604(7), b = 7.651(5),

c = 5.869(4) Å obtained by X-ray diffraction.

Supplementary Note 2: Electronic structure determination

Figure S2a shows the electronic structures of SrAs3, obtained by the first-principle calcu-

lations, based on the generalized gradient approximation (GGA), together with spin-orbit

coupling (SOC). A large pocket with a nodal-line is located around the Y point (Supple-

mentary Fig. 2b), and an electron pocket around the T point is observed, consistent with

previous band calculations [1]. However, it has been well known that in GGA calcula-
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tions, the band-gap of semiconductors is usually underestimated or even absent in some

cases. Precise determination of the band gap or band overlap is critical, particularly for

nodal-line semimetal (NLSM) candidates with a small single nodal-ring. Furthermore, the

presence or absence of the topologically-trivial states at the Fermi level (EF) drastically

affects the transport properties. In previous band calculations, based on GGA or the non-

local HeydScuseria-Ernzerhof (HSE06) hybrid functional, the electron bands, located near

the T point, are topologically-trivial. In this work, we instead adopted the modified Becke–

Johnson exchange potential (mBJ) to overcome the limitation of simple GGA calculation.

The mBJ method is known to yield accurate band gap with the computational cost, com-

parable to the simple GGA calculations [2]. Figure S2c shows the band structures, obtained

from mBJ+SOC calculations. The large electron pocket around T point in GGA calcula-

tion completely disappears, while the nodal-line states remains around the Y point in mBJ

calculations. The conduction and valence band near the Y point are derived from the As1

p and As2 p states (Supplementary Fig. 2d) [1]. These results reveals that the low-energy

electronic structures of SrAs3 are extremely sensitive to the details of band calculations,

which need to be determined by experiments as discussed below.

In order to identify the electronic structures, we carried out the angle-resolved photoe-

mission spectroscopy (ARPES) in a relatively wide energy range, along kx and kz directions.

The key features taken along the kx and kz directions at high binding energies EB are

well reproduced by the calculations. For examples, the hole band near kx,z = 0 with a

fast dispersion (Supplementary Fig. 3a), a weakly dispersing bands near EB ∼ -1.2 eV

(Supplementary Figs. 3a and 3d), a highly-dispersive bands near EB ∼ -2 eV at the zone

boundaries (Supplementary Fig. 3d) are consistent with the calculated bands based on

both mBJ (Supplementary Figs. 3b and 3e) and GGA (Supplementary Figs. 3c and 3f).

However, for the low-energy states, the mBJ calculations captures the ARPES results better

than GGA ones, particularly, the absence of the trivial electron bands at the zone bound-

aries. These observations confirm that the states at the Fermi level are the nodal-line states

alone in SrAs3.

Supplementary Note 3: Transport properties and Shubnikov-de Hass oscilla-

tions
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The transport properties of eleven samples (S1 and S2 in the main text, A1-A9 in the

Supplementary Information) with different chemical potentials are characterized. The in-

plane resistivity (ρ) of all the samples exhibits a metallic behaviour at high temperatures,

while below T = 50–70 K, it increases with lowering temperature (Supplementary Fig. 4a).

This temperature dependence is due to strong temperature-dependent densities of hole and

electron carriers, as discussed in Figs. 1f and 1g in the main text. The field-dependent

Hall resistivity ρxy(H) taken at 2 K indicates that hole carriers are dominant for all samples

(Supplementary Fig. 4b). The detailed analysis on ρxy(H) curves was carried out using the

two-band model, as described by ρxy(H) = H
e

(nhµ
2
h−neµ

2
e)+(nh−ne)µ2hµ

2
eH

2

(nhµh+neµe)2+(nh−ne)2µ2hµ2eH2 , where ne,h and µe,h

are carrier densities and mobilities for electrons (e) and hole (h), respectively. The fitting

results are summarized in Supplementary Table 1. In the samples A1, A2, A3 and S1, only

hole carriers contribute to the electronic conduction, producing a linear field-dependent

ρxy(H). On the other hands, the samples A4–A9 and S2 show a slight nonlinearity at low

magnetic fields due to a small electron density ne. Even in these cases, ne is one or two order

of magnitude smaller than the hole density nh. In these samples, we observed clear Shbnikov-

de Hass (SdH) oscillations (Supplementary Figs. 4c and 4d), and the corresponding SdH

frequencies are extracted from fast Fourier transform (FFT) analysis (Fig S4e). The SdH

frequency increases with increasing the hole carrier density nh (Supplementary Fig. 4f).

These results, together with the relatively good agreement between the size of torus-shaped

Fermi surface (Fig. 3a in the main text) and the hole carrier density nh, support the fact

that hole-type nodal-line fermions are responsible for SdH oscillations.

For two representative samples S1 and S2, we obtained SdH oscillations under various

magnetic field orientations in three different planes of (kx,kz), (ky,kz), and (kx,ky). The

corresponding SdH frequency at different polar (θ) and azimuthal (φ) angles is shown in

Fig. 3a of the main text. Even in high field experiments using pulse magnetic fields up

to ∼ 58 T (Supplementary Fig. 5g), additional SdH oscillations were not detected, further

confirming that no other FSs except the torus-shaped FS of nodal-line fermions.

To estimate the phase offset of SdH oscillations φSdH using Landau fan diagram, we first

compared SdH oscillations in the resistivity ρxx and the conductivity σxx = ρxx/
(
ρ2xx + ρ2xy

)
under H ‖ ky, as shown in Supplementary Fig. 6. Because the transverse Hall resistivity

ρxy(H) is much larger than the longitudinal resistivity ρxx(H) (Supplementary Fig. 6a),

SdH oscillations of ∆ρxx(H) and ∆σxx(H) are in-phase (Supplementary Fig. 6b). Thus we
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assigned the maxima and minima of the magnetic field-dependent ∆ρ(H) as integers and

half-integers of the Landau index, respectively. Then the phase offset φSdH is extracted from

the intercept of the linear fit in the Landau fan diagram (Supplementary Fig. 6c).

Supplementary Note 4: Angle-dependent SdH frequency for torus-shaped

Fermi surfaces

The angle dependence of the SdH frequency, particularly as a function of the polar angle

(θ) to the kz axis, is sensitive to the detailed shape of torus-shaped Fermi surface (FS). In

an ideal torus-shaped FS of which the poloidal cross-section is of the circular or elliptical

shape (Supplementary Fig. 7a), two different SdH frequencies are expected in the whole

range of θ. For θ = 0◦, two extremal toroidal orbits, inner (β) and outer (δ), correspond

to the lower and higher SdH frequencies, respectively. Since the β and δ orbits correspond

to the minimum and maximum cross-section, respectively, their SdH frequencies exhibit the

opposite angle dependence by tilting the magnetic field off from θ = 0◦ (Supplementary Fig.

7c). For θ = 90◦, two extremal poloidal orbits, α and γ, which are located on and off the

plane of the axis of the torus, respectively. This can be easily seen by plotting the area of the

cross-section, generated by an intersecting planes at different ky, parallel to the torus axis

(spiric section), as shown in Supplementary Fig. 7b. Two extrema, one at ky= 0 and the

other at ky 6= 0, can be obtained, as indicated by the arrows. The similar angle dependent

quantum oscillation frequency has been observed recently on a NLSM candidate, CaAgAs

[3, 4].

Unlike the ideal case, the resulting torus-shaped FS of SrAs3 has the poloidal cross-

section of the crescent shape, not the circle shape (Supplementary Fig. 7d). There are three

key differences in the angle (θ) dependent SdH frequency, as compared to the case of the

ideal torus-shaped FS. Firstly, at θ = 0◦, both β and δ orbits correspond to the maximum

cross-section. Therefore, near θ = 0◦, the SdH frequencies of the β and δ orbits exhibit the

same angle dependence (Supplementary Fig. 7f). Secondly, for θ = 90◦, only one extremal

cross-section can be found on the plane of the axis of the torus, which corresponds to the

α orbit (Supplementary Fig. 7e). There is no extremal orbits away from the center of the

torus, and thus the SdH oscillations corresponding to the γ orbit, found in the ideal torus

case, are missing. Both features are well reproduced in experiments on SrAs3 (Fig. 3a in
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the main text).

For the torus FS with crescent-shaped cross-section, additional inner extremal orbits

(β′) also can be formed above and below the nodal line plane (Supplementary Fig. 8a).

According to our model Hamiltonian, additional SdH oscillation frequency β′ ∼ 18 T is

expected in the SrAs3 crystal as shown in the Supplementary Fig. 8b. This β′ oscillations,

however, were not detected in experiments. The key parameters determining the amplitude

of SdH oscillation are curvature factor C = |∂2A/∂k2|||−1/2 and cyclotron effective mass

m∗, where A is enclosed k-space area and k|| is k component parallel to the magnetic field

direction [4]. In our model Hamiltonian of SrAs3, the β′ orbit has smaller curvature factor

C ∼ 0.053 and larger cyclotron mass m∗ ∼ 0.619me than those of the β orbit with C ∼

0.103 and m∗ ∼ 0.246me. Assuming that additional β′ orbit has dingle temperature TD ∼

12 K and g-factor ∼ 3, similar to those of the β orbit obtained from SdH oscillations, we

can estimate the expected oscillation amplitude of the β′ orbit using the Lifshitz–Kosevich

(LK) formula [5, 6] at T = 1.8 K and H = 15 T. Its amplitude is ∼100 times smaller than

that of the β orbit, which is well below our detection limit. Therefore, we focus on the β

orbit in the main text.

Supplementary Note 5: Spin-splitting effect on SdH oscillations

In order to estimate the phase φ0 in Eq. (1) of the main text, which is related to the Berry

phase φB, it is important to determine the additional phase φs by the spin-splitting effect

in SdH oscillations. As described in Eq. (1) the spin-splitting of the Landau levels (LLs) by

the Zeeman effect introduces the phase shift by ±φs = ±gm∗/2me, where g is the g-factor,

m∗ is the effective mass, and me is the free electron mass. When the spin-splitting phase

φs becomes closer to ∼ 1/2, SdH oscillations are phase-shifted by π, which can be confused

with π Berry phase shift in φ0. In SrAs3, however, SdH oscillations at high magnetic fields,

near the quantum limit, exhibit additional features in ρ(H) due to this spin splitting of LLs.

As clearly visible in the second-derivative of ρ(H), −d2ρ(H)/dH2 in Figs. 3h and 3i in the

main text, the spin-splitting peaks, denoted + and −, are well resolved in SdH oscillations,

and their difference allow us to directly estimate φs for each SdH oscillations.

Before presenting the results from the detailed analysis, it is important to justify the

validity of Eq. (1) for Dirac bands. It has been known that for parabolic bands, quantum
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oscillations exhibit the constant Zeeman splitting when plotted as a function of 1/H, because

energy differences by Zeeman splitting and Landau level splitting depend linearly on external

magnetic field H [7]. This is also the case for Dirac bands when 2~ev20H � (gµBH/2)2,

where µB is Bohr magneton, ~ is the reduced Plank constant and v0 is the band velocity [7].

In this work, even at the maximum magnetic field of 31.6 T and for the largest g-factor

∼ 19.1, 2~ev20H is an order of magnitude larger than (gµBH/2)2, guaranteeing the validity

of Eq. (1). To further clarify this issue, we plot the Landau fan diagram, including the

spin-split Landau levels (Supplementary Fig. 9). In Shubnikov-de Hass oscillations, two

Zeeman-split peaks in the second derivative of the oscillating magnetoresistivity, d2ρ/dH2,

as a function of 1/H are separate by a spacing of φs/F . In SrAs3, when the Zeeman splitting

is smaller than the spin-degenerate Landau level spacing (1/F ) i.e. φs ∼ 0–0.3, disorder-

induced broadening makes two peaks in the oscillating magnetoresistivity merge into one

peak, preventing experimental determination of the Zeeman splitting. For φs ∼ 0.35-0.5,

however, the Zeeman splitting spacing become large enough to be detected (Supplementary

Figs. 9b, 9d and 9f), and we assigned the middle point of the two Zeeman-split peaks with

the integer Landau index. We note that the spin-splitting appears to be constant in the

Landau fan diagram as indicated by a vertical bars in Supplementary Figs. 9d–9g, consistent

with the discussion above. The φs is then extracted from the average spin-splitting spacing

multiplied by the SdH frequency F . In addition, the linear fitting in the Landau fan diagram

shows excellent agreement with the corresponding R-square value > 0.99. This is also the

case for larger Zeeman splitting with φs > 0.5 (Supplementary Figs. 9c, 9e and 9g), in

which the spin-split Landau levels with different orbital Landau indices, such as 3+ and 4−,

become close and eventually produce one peak in d2ρ/dH2 curve (Supplementary Fig. 9e).

In this case, we assigned the deep position with the integer index, which again follows a

linear dependence in the Landau fan diagram with R-square > 0.99.

Having justified the validity of Eq. (1) for the Dirac bands, we present magnetic field-

dependent SdH oscillations with spin splittings at different polar (θ) and azimuthal (φ)

angles for the α and β orbits in Supplementary Fig. 10. We observed systematic variation

of the spin-splitting signatures as a function of angles, indicated by the shaded lines in Sup-

plementary Fig. 10. The spin-splitting features in the SdH oscillations are more clearly seen

in S2 than in S1, but their angle dependence are consistent with each other (Supplementary

Figs. 10a–10d). Using the obtained φs and the effective mass m∗ (Supplementary Table
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2), from temperature dependent SdH oscillations shown in Figs. 2d-2f of the main text,

we estimated the g-factors at different magnetic field orientations for the sample S1 (S2):

g ≈ 2 (2) for H ‖ kx, 18.7 (19.1) for H ‖ ky and 2.61 (3.26) for H ‖ kz. This variation of

the g-factor, depending on field orientations, is comparable with other topological semimet-

als [4, 8]. For the γ orbit with a high SdH frequency of F > 125 T, it is hard to identify

the spin splitting features in the SdH oscillations. Assuming the same g-factor ∼ 2− 3 with

that obtained for the β orbit, we can estimate φs = gm∗/2me using the obtained effective

mass of γ orbit at H ‖ kz (Supplementary Table 2). The resulting φs ∼ 0.1 for the γ orbit

is small enough to neglect the spin-splitting effect on the phase offset in SdH oscillations.

The phase φ0 is then the same as φSdH from experiments.

Supplementary Note 6: Weak antilocalization analysis.

In addition to weak antilocalization (WAL), two other contributions determine the mag-

netic field-dependent behaviour of the conductivity in topological semimetals, the orbital

magnetoresistance (MR) and chiral anomaly effects. It has been well established that in the

transverse configuration H ⊥ J , the orbital MR effect is significant in the absence of the

chiral anomaly effect, whereas in the longitudinal configuration H ‖ J , the chiral anomaly

effect becomes dominant over the much suppressed orbital MR effect. Therefore, in any con-

figurations of the relative directions of the applied magnetic field H and current J , we need

to extract the WAL contribution from the others’ contributions. At zero magnetic field, the

electrical conductivity σ of topological semimetals is described by σ = σ0 + ∆σWAL, where

∆σWAL is the excess conductivity due to quantum interference effect, mainly WAL, and σ0

is the semi-classical conductivity. Under external magnetic fields, σ0(H) exhibits the char-

acteristic magnetic field dependence due to the orbital MR contribution, σorb.
0 (H) = 1

ρ0+AH2 ,

or the chiral anomaly effect σchiral
0 (H) = CwH

2, where ρ0 = 1/σ0(0), and A (Cw) is a the co-

efficient quantifying the strength of the orbital MR (chiral anomlay) effect [9]. In our cases,

ρ0 is three orders of magnitude larger than AH2 (ρ0 � AH2) within the measured magnetic

field range, and thus the orbital MR term can be approximated to be σorb.
0 (H) = σ0−AH2.
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Then the resulting magnetic field-dependent conductivity σ(H) is described as

σ(H) = σorb.
0 (H) + σchiral

0 (H) + ∆σWAL(H) = σ0 − AH2 + CwH
2 + ∆σWAL(H),

(Supplementary 1)

which clearly shows that both the orbital MR and chiral anomaly contributions follow H2

dependence. This contrasts to ∼
√
H or ∼ lnH dependence of ∆σWAL(H) in the WAL for

Weyl/Dirac semimetals [10] or nodal-line semimetals [11], respectively. Thus at low mag-

netic fields, ∆σWAL(H) dominates over the H2-dependent orbital MR and chiral anomaly

effects. As presented in Supplementary Fig. 11 for various topological semimetals, a sharp

peak in ∆σ(H) at low magnetic fields can be easily distinguished from the slowly-varying

contributions from the orbital MR or the chiral anomaly effect [12–15]. Based on Eq. (Sup-

plementary 1), we fit the background H2 dependent conductivity σ0(H) = σ0−AH2+CwH
2

from the high field data in the transverse or longitudinal configurations, assuming Cw = 0

or A = 0. Then the remaining contribution in the conductivity corresponds to ∆σWAL(H)

as shown in Supplementary Fig. 11. Using the obtained σ0(H) and ∆σWAL(H), we estimate

their zero magnetic field values, σ0 and ∆σWAL, which are compared in Supplementary Fig.

11i.

As shown in Supplementary Fig. 11i, we found a decreasing trend of ∆σWAL with lowering

σ0. This behaviour is opposite to the simple expectation on the WAL of three-dimensional

(3D) disordered metals [16]. It has been well known that the excess conductivity ∆σWAL is

determined by quantum conductance e2/h, a degeneracy factor, the elastic mean free path

(le), and the phase coherence length (lφ). At low temperatures, lφ is much larger than le

(lφ � le), and ∆σWAL is inversely proportional to the mean free path le. Thus ∆σWAL is

expected to be larger in the highly resistive samples with a smaller σ0 [16]. This is opposite

to the observed trend between ∆σWAL and σ0 (Supplementary Fig. 11i). As discussed in

the main text, in topological semimetals, e.g. Weyl semimetals, the size of ∆σWAL is very

sensitive to detailed balance between intra- and inter-valley scattering processes [10]. This

is because the small-angle intravalley scattering favors the WAL due to associated Berry

phase, whereas the large-angle intervalley scattering induces the competing weak localization

(WL). Similarly, in nodal-line semimetals, quantum interference by small-angle scatterings

on the poloidal plane induces the WAL, which is suppressed by the large-angle scatterings

along the toroidal direction of the torus-shaped FS [11]. Roughly speaking, the large-angle
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scattering is effective to reduce both the excess conductivity ∆σWAL and the semi-classical

conductivity σ0, resulting in smaller ∆σWAL with smaller σ0, as observed experimentally

(Supplementary Fig. 11i).

Supplementary Note 7: Dimensionality of weak antilocalization in SrAs3

The magnetoconductivity due to the WAL exhibits the distinct behaviors, depending

on the dimensionality. For the tubular FS of nodal-line semimetal, the WAL effect should

follow the two-dimensional (2D) behavior when small-angle scatterings are dominant in the

poloidal plane [11]. Such a prediction can be tested by examining the magnetoconduc-

tivity ∆σ(H) and also the temperature-dependent phase coherence length lφ. For the 2D

WAL, the magnetoconductivity σ(H) is described by the Hikami-Larkin-Nagaoka model

(HLN model), ∆σ(H) = −α e2

2π2~

[
ψ(1

2
+

Bφ
H

)− ln (
Bφ
H

)
]
, where ψ is digamma function and

Bφ = ~2/(4el2φ) is characteristic field associated with phase coherence length lφ [17]. In

contrast, the 3D WAL of topological semimetals can be described by the following equa-

tion, σ(H) ∼ 2e2

h

∫ 1/l

0
dx

(2π)2

[
ψ(

l2B
l2

+ l2Bx
2 + 1

2
)− ψ(

l2B
l2φ

+ l2Bx
2 + 1

2
)
]

with l the mean free path

and lB =
√
~/4eH the magnetic length [10]. The 2D WAL model roughly follows − lnH

dependence, whereas the 3D WAL model shows almost −
√
H dependence. As shown in

Supplementary Figs. 12a and 12b, the stiff drops of ∆σ(H) at low magnetic fields is well

reproduced by the 2D WAL model (∼ −ln H) rather than the 3D WAL model (∼ −
√
H)

for all samples of SrAs3.

The temperature dependence of phase coherence length lφ further supports the same con-

clusion. For the 2D WAL model, the phase coherence length follows lφ ∝ T−p/2 dependence

with the exponents p = 1 or p = 2 due to electron-electron or electron-phonon interactions,

respectively. This contrasts to the 3D WAL behaviors described by different exponents, p =

3/2 or p = 3 for electron-electron or electron-phonon interactions, respectively. As shown in

Supplementary Figs. 12c and 12d, the temperature-dependent lφ ∝ T−1 is observed at high

temperatures corresponding to the exponent of p = 2 for the 2D electron-phonon interac-

tions. In more details, temperature dependent lφ data in 2D diffusive system can be fit to the

following expression, 1/l2φ = 1/l2φ0 + AeeT + AepT
2 where lφ0 is zero-temperature dephasing

length, Aee and Aep are the coefficients for electron-electron and electron-phonon scatterings,

respectively [18]. The best fit, shown in the Supplementary Fig. 12d, reproduces nicely the
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experimental data, yielding lφ0=83(1) nm, Aee ≈ 0 and Aep = 7.0(6)×10−8nm−2K−2, which

shows clear 2D WAL with dominant electron-phonon interaction. These results strongly

suggest that the observed magnetoconductivity of the bulk SrAs3 crystals agrees well with

the theoretically-predicted 2D WAL behaviors of nodal-line semimetals [11].

Supplementary Note 8: Comparison with other nodal-line semimetal candi-

dates.

In Supplementary Table 3, we present the characteristics of various NLSM candidates,

including PbTaSe2 [19], ZrSiCh (Ch = S, Se, Te) [20–25], HfSiS [26], CaAgPn (Pn = P and

As) [3, 4, 15, 27], and SrAs3. One distinct character of SrAs3 from the most of NLSM candi-

dates is a single nodal-loop structure. For examples, PbTaSe2 possesses several nodal rings

near the Fermi level, together with topologically trivial states [19], which results quantum

oscillations with a high frequency F ∼ 1000 T and the large carrier density. ZrSiCh has a

cage-like structure of multiple nodal loops [28, 29] forming a complex nodal-line structures,

which are revealed by multiple frequencies of magnetic quantum oscillations, indicating thin

and thick tubular FSs coexisting [20–25]. CaAgPn is a rare example possessing a single

nodal-loop, similar to SrAs3, as confirmed by recent studies on quantum oscillations [3, 4].

Even for CaAgPn, the polidal cross-section of the torus-shaped FS is estimated to be much

larger than that of SrAs3. The corresponding quantum oscillation frequency for the poloidal

orbit is ∼ 50 - 95 T for CaAgAs [3, 4] much larger than ∼ 7 - 13 T for SrAs3. Therefore,

among the NLSM candidates so far known, SrAs3 has the thinnest tubular FS.
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Supplementary Table 1. Characteristics of SrAs3 crystals. Hole (nh) and electron (ne) carrier

densities and the corresponding mobilities µh and µe are listed for eleven crystals denoted as S1–S2

and A1–A9. The SdH frequency (F ) taken at 2 K for H ‖ ky and εF, the energy difference between

Fermi level EF and the band crossing point for the corresponding poloidal orbit, are also listed.

nh

(1016cm−3)

ne

(1016cm−3)

µh

(104cm2/V·s)

µe

(104cm2/V·s)

F

(T)

εF

(meV)

S1 67.9(8) 0.38(5) 12.6(9) -52(2)

S2 52.2(1) 0.30(4) 0.17(2) 3.5(1) 10.4(8) -49(1)

A1 70.2(4) 0.141(8) 12.5(7) -52(1)

A2 73.3(3) 0.090(5) 11.7(7) -50(2)

A3 69.6(2) 0.109(5) 10.3(9) -48(2)

A4 57.0(1) 0.11(2) 0.130(4) 4.7(2) 8.7(6) -46(1)

A5 41.9(1) 0.56(8) 0.22(2) 3.5(1) 8.4(7) -45(1)

A6 37.6(1) 1.1(1) 0.24(2) 2.99(8) 7.7(7) -44(1)

A7 30.1(1) 1.6(2) 0.36(3) 3.63(2) 7.5(9) -43(2)

A8 26.2(2) 3.0(2) 0.38(1) 5.29(4) 7.0(6) -42(1)

A9 29.9(2) 3.3(3) 0.37(1) 6.05(4) 6.9(4) -42(1)
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Supplementary Table 2. Quantum oscillation frequency and cyclotron masses for different

orbits of the torus-shaped Fermi surface. The quantum oscillation frequencies (F ) and

cyclotron masses (m∗) for the poloidal orbit α and two toroidal orbits β and δ orbits, estimated

from SdH oscillations and the model Hamiltonian shown in the main text. The parameters for the

model Hamiltonian are a0 = 0.05093 eV, a1 = -0.0046 eV·nm2, a2 = -0.0370 eV·nm2, a3 = 0.92593

eV·nm2, b3 = 0.6667 eV·nm, m0 = -0.0694 eV, m1 = 0.1019 eV·nm2, m2 = 0.2963 eV·nm2, m3 =

6.4815 eV·nm2.

α β δ

H ‖ kx H ‖ ky H ‖ kz H ‖ kz

F (T) m∗/me F (T) m∗/me F (T) m∗/me F (T) m∗/me

S1 7.1(7) 0.056(2) 12.6(9) 0.076(5) 32.4(8) 0.23(1) 129(1) 0.079(3)

S2 5.3(6) 0.033(1) 10.4(6) 0.080(4) 25.3(8) 0.176(8) 118(1)

Model 4.97 0.04381 9.88 0.07437 38.15 0.246 209.5 0.181
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Supplementary Table 3. Characteristics of nodal-line semimetal candidates. The type of

nodal-line structure, quantum oscillation frequencies (F ) for various magnetic field (H) directions,

The low-temperature WAL contribution in the conductivity (∆σWAL/σ0), and the hole and electron

carrier densities (nh and ne) are listed for various NLSM candidates.

Material
Nodal line

type

Field

direction
F (T) ∆σWAL/σ0 nh or ne (cm−3) Reference

PbTaSe2 Rings H ‖ c
5.8, 80.3, 672–685,

904–910, 1249–1275
5× 1021 Ref. 19

ZrSiS Cage-like

H ‖ c 240, 600 Ref. 20

H ‖ c 23, 243 Ref. 21

H ‖ c 14, 238
6× 1019(nh)

1.6× 1017(ne)
Ref. 22

H ‖ c 18.9, 246.3 Ref. 23

H ‖ c 8.4, 240
3.59× 1020(nh)

3.64× 1020(ne)
Ref. 24

H ‖ ab
17.6, 24.5, 167.5,

170.6, 180.7
Ref. 24

ZrSiSe Cage-like
H ‖ c 210 Ref. 25

H ‖ ab
19.2, 22.9, 24,

126.9, 132.7, 142
Ref. 25

ZrSiTe Cage-like H ‖ c 102, 154 Ref. 25

HfSiS Cage-like
H ‖ c 31, 264 Ref. 26

H ‖ ab 13.5, 138.5 Ref. 26

CaAgAs Single ring

H ‖ c 260
7.5× 1019

Ref. 4, 27

H ‖ ab 50, 260 Ref. 4, 27

H ‖ ab 95.0, 227.8 Ref. 3

CaAgP Single ring 13.7% 4× 1019 Ref. 15

Pd-doped

CaAgP
Single ring 43.6%

2× 1020(nh)

2.3× 1016(ne)
Ref. 15

SrAs3 Single ring H ‖ c 6.9–12.60 24.8–781%
2.99–7.33×1017(nh)

1.1–32.5×1015(ne)
This work
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Supplementary Figure 1. Crystal structure of SrAs3 single crystals. a, b, Crystal structure

of SrAs3. The side and top views along the directions normal to the a and c axes (a) and to the a

and b axes (b), respectively. The dashed line in b indicates the mirror plane. c, d, The scanning

transmission electron microscopy (STEM) image of SrAs3 crystal in the a–c plane. Inset: optical

image of a typical SrAs3 single crystal. The green and white spheres in the magnified STEM image

(d) represent Sr and As atoms, respectively. e, The X-ray diffraction patterns of SrAs3 crystal

showing (00l) Bragg peaks.
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Supplementary Figure 2. Electronic structures of SrAs3. a, c, d, Electronic structure of SrAs3

calculated using GGA (a) and mBJ functionals (c, d). The fat bands with blue and red represents

the band from the As1 p state and the As2 p states, respectively. b, The Brillouin zone of SrAs3

with high symmetry points. The nodal ring (red circles) is located near the Y point.
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Supplementary Figure 3. Angle resolved photoemission specroscopy and electronic struc-

tures of SrAs3. a, d, ARPES spectra taken along kx axis (a) and kz axis (d), together with the

calculated bands using mBJ functionals (blue dashed lines). b, c, e, f, Band dispersion along two

axes, kx axis (b, c) and kz axis (e, f), from mBJ calculations (b, e) and GGA calculations (c, f).
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Supplementary Figure 4. Sample dependent transport properties of SrAs3 crystals. a,

The temperature dependence of the normalized in-plane resistivity (ρ) of eleven SrAs3 crystals

(S1-S2, and A1-A9). b, The magnetic field-dependent Hall resistivity (ρxy) taken at 2 K for SrAs3

crystals. c, d, Magnetoresistivity (MR) ∆ρ(H)/ρ(0) (c) and SdH oscillations ∆ρosc.(H)/ρ(0) (d)

of SrAs3, taken at 2 K for H ‖ ky. e, The normalized fast Fourier transform (FFT) amplitudes of

Shubnikov-de Haas (SdH) oscillations in d. f, SdH frequency (F ) and the hole carrier density (nh)

for various SrAs3 crystals.
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Supplementary Figure 5. The angle-dependent SdH oscillations of SrAs3 crystals. The

angle-dependence magnetoresistivity (∆ρ(H)/ρ(0)) of different samples, S1 (a, b, c, g) and S2

(d, e, f), taken at around 2 K with different field orientations in the (kx,kz) plane (a, d), (ky,kz)

plane (b, e, g), and (kx,ky) plane (c, f). Magnetoresistivity was taken with static magnetic fields

up to 31.6 T and pulsed magnetic fields up to 57.6 T in g.
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Supplementary Figure 6. Comparison of SdH oscillations in ρxx and σxx. a, The magnetic

field-dependent longitudinal resistivity (ρxx) and Hall resistivity (ρxy) at H ‖ ky and 1.4 K for

S1. b, Shubnikov-de Haas (SdH) oscillations in magnetic field-dependent resistivity (∆ρxx) and

conductivity (∆σxx). The maxima and minima from ∆ρxx and ∆σxx coincide with each other,

which are assigned with integer and half-integer of the Landau index, indicated by the vertical

lines. c, Landau fan diagram with maxima (solid circles) and minima (open circles) of ∆ρxx and

∆σxx. The linear fits to the data from ∆ρxx and ∆σxx yield the same intercept on the Landau

index axis.
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Supplementary Figure 7. Comparison of two different types of torus-shaped Fermi sur-

faces. a, d, The torus-shaped Fermi surfaces with an elliptical-shaped (a) and a crescent-shaped

(d) poloidal cross-sections. Two extremal orbits, generated by intersecting planes normal to the

ky axis and parallel to the kz axis (spiric section), correspond to the α orbit at ky = 0 and the γ

orbit at ky 6= 0. Two inner and outer toroic orbits in the (kx,ky) plane correspond to the β and δ

orbits, respectively. Note that the γ orbit is missing for the FS of d. The corresponding poloidal

cross-sections are also shown. b, e, The area of the cross-section (SF ), generated by spiric section

at different ky, for the FSs shown in a and d. The extremal positions for the α and γ orbits are

indicated by the arrows (b) for the FS shown in a. The extremal position is located only at ky =

0 (e) for the FS of d. c, f, SdH frequencies (F ) as a function of the polar angle (θ) with respect

to the kz axis for the FS of a and d. At every angles, two SdH frequencies, either α and γ, or β

and δ, are present (c) for the FS of a. For the FS of d, the β and δ frequencies show the similar

angle dependence, in the absence of the γ frequency (f).
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Supplementary Figure 9. Landau fan diagram with Zeeman splitting in SrAs3. a–c, The

schematic illustrations of quantum oscillation peaks depending of the size of the spin splitting phase

φs. The vertical bars under oscillation oscillation curves correspond to the Zeeman-split levels

from the spin-degenerate Landau level. d–g, The quantum oscillations in the second derivative

of resistivity, −d2ρ/dH2, and corresponding Landau fan diagram for S2. The vertical bars in the

Landau fan diagram show the spin splitting spacing, which is expected to be field-independent.

The magnetic field directions are on the (ky, kz) plane (d, e) or (kx, ky) plane (f, g).

25



0 1 2 3 4

F/H
0 1 2 3 4 5

F/H

94.8°

102.5°

111.6°

120.0°

128.4°

136.8°

145.2°

153.6°

162.0°

170.4°

178.8°

187.2°

195.6°

𝜙

𝜃=90° 2 3 41

0 1 2 3 4 5

-d
2

/d

H
 2
 (

a
rb

. 
u

n
it
s
)

F/H

86°

76°

66°

56°

46°

36°

26°

16°

15°

13°

11°

9°

8°

6°

1°

-4°

-7°

𝜃

𝜙=90°
+ + +

3 42

+

+ +
3 4

2

88.8°
80.6°
72°

63.6°

46.8°

21.6°

12°
11°

𝜃

𝜙=90°

38.4°
30°

12.5°

10°
9°
8°
7°
6°
5°

4.8°
4°
3°

2°
1°
0°

55.2°

0 1 2 3 4

F/H

2 3 41

90°

100°

115°

121°

123°

125°

127°

130°
135°
140°
145°

170°

180°

𝜙

𝜃=90°

95°

105°
110°

120°

122°

124°

126°

128°
129°

150°
155°
160°
165°

175°

a b c d
S2 S1 S2 S1

Supplementary Figure 10. Shubnikov-de Hass oscillations of SrAs3 near the quantum

limit. a–d, The second derivative of ρ(H), −d2ρ/dH2, as a function of the nomalized F/H for

various magnetic field orientations with different polar (θ) angles (a, b) and azimuthal (φ) angles

(c, d) for S2 (a, c) and S1 (b, d). The spin splitting peaks of SdH oscillations are indicated by

triangle symbols. The shaded dashed lines correspond to the spin-split Landau levels, indicated by

the color-coded integer index and the + and − symbols.
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Supplementary Figure 11. Weak antilocalization analysis of various topological semimet-

als. a, The magnetic field dependent conductivity ratio ∆σ(H)/σ(0) in SrAs3. b–h, The magnetic

field dependent conductivity σ(H) in various topological semimetals at low-temperatures [12–15].

T fit to the high field data is presented with the dashed line (a) or the red solid line (b–h). i, The

excess conductivity ∆σWAL as a function of σ0 for various topological semimetals.
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Supplementary Figure 12. The dimensionality of weak antilocalizatoin in SrAs3 a, b, The

log-log plot of magnetoconductivity −∆σ(H) (a) and log plot of normalized magnetoconductivity

(b) for eleven SrAs3 crystals with 2D WAL (red line) and 3D WAL (blue line) fittings to S1. c

Temperature dependent magnetoconductivity of S1 with HLN equation fitting (yellow line). d

Temperature-dependent phase coherence length lφ for S1, following T−1 dependence (blue dashed

line) at high temperatures. The fit to the 2D WAL model is also shown (green solid line).
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