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SUPPLEMENTARY NOTE 1: DEVICE DESIGN
AND FABRICATION
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Supplementary Figure 1: Optical micrograph of
planar samples (S1∼S4). Dark: exposed sapphire
substrate; light: base aluminium layer. a, Sample S1,
with variation of pad-to-ground distance d from 5 to
30 µm. b, Sample S2, with d from 35 to 60 µm. c,
Sample S3, with d from 20 to 400 µm. d, Sample S4,
with the pad length L from 80 to 300 µm.

Data presented in the main text are taken from five
planar sample chips and one flip-chip sample. Each
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Supplementary Figure 2: Optical micrograph of
the flip-chip sample S8 (bottom chip). The 12
qubits differ by the pad length L and EJ (Supplement-
ary Table I). Purple squares indicate the metallic caps
on the top chip covering each of the 12 qubits. The caps
have two different size, 300 µm and 500 µm. All qubits
share the same pad width W = 35 µm and pad-to-grou-
nd distance d = 5 µm.

planar sample hosts 6 qubits with varying geometries as
shown in Supplementary Fig. 1. The device parameters
are listed in Supplementary Table I. Data used to
investigate the dependence of the parity switching rate
on pad-to-ground distance d (Fig. 3d in the main text)
are from sample S1∼S3; data used to investigate the
dependence on pad length L (Fig. 3c in the main text)
are from sample S4∼S5 (same design). Data shown in
Fig. 2 of the main text are from the qubit S1−Q1. Data
shown in Fig. 4 of the main text are from sample S1, S4,



2

Device-
Qubit

L
(µm)

W
(µm)

d
(µm)

EJ/h
(GHz)

EC/h
(GHz)

EJ
EC

ωmax
ge /2π
(GHz)

ωmin
ge /2π
(GHz)

g/2π
(MHz)

ωr/2π
(GHz)

T1

(µs)
Tϕ

(µs)
TP

(s)
holder
material

cap
(µm)

CR110 Fig.

S1−Q1 80 35 5 4.67 1.40 3.34 6.833 4.473 24.3 5.556 24.4 22.8 1.918 2, 4
S1−Q2 80 35 10 4.27 1.48 2.89 6.954 4.135 20.4 5.607 29.4 13.4 1.235 3d∼g
S1−Q3 80 35 15 4.45 1.52 2.93 7.191 4.289 22.5 5.712 16.7 14.1 1.159 Al no yes S5a
S1−Q4 80 35 20 4.63 1.53 3.03 7.268 4.469 23.3 5.753 25.8 20.9 0.987 S7∼9
S1−Q5 80 35 25 4.52 1.54 2.94 7.255 4.364 22.6 5.830 22.0 22.3 1.172 S18
S1−Q6 80 35 30 4.59 1.54 2.98 7.325 4.414 22.7 5.883 23.8 3.0 0.761 S21∼23
S2−Q1 80 35 35 – – – – – – 5.552 – – 0.691
S2−Q2 80 35 40 – – – – – – 5.610 – – 0.531
S2−Q3 80 35 45 – – – – – – 5.713 – – 0.541 Cu no yes 3d
S2−Q4 80 35 50 – – – – – – 5.756 – – 0.431
S2−Q5 80 35 55 – – – – – – 5.831 – – 0.320
S2−Q6 80 35 60 – – – – – – 5.882 – – 0.353
S3−Q1 80 35 20 3.23 1.49 2.17 6.585 3.126 15.7 5.554 54.2 76.9 1.123
S3−Q2 80 35 40 3.36 1.51 2.23 6.729 3.279 15.5 5.609 42 400.0 0.673
S3−Q3 80 35 80 3.24 1.52 2.13 6.728 3.130 13.2 5.712 – – 0.175 Al no yes 3d
S3−Q4 80 35 100 3.47 1.51 2.30 6.806 3.386 14.3 5.754 – – 0.244 S4b
S3−Q5 80 35 200 – – – – – – 5.833 – – 0.164
S3−Q6 80 35 400 – – – – – – 5.885 – – 0.251
S4−Q1 80 35 5 7.61 1.30 5.87 7.845 6.754 46.5 5.521 – – 2.268
S4−Q2 220 35 5 6.92 0.78 8.89 5.774 5.505 4.7 5.581 – – 0.074
S4−Q3 240 60 5 12.25 0.44 28.09 6.068 6.067 – 5.634 4.4 7.2 0.030 Al no yes 3c
S4−Q4 300 60 5 15.31 0.40 38.66 6.5402 6.5401 – 5.700 12.3 14.0 0.016 S5b,d
S4−Q5 350 90 5 – – – – – – 5.756 – – – S23
S4−Q6 420 100 5 – – – 6.2184 6.2184 – 5.800 – – –
S5−Q1 80 35 5 6.25 1.31 4.77 7.246 5.740 50.0 5.515 – – 0.610
S5−Q2 220 35 5 5.12 0.76 6.73 4.907 4.400 119.1 5.596 – – 0.046 3c
S5−Q3 240 60 5 14.66 0.37 39.62 6.2013 6.2012 – 5.628 – – 0.022 Al no yes 4
S5−Q4 300 60 5 11.99 0.43 27.88 5.9853 5.984 – 5.695 8.6 45.7 0.011 S5d
S5−Q5 350 90 5 – – – 6.061 6.061 – 5.752 13.1 28.3 – S23
S5−Q6 420 100 5 – – – 5.8345 5.8345 – 5.799 16.1 22.6 –
S6−

Q1∼Q6
80 35 20 3.50 1.40 2.50 6.558 3.257 16.1 5.703 5 9 0.374 Al no no

S4a
S20

S7−Q1 80 35 20 2.79 1.43 1.95 6.214 2.774 11.25 5.556 – – 0.940
S7−Q2 80 35 40 – – – – – – – – – 0.610
S7−Q3 80 35 80 – – – – – – – – – 0.072 Al no no S4b
S7−Q4 80 35 100 – – – – – – – – – 0.074
S7−Q5 80 35 200 – – – – – – – – – 0.089
S7−Q6 80 35 400 – – – – – – – – – 0.140
S8−Q2 80 35 5 2.35 1.29 1.82 5.566 2.281 16.9 4.611 55.3 3.1 2.006 300
S8−Q3 120 35 5 2.23 0.95 2.35 4.260 2.230 12.9 4.673 – – 1.600 300
S8−Q4 160 35 5 2.43 0.75 3.20 3.650 2.320 5.2 4.702 – – 1.006 300 3c
S8−Q5 180 35 5 4.45 0.66 6.74 4.254 3.858 19.2 4.733 39.2 – 0.904 Al 300 yes S19
S8−Q6 210 35 5 4.71 0.59 7.97 4.104 3.899 18.6 4.770 – – 0.615 300 S23
S8−Q7 260 35 5 4.84 0.49 9.92 3.832 3.712 18.0 4.805 13.8 25.1 0.603 500
S8−Q8 260 35 5 5.79 0.46 12.58 4.116 4.059 23.0 4.835 35.3 19.3 0.655 500
S9−Q1 80 35 20 – – – – – – 5.850 – – 0.511
S9−Q2 80 35 50 – – – – – – 5.800 – – 0.249
S9−Q3 80 35 80 – – – – – – 5.751 – – 0.146 Al no no S5c
S9−Q4 80 35 110 – – – – – – 5.750 – – 0.196
S9−Q5 80 35 140 – – – – – – 5.700 – – 0.157
S9−Q6 80 35 170 – – – – – – 5.650 – – 0.152
S10−Q1 80 35 20 – – – – – – 5.850 – – 0.652
S10−Q2 80 35 50 – – – – – – 5.800 – – 0.292
S10−Q3 80 35 80 – – – – – – 5.753 – – 0.158 Al no no S5c
S10−Q4 80 35 110 – – – – – – 5.750 – – 0.181
S10−Q6 80 35 170 – – – – – – 5.650 – – 0.149

Supplementary Table 1: Device parameters and setup. L,W, d are the pad length, pad width, and pad-to-
ground distances. The listed T1, Tϕ and TP are measured at the minimum qubit frequency at ng = 0. We also list
the information about the sample holder material, the metallic cap size, the use of CR110 filter after the bias tee,
and the figures the device is related to. Note that the six qubits in S6 have all the same design; the typical data
listed here comes from S6-Q1. Sample S7 has the same design as S3. Sample S8 is the flip-chip device. The wiring
or shielding setup of sample S6, S7, S9, S10 is different from the standard (optimal) one shown in Supplementary
Fig. 3, so we did not include related data in the main text figure. For samples S2, S7, S9, S10, we only measured TP

data. The S10-Q5 qubit is broken. All the data in Figs. S7∼S9, S21∼S22 are from S1-Q1. Unmeasured parameters
are left blank. Here, Fig. S# means Supplementary Fig. #.



3

and S5. There are two more planar samples (S6 and
S7) considered in this supplement, see Supplementary
Table I and Supplementary Note 2. The chips are either
packaged in an aluminium or copper sample holder for
testing. We do not observe appreciable differences in
qubit performance between different holder materials and
between different cooldowns with the same setup and
wiring.

The devices are made in a two-step process on c-plane
sapphire wafers. The first step is to pattern the base
circuit. We deposited 100-nm-thick aluminum on c-plane
sapphire substrate in a PLASSYS system at a growth
rate of 1 nm/s with a base pressure of 10−10 Torr. After
photolithography, we use BCl3/Cl2 etch in an inductively
coupled plasma (ICP) dry etcher. In the second step,
the junctions are fabricated in the bridge-free Manhattan
style. We use double-angle evaporation to make the
Al/AlOx/Al stack. The first aluminium film is about
30 nm thick and the second one is about 40 nm. Then
the excess aluminium is lifted off with a stripper. An ion-
milling step is performed before we add a final layer of
aluminium film (200 nm thick), connecting the junction
leads and capacitor pads in order to make direct galvanic
contact.

For the flip-chip sample, the bottom chip, which
host 12 qubits with varying geometries as shown
in Supplementary Fig. 2, shares similar design and
fabrication processes as the planar samples. Each
qubit is covered by a metallic cap, a square-shaped
aluminium pad, on the opposing die. The two single-
sided sapphire dies are bonded together using four
spacers (2 mm×2 mm) at the corners. The spacers made
of SU-8 photoresist extend a vertical spacing of about
10 µm.

SUPPLEMENTARY NOTE 2: EXPERIMENTAL
SETUP AND WIRING

The samples are mounted inside a BlueFors LD400
dilution refrigerator at a nominal base temperature of
less than 10 mK; however, the excited-state population
measured with regular transmon qubits [1] in the same
setup gives a typical device or electronic temperature
of 50-60 mK. The experimental setup is depicted in
Supplementary Fig. 3. As shown in Supplementary
Fig. 3, from the inside out, the device is protected by a
aluminum or copper holder box, a µ-metal shield, a few
layers of copper and aluminum shields, and an outer µ-
metal shield. Control and readout signals are properly
attenuated and filtered at multiple stages. At room
temperature, we generally use a network analyzer for
fast and cleaner data taking in the case of small parity
switching rate ΓP < 100 Hz. However, for large ΓP , one
has to use pulsed measurement based on a Ramsey-like
sequence (see Supplementary Note 6) using an AWG-
digitizer-based setup.

Empirically, we find two aspects in the setup that make
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Supplementary Figure 3: Cryogenic wiring and
signal synthesis at room temperature. We
combine DC bias and RF signals at base temperature
using a bias tee before sending them to the chip. All
data shown in the main text is taken using this standard
setup. A cryogenic µ-metal shield is used for shielding.

a difference in the measured parity switching time. First,
using a cryogenic µ-mental shield can help suppressing
ΓP by almost an order of magnitude, which suggests
its effectiveness in radiation shielding (Supplementary
Fig. 4, left); we also find it important to add an
infrared (IR) filter to the common port of a bias tee
(Supplementary Fig. 4, right), which is consistent with
observations reported by other groups [2, 3]. Based on
the above findings, we believe that the shield and IR filter
are effective in blocking stray photons of about 100 GHz
(or higher) from reaching the sample via open space and
cables, respectively.

The photon flux seen by the device may vary depending
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Supplementary Figure 4: Shielding and filtering.
a, Comparison of ΓP with or without the shield. The
data is taken in different cooldowns using sample S6
with six identical qubits. There are no CR110 filters
after the bias tee in both cases. b, Comparison of ΓP

with or without CR110 IR filter after the bias tee. The
data is taken in the same cooldown from sample S3
(blue) and S7 (orange); the samples share the same
design and, except for the IR filter, are measured with
identical setups. There are µ-metal shields in both cases
in b.
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Supplementary Figure 5: ΓP stability. a-b,
Comparison of measured parity switching rates between
different cooldowns for a given sample. c-d,
Comparison of measured parity switching rates between
samples of identical design during a given cooldown.
The measurement setup is the same. Missing data is
due to broken qubit or undetectable with our method
(too small a dispersive shift).

on the specific filtering and shielding setup. For a
nominally identical setup, We assume that the photon
flux stays constant between different cooldowns. In
Supplementary Fig. 5a∼b, we compare the parity
switching rates measured in different cooldowns for two
devices, which show good agreement to our assumption.
The measured switching rates for a given device have
relatively small change between different cooldowns
(about a factor of 2 in the worst case). In addition, it
can be seen that, over different cooldowns, the switching
rates have consistent geometric dependence which can
vary by one to two orders of manginitude, much greater
than the random fluctuations between cooldowns. We
also compare the parity switching rates of samples with
identical design, meausured with an identical setup
during a same cooldown as shown in Supplementary
Fig. 5c∼d. The data also show consistent behavior with
only small fluctuations. Therefore, we can safely assume
that the qubits see a same amount of photon flux for a
given shielding and filtering setup.

SUPPLEMENTARY NOTE 3: QUBIT
SPECTROSCOPY

a b Resonator energy levelsQubit energy levels

Even Odd Even

…

Odd

Supplementary Figure 6: Energy level diagram.
a, Ground and excited states of a low-EJ/EC qubit for
even and odd parities. Parity switching events,
associated with quasiparticle tunnelling or pair-breaking
at the junction, exchange the two parities. In the shown
example, the transition frequency between ground and
excited states is higher (lower) in the even (odd) parity.
b, Resonator levels in even and odd parity compared to
the bare case (dashed grey). In the shown case, the
resonator frequency is between the even-parity and
odd-parity qubit frequency. The dressed resonator
frequency in the even(odd) parity is red(blue)-shifted
from its bare frequency (dashed).

For a typical qubit in the charge regime among our
devices, Josephson and charging energies are in the
range EJ/h = 3.3–4.6 GHz and EC/h = 1.4–1.6 GHz
(EJ/EC ∼ 3). As illustrated in Supplementary Fig. 6a,
in such a case, energy levels are considerably different
between different parities, leading to strong discrepancy
in qubit transition frequencies, ωE

ge and ωO
ge, up to a few
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Supplementary Figure 7: Qubit spectroscopy
with identified transitions. a, Qubit spectroscopy
reproduced from Fig. 2b. b, Same as a with added
coloured lines denoting various transitions. Solid
(dashed) lines denote transitions in the even (odd)
parity. The spectroscopy pulse is about 9 µs long. The
sequence is repeated every 100 µs. Each datapoint
presented is the average of 1000 repetitions.

GHz depending on the offset bias. In a circuit-QED
architecture where the qubit is coupled to a resonator [4],
such large discrepancy can result in appreciable difference
in the dressed resonator frequency because of level
repulsion. For example, Supplementary Fig. 6b shows
the level diagram when the resonator frequency ωr is
between ωE

ge and ωO
ge. The resonator frequency is pushed

down (up) by χE(O) (∼1 MHz) when the qubit is in even
(odd) parity. Similar to the dispersive measurement of
the qubit state, sending a probe tone near the resonator
frequency allows us to distinguish between different qubit
parities, provided that the acquisition time is short
compared to the average latching time between parity
switches.

In Supplementary Fig. 7, we reproduce the qubit
spectroscopy shown in Fig. 2 of the main text and identify
all the visible transitions which include, for both parities,
the g-e transition of the qubit (|g0⟩ − |e0⟩), the two-
photon g-f transition (|g0⟩ − |f0⟩), the qubit-resonator
sideband transitions (|g1⟩− |f0⟩ and |e0⟩− |g2⟩), and the
resonator mode at ωr.

SUPPLEMENTARY NOTE 4: CHARGE PARITY
MONITOR

A. Parity detection with direct dispersive readout

To monitor charge parity evolution, we implement
two different methods, one based on direct dispersive
readout with the qubit in the ground state and one
based on a conditional bit flip. For qubits with small
EJ/EC ratio, the g-e transition frequencies at ng = 0 for
even and odd parity are drastically different, leading to
dissimilar resonator frequency. We utilize such parity-
dependent resonator response and use direct dispersive
readout for distinguishing parity. The measurement can
be done either with pulsed probe signals generated with
an AWG and collected by a digitizer, or with a network
analyzer which probes continuously. In the pulsed case,
the probe pulse is typically 10 µs long and repeated every
0.3 ms. The single-shot result – 99.14% fidelity for parity
classification – is relatively noisy, but it can be smoothed
by taking a moving average, see Supplementary Fig. 8a.
The noise has two parts: small sampling noise scattered
around one of the telegraph state and less frequent strong
jumps to the excited state about which we shall discuss
later.

In our data processing, we rotate the raw demodulated
data in the complex plane and use the real part for
subsequent analysis, Supplementary Fig. 8b. In the con-
tinuous case, since the probe pulse is effectively always-
on, the sampling noise becomes much reduced and a clean
telegraph signal can be obtained, Supplementary Fig. 8c.
The power spectral density (Supplementary Fig. 8d) and
the autocorrelation function (Supplementary Fig. 8e) –
Fourier transform of power spectral density – measured
with the two setups show good agreement, validating our
measurement and analysis protocols.

Now we discuss about the origin of the random
jump events shown in Supplementary Fig. 8a. In
Supplementary Fig. 9a we plot the resonator response

for qubit in four different states, |g⟩O, |e⟩O, |g⟩E, |e⟩E.
It can be seen that fr(|g⟩O) is close to fr(|e⟩E), and

fr(|g⟩E) is close to fr(|e⟩O). We can anticipate ambiguity
between these pairs of states. We use a stronger
probing amplitude for better pointer state separation in
measurement associated with Supplementary Fig. 9b-e.
Supplementary Fig. 9b shows an example time trace of
repeated single-shot measurement where a parity switch
is observed. From data collected from different sections
of the trace, we can identify the corresponding state in
the complex plane of the readout signal. First of all,

|g⟩O and |g⟩E can be distinguished from each other by
comparing Supplementary Fig. 9c and Supplementary
Fig. 9d. Note that there is another small cluster adjacent

to |g⟩E which corresponds to |e⟩O, as can be confirmed
by adding a π pulse at the odd-parity qubit frequency,

which selectively prepares the |e⟩O state. The result is
shown in Supplementary Fig. 9e, where significantly more
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Supplementary Figure 8: Parity monitor with direct dispersive readout. a, Example of raw demodulated
signal (blue dots) acquired in a pulsed measurement and its moving average (red line), calculated by taking the
median of 10 consecutive points. A typical trace taken with the pulsed method is 18 s long with a time interval of
0.3 ms between points. b, Histogram of the raw complex data shown in a. c, Example of raw data acquired in a
continuous measurement with a network analyzer. A typical trace is 14 s long with the time interval of 1 ms
between points. d, Power spectrum of charge-parity fluctuations measured in pulsed (1200 repetitions) and
continuous (1500 repetitions) measurement. We concatenate the repeated traces in (a,c) to extend the lower limit of
the spectrum to 10−3 Hz. The background white noise is due to sampling noise which is stronger for the pulsed
method, but does not influence the extracted TP times. The black line is a Lorentzian plus white noise fit to the
pulsed data. e, Normalized autocorrelation function ⟨P (0)P (τ)⟩ of charge-parity fluctuations directly computed
from the time-domain traces. The black line is an exponential fit to the pulsed data.

datapoints are present in the |e⟩O cluster marked by the
orange circle. Therefore, those orange points (identified
from being inside the orange circle) in Supplementary
Fig. 9b correspond to the case of the qubit being in

the excited state and in the odd parity. Since fr(|g⟩O)
and fr(|e⟩E) are even closer, the two clusters almost
overlap with each other. We did not try to separate
these two clusters. In a pulsed measurement setup, the
data is taken with a digitizer; the acquisition time is
usually a few microseconds (here, 3µs) which is shorter
than the typical T1 time. Since we repeat every 100µs,
any residual excitation is most likely to be observed as
a single jump event in the repeated time trace. On
the other hand, in the continuous measurement done

with network analyzer, the effective acquisition time
(bandwidth ∼10 kHz) is usually much longer than T1

so that the analyzer signal – being the averaged result –
cannot resolve those excitation events.

There are two major reasons for the spurious
excitation. First, there is thermal excitation due to
finite device temperature. With low enough readout
power, we typically observe an excitation level of 0.5%−
1%, equivalent to 50-60 mK temperature, consistent
with other regular transmon qubits measured in the
same setup. Then, there is also measurement-induced
excitation. When we increase the amplitude of the
measurement pulse as in Supplementary Fig. 9, we tend
to see increased contrast between the two parities, as well
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Supplementary Figure 9: Noise due to spurious qubit excitation induced by the probe signal. a,
Readout resonator response for the four qubit states (ground/excited and even/odd) computed for sample S1-Q1.

The resonant frequencies are fr(|g⟩O) = 5.55650 GHz, fr(|g⟩E) = 5.55551 GHz, fr(|e⟩O) = 5.55541 GHz,
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prepared in the ground state. c, Demodulated signal amplitude plotted in the complex plane. Datapoints are taken
from a section of time trace that samples both parities. d, Same as c but taken from a section that samples the odd
parity only. e, Same as c but with a selective π pulse for the odd parity. Colored circles indicate the distribution for
corresponding states. Data in this figure is taken with a stronger probe signal than in Supplementary Fig. 8.

as more frequent jumps to the other state.

X

Y

Z

eo

Supplementary Figure 10: Ramsey-based parity
monitor. The sequence consists of two π/2 pulses
separated by a waiting time τ , which is chosen as
τ = π/2(ωE

ge − ωO
ge), such that the odd and even states

are mapped to ground and excited qubit states,
respectively, at the end of the sequence. The time τ is
pre-calibrated before repeated measurements.

B. Parity detection with Ramsey sequence

For qubits with larger EJ/EC ratio (20∼30),
the frequency discrepancy between different parities

(0.1∼1 MHz) is exponentially suppressed in this ratio,
and we can no longer use direct dispersive readout to
distinguish between the parities. Instead, we use the
Ramsey-type parity monitor as introduced in Ref. [5]
and depicted in Supplementary Fig. 10. In the Ramsey
experiment, we set the microwave drive frequency at
ωdrive = (ωE

ge + ωO
ge)/2 and the free-evolution time τ =

π/2(ωE
ge − ωO

ge). Such a detuning setting transforms
the qubit to the excited (ground) state for even (odd)
parity, which is a conditional bit flip and enables us
differentiate parity state from qubit state measurements.
The sequence is typically repeated every 0.1 ms.

SUPPLEMENTARY NOTE 5: ANTENNA MODE
OF THE TRANSMON QUBIT

The transmon qubit structure, which has a typical size
of a few hundred microns, can be an efficient receiving
antenna, transferring photons of a few hundred GHz
to the junction [6]. The absorbed photons at the
junction can break Cooper pairs that tunnel through
the barrier, giving rise to quasiparticle poisoning which
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is detectable as parity switching. Aided by finite-
element electromagnetic simulations, we validate the
photon absorption model and provide a semi-quantitative
explanation for the experimental observations.
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Supplementary Figure 11: Antenna mode of the
qubit and equivalent circuit model. a, A simple
half-wave dipole radiator. b, A folded dipole radiator
obtained by folding and connecting the two dipole ends
in a. c, A folded slot, which is the dual structure of b.
d, A paired folded slot radiator, obtained by mirroring
c about the line AA’, which shares a same structure as
a symmetric floating transmon qubit. e, Equivalent
circuit of the qubit structure. Zrad is the radiation
impedance and ZJ is the impedance of Josephson
junction. f, Real and imaginary part of Zrad from
finite-element simulation and from calculating the
equivalent circuit in e. Arrows indicate the
corresponding resonance modes. In this example, the
qubit parameters are L = 80µm, W = 35µm and
d = 5µm. In the equivalent circuit, C0 = 15 fF,
R1 = 40 Ω, L1 = 5.3 pH, C1 = 17 fF, R2 = 130 Ω,
L2 = 2 pH, C2 = 10 fF.

A. Antenna mode of the qubit and equivalent circuit

From the perspective of antenna theory, the floating
qubit structure used in our work can be thought of as
evolved from a simple dipole radiator. As shown in
Supplementary Fig. 11a, we start with a conventional
half-wave dipole containing two metallic arms, each of
length L/2, and a feed at the center. The fundamental
mode frequency is found equating L to a half wavelength,
while the higher-order resonances occur at frequencies
such that L corresponds to an integer multiple of a
half-wavelength. By folding the two ends of the dipole
back around and electrically connecting them together
to form a loop, a folded dipole radiator can be obtained

(Supplementary Fig. 11b), where the transverse length L
is the same. The input impedance of the folded dipole
can be expressed as

Zfd = 4ZtZd/(Zt + 2Zd) , (1)

where Zd is the input impedance of a conventional dipole
and Zt is the input impedance of the transmission line
formed by each folded arm with a short circuit loading [7].
At the fundamental mode resonant frequency, Zfd = 4Zd

since Zt approaches infinity. In order to adapt such
radiating structures to superconducting qubits based on
coplanar waveguide circuits, the Babinet’s principle is
applied to the folded dipole to obtain its dual structure,
i.e. a folded slot (Supplementary Fig. 11c). The
input impedance of this dual radiating structure can
be related to that of the folded dipole radiator as
Zfs = Z2

0/Zfd, where Z0 is the impedance of free space.
Since the electric field within the folded slot is primarily
perpendicular to the long edges of the slot, by utilizing
image theory, another folded slot can be created by
mirror reflection of the original one about the line AA’,
resulting in the paired folded slot radiator, which is
structurally equivalent to a symmetric floating transmon
(Supplementary Fig. 11d). It should be noted that the
line AA’ can be regarded as an electrical wall, such that
the introduction of the additional folded slot below the
line AA’ will not affect the field distribution but increase
the input impedance by a factor of two, i.e. Zrad = 2Zfs.

The frequency-dependent response of the radiation
impedance (Zrad) over an ultra-wide frequency range,
e.g. from ∼DC (10 GHz) to 1.2 THz, of the paired
folded slot radiator can be modeled by an equivalent
circuit. In order to ensure the passivity and causality
of impedance response of the radiator, the equivalent
circuit is made of capacitors, inductors, and resistors
connected in series and/or parallel [8]. Based on the
structural characteristics of the pair folded slot radiator,
it can be deduced that the fundamental resonance (mode
1) occurs at frequencies such that L equals to about a
half wavelength and the first higher-order resonant mode
(mode 2) is found at frequencies such that L is around
a full wavelength. For slot radiators with the electric
field polarized perpendicular to the long edges, the gap
provides the capacitance while the metallic ground offers
the inductance. Thus, both of the two slot modes can be
modeled as a parallel RLC circuit with different circuit
element values of Ci, Li, and Ri, where i = 1, 2. In
addition, there exists a coplanar capacitance, denoted
as C0, between the edges of the two metallic pads in
the top and bottom folded slots. At frequencies away
from the resonant modes, the two parallel RLC circuits
possess a low impedance, behaving like a short circuit,
indicating that these two RLC resonant circuits and
the inter-pad capacitor should be connected in series.
Hence, the equivalent circuit can be modeled as shown in
Supplementary Fig. 11e and the corresponding Zrad can
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be experessed as

Zrad =
1

jωC0
+

1

1/R1 + jωC1 + 1/jωL1

+
1

1/R2 + jωC2 + 1/jωL2
,

(2)

In order to validate this circuit model, we simulate
the entire qubit structure using a finite-element elec-
tromagnetic field solver [9] to obtain Zrad. We use a
similar method as presented in Ref. [6], which embeds
the qubit layer in an uniform dielectric medium with
effective permittivity ϵeff = (1 + ϵr)/2 (ϵr = 11 for
sapphire). The real and imaginary part of the obtained
frequency responses of Zrad are shown in Supplementary
Fig. 11f for the example of a qubit with L = 80µm,
W = 35µm, and d = 5µm, and are fitted using the
equivalent circuit model from Eq. (2); good agreement
can be observed over a frequency range from near DC
(10 GHz) to over 1.35 THz, thus validating the proposed
circuit model for this physical transmon structure. At
low frequencies well below any resonance of the radiator,
Zrad should exhibit a purely capacitive response, as
shown in the imaginary part of Zrad. The value of C0

extracted from the simulation corresponds to a charging
energy EC/h ≃ 1.36GHz, comparable to that estimated
from qubit spectroscopy, see Supplementary Table I.
As frequency increases to the fundamental resonance,
because the input impedance of the transmission line
Zt → ∞ and the dipole impedance Zd has a large value
right at resonance frequency, the folded dipole, Zfd ≈ 4Zd

according to Eq. (1), has a large impedance. Therefore,
the corresponding folded slot, Zfs = 2Z2

0/Zfd, has a
low impedance, as can be observed from the lower peak
of the fundamental mode in the real part of Zrad in
Supplementary Fig. 11f. At the frequency of the first
higher-order resonant mode, a large Zrad can be found
since Zt approaches zero when the value of L is about a
full wavelength.

Next, we use the radiation impedance to estimate
how efficiently pair-breaking photons are absorbed at the
junction through the qubit antenna. In the equivalent
circuit, we model the external radiation as a Thévenin-
equivalent generator with a voltage V [10]. The qubit
structure apart from the junction can be seen as the
internal impedance of the generator, which is Zrad =
Rrad+jXrad. The junction is the load with an impedance
ZJ = RJ + jXJ. The current is then I = V/(Zrad + ZJ),
and the power delivered to the antenna terminals PJ is:

PJ =
1

2
|Iin|2RJ

=
4RJRrad

|Zrad + ZJ|2
|V |2

8Rrad

= (1− |Γgen|2)PJ,max

= ecPJ,max,

(3)

where PJ,max is the maximum power that can be
delivered to the junction when the conjugate matching

condition Zrad = Z∗
J is satisfied or when the reflection

coefficient vanishes, Γgen =
Zrad−Z∗

J

Zrad+ZJ
= 0. The coefficient

ec is a transfer function of frequency,

ec = 1− |Γgen|2 =
4RJRrad

|Zrad + ZJ|2
, (4)

valued between 0 and 1. It estimates the fraction
of power transferred to the junction, the so called
absorption or coupling efficiency [6]; ec is proportional
to the real parts of the impedances ZJ and Zrad,
which are derived below. Note that in the frequency
response, we focus on photons with frequency f∗ twice
the superconducting gap near the junction, f∗ = 2∆/h =
105 GHz for a 30 nm thick aluminium film, because only
photons above this frequency can break Cooper pairs
and directly contribute to the observed parity switching.
Moreover, since the emission spectrum of a radiation
source at frequencies large compared to temperature,
hf ≫ kBT , generally takes an exponential distribution
with frequency, e−hf/kBT , only photons at f∗ make a
significant contribution. Therefore, in our comparison of
power transfer efficiency and parity-switching rate, we
use e∗c = ec(f

∗) instead of an integrated one.
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Supplementary Figure 12: Absorption efficiency
versus Zrad. The brightest point is the Z∗

J value. An
effective way to decrease e∗c is to decrease Rrad, while
for a given Rrad, Xrad has little influence on e∗c .

For radiation at a frequency above twice the
superconducting gap, the junction can be seen as a
resistor, with resistance equal to its normal resistance Rn,
shunted by the junction capacitance CJ. In our design,
the qubit normal resistance Rn ≃ 30 kΩ, and the junction
capacitance CJ ≃ 2.4 fF. The junction impedance is then:

ZJ =
1− jωτ

1 + ω2τ2
Rn, (5)

where τ = RnCJ. For a given junction impedance
(RJ = 13 Ω, XJ = −624 Ω evaluated at f∗), we plot



10

ec

e c

10-6

10-5

10-7

ec

R
  (

kΩ
)

0

20

40

60

80

100
10-6 10-510-7

e c 10
-6

10
-5

10
-7

10
-6

10
-5

10
-7

C  (fF)
0 2 4 6 8 10

J

n

Supplementary Figure 13: Energy transfer
efficiency of the qubit antenna ec as a function of
the junction capacitance CJ and the junction
resistance Rn. Different dashed linecuts are shown in
the surrounding panels in the same color coding.

in Supplementary Fig. 12 the absorption efficiency e∗c
as a function of the real and imaginary parts of Zrad

using Eq. (4). The maximum absorption occurs at
Zrad = Z∗

J , as expected from the conjugate matching
condition. According to Eq. (4), reducing Rrad is
effective in suppressing e∗c . Therefore, in order to
mitigate quasiparticle poisoning events, one should aim
to as small as possible Rrad when designing the device.
Besides, since the imaginary part of Zrad is dominating
in the denominator of Eq. (4), the more negative the
imaginary part of Zrad, the smaller the absorption
efficiency e∗c . This may be achieved by reducing the inter-
pad capacitance C0.

In Supplementary Fig. 13, we plot how the transfer
efficiency ec is affected by these factors according to the
model described by the Eq. (4). The junction capacitance
CJ is calculated by multiplying a specific capacitance of
75 fF/µm2 [6] with the design value of the junction area;
both junction area and specific capacitance may vary
from sample to sample due to fabrication variation. It
can be seen that ec is only weakly dependent on CJ (blue
dashed line and top panel); it varies less than a factor
of 2 over the whole range of CJ (0∼10 fF). Because the
junction resistance Rn scales inversely to the junction
area, we have considered the case of covariation of Rn and
CJ when the junction size fluctuates. The purple dashed
line indicates where the product of Rn and CJ stays
constant. In this case, ec shows stronger dependence on
Rn; this is consistent with Eq. (4) where ec has a near-

linear scaling with RJ (∝ Rn) and Rrad. Considering
typical fabrication variation, the variation in ec is small
around the typical working point (Rn = 30 kΩ and CJ =
2.43 fF) marked by the dark dot. In the paper, we deduce
the value of Rn from the measured qubit spectrum.

B. Geometric effect on antenna impedance

To understand the impact of the key geometrical
parameters to the radiation impedance of this radiating
structure, we perform a parametric study. We first
simulate qubit geometries with varying pad size as
used in the experiment. The results are shown in
Supplementary Fig. 14. It can be seen that the first
two resonances shift towards lower frequencies when L
increases. Since the fundamental mode is always higher
than the characteristic frequency f∗ = 105 GHz in this
range, the closer these two frequencies become, the more
energy the qubit absorbs. Accordingly, the real part of
Zrad becomes also larger, leading to higher absorption
efficiency e∗c , in agreement with theory. We extend the
simulation with L densely sampled from 60 µm to 320 µm
and with W = 35 µm and 60 µm. The results are shown
in Fig. 3c in the main text.
We also simulate geometries with varying pad-to-

ground distance d as shown in Supplementary Fig. 15. As
the gap between pad and ground widen, the resonances
shift towards lower frequency. In a similar argument as
above, such a change leads to an increased real part
of Zrad and greater e∗c . We extend the simulation
with d densely sampled from 5 µm to 400 µm. The
results are shown in Fig. 3d in the main text. The
phenomenon can be understood by taking a closer look
at the field distribution of the fundamental resonance
mode. As shown in Supplementary Fig. 16, when d
is increased from 20 µm to 400 µm, the fundamental
mode is no longer confined in a narrow space right next
to the pad, but expands outwards from the pad edge,
leading to a longer perimeter and hence a greater effective
wavelength. However, when d is large enough (d > L),
the mode field tends to stabilize, not changing further.
This qualitatively agrees with the saturation behavior
when d > 100 µm, but we do not know the reason for
the quantitative discrepancy between experimental data
and simulation result.
In addition, capping the qubit helps reduce ec without

causing significant change to the qubit parameters such
as EJ/EC. When a square-shaped metallic cap with
an edge length of 300–500 µm is placed on top of the
qubit structure at a distance of 10 µm, as shown in
Supplementary Fig. 17a (cf. Fig. 3a in the main text),
the radiation properties of the qubit can be greatly
affected. Specifically, the cap behaves as another floating
ground plane located in close proximity of the paired
folded slot radiator, on which currents are induced that
would also contribute to the radiated field. Based on
the image theory, virtual currents located on the other
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side of the cap flowing in the horizontal directions can
be used to evaluate the impact of the added floating
ground. Since the virtual image currents are pointing
into directions opposite to those flowing on the qubit,
i.e. they are out of phase to each other, and the vertical
spacing is greatly smaller than the wavelength of interest,
the radiated fields from the two kinds of currents will
cancel each other, thereby resulting in a significantly
reduced radiation impedance [12] and ec, as shown in
Supplementary Fig. 17b-d. In other words, the radiator
can be considered to be shorted out by the added metallic
cap at a deep-subwavelength distance. We extend the
simulation with L densely sampled from 80 µm to 260 µm
and with a cap sufficiently large (500×500 µm2) to cover
the qubit. The results are shown in Fig. 3c of the main
text.

SUPPLEMENTARY NOTE 6: OFFSET CHARGE
STABILITY

In the experiment monitoring long-term offset charge
stability, we simultaneously sweep the bias of all

six qubits from sample S1 and probe their readout
resonators. Every scan takes 24 s, later fitted to identify
zero bias. The scan is repeated for about 40 hours and
divided into 3 sections. Trajectories of all qubits are
shown in Supplementary Fig. 18(a-c), which records bias
charge fluctuations over time.

We find that in our devices, both the frequency and
the amplitude of charge jumps are considerably less than
the ones in Ref. [11]. We attribute the improvement to
the difference in qubit geometries: it can be understood
from the perspective of the effective volumes of the
charge sensitive regions. Take the example of the circular
transmon from Ref. [11], which is a round-shaped pad
with diameter of 140 µm. The calculated induced charge
on the pad given one electron charge at a certain location
in the substrate is shown in Supplementary Fig. 18d.
The dashed contour line encircles the region where the
induced charge is greater than 0.1 e. The total volume of
this charge-sensitive region is about 1.1× 107 µm3. Such
a volume can be reduced by simply making the qubit
smaller. For example, Supplementary Fig. 18e shows the
case in which the diameter of the circular transmon is
reduced to 80 µm, giving a charge-sensitive volume of
1.5×106 µm3. Though our floating transmon is similar in
size as the small circular transmon, the charge-sensitive
volume is nevertheless smaller, being only 5.0× 105 µm3

(Supplementary Fig. 18f). The floating design is only
sensitive to the differential charge induced on the two
pads, so charges beneath the gap between the pads (the
x = 0 plane) induce equal amount of charges on the pads
due to symmetry and thus do not contribute to the offset
bias. The effective volume can be considered similarly to
a scattering cross section, which is proportional to the
occurrence rate of observed events. The effective volume
in our design is almost two orders of magnitude smaller
than the circular transmon of Ref. [11]; this agrees with
the ratio between the observed rates of charge jumps
(> 0.1 e), 0.007-0.063 mHz in this work versus 1.35 mHz
in Ref. [11].

For capped floating qubits with different pad length
L but same pad-to-ground distance d, the simultaneous
charge stability monitoring is shown in Supplementary
Fig. 19(a-b). Supplementary Fig. 19c shows the
amplitudes and total counts of all offset charge jumps
(|∆q|) that are greater than 0.1 e extracted from
Supplementary Fig. 19(a-b). The charge jump rates are
about 0.015-0.077 mHz.

To exclude the possibility of the measured charge-
parity switching rate being affected by charge jumps, we
also measured ΓP at different offset charge ng spanning
more than a full period. A typical set of data is
shown in Supplementary Fig. 20. We do not observe
significant bias dependence in our devices; this is in
agreement with theoretical expectations: at leading order
the matrix element determining the parity switching rate
is independent of ng [13, 14], and while the spectral
density depends on ng through the energy difference ϵ0
between the state of opposite parities, this dependence is
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small in the parameter of order ϵ0/2∆ [14].

SUPPLEMENTARY NOTE 7: QUBIT
CALIBRATION AND CHARACTERIZATION

Due to random parity switching, to calibrate and
characterize qubits of small EJ/EC ratio requires
repeated measurements. As shown in the example of
qubit spectrum measurement in Supplementary Fig. 21a,
the qubit spectral peaks at ng = 0 of both parities

become visible by plotting together repeated scans, even
though the signal may switch between parities during
a single scan. After finding the qubit frequency, we
perform Rabi oscillations, to calibrate single-qubit gates,
and then perform T1 and T2 measurements, as shown in
Supplementary Fig. 21b-d.

We also measured the temperature dependence of
coherence properties. As shown in Supplementary
Fig. 22, the energy relaxation rate Γ1 = 1/T1 is
largely temperature independent below 100 mK. This
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is consistent with the fact that in our model for the
temperature dependence of ΓP (see Supplementary Note
8) up to this temperature only a small fraction (few
percent) of the pads’ quasiparticle density xqp can be
thermally excited, so that even in the worst case the
quasiparticles would limit the relaxation time to several
hundred microseconds. Meanwhile the increase of the
pure-dephasing rate Γϕ with temperature can be well
explained by dephasing induced by thermal photons in
the readout resonator according to [15]

Γϕ =
κ2

κ2 + 4χ2

4χ2

κ
n̄ , (6)

where n̄ = 1/(eh̄ωr/kBT−1) is the thermal photon number
in the resonator, κ = 0.8MHz is the resonator decay rate,
and χ = 0.4MHz the dispersive shift due to the qubit
state (not its parity).

SUPPLEMENTARY NOTE 8: TEMPERATURE
DEPENDENCE OF THE PARITY SWITCHING

RATE

The change of parity in the state of a superconducting
qubit is a clear signature of a transition mediated by
quasiparticles. Generically, the rate ΓP of a parity-
changing transition can have two contributions: one,
Γqp, originating from the tunnelling of a quasiparticle
from one side of the junction to the other; the second,
Γpb, caused by the absorption of a Cooper pair-breaking
photon at the junction accompanied by the generation
of one quasiparticle on each side of the junction (for
low quasiparticle densities, the opposite process of
quasiparticle recombination with photon emission can be
neglected):

ΓP = Γqp + Γpb . (7)

As the pair-breaking photon energy is larger than 2∆,
corresponding in Al to a temperature of a few degerees
Kelvin, it is reasonable to assume that the corresponding
rate is independent of the temperature T at the coldest
stage of the fridge, which in our experiment range from
few mK up to about 100 mK. Thus, we attribute the
temperature dependence to quasiparticle tunnelling.
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Supplementary Figure 21: Qubit
characterization. a, Qubit spectrum measured at
ng = 0. Data points shown are from three repeated
scans. The outliers are caused by parity switching
which happens during the time taking that data point
which, therefore, takes a value in between those of the
two parities. b, Rabi oscillations obtained by driving
the qubit at its odd-parity frequency ωO

ge. c, Energy
relaxation measured with a π pulse calibrated from the
odd-parity Rabi oscillations. Solid line is the
exponential fit to f(t) = Ae−t/T1 +B. d, Spin echo
decay. Solid line is the fit to

G(t) = Ae−t/2T1−(t/Tϕ)
2

+B, which accounts for a
Gaussian dephasing – 1/f noise – model and where T1

is fixed to the energy relaxation value previously
measured.

In quasiequilibrium, the temperature dependence of
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Supplementary Figure 22: Coherence versus
temperature. Points: Temperature dependence of
energy relaxation rate Γ1 and pure dephasing rate Γϕ

measured at ng = 0. Line: fit to Eq. (6) with the
resonator decay rate κ = 0.8 MHz and the dispersive
shift χ = 0.4 MHz.

Γqp can be obtained using the results of Ref. [13]:

Γqp(T ) =
16EJ

∆
c20

ϵ0
h
e−(∆−µ)/kBTF

(
ϵ0

2kBT
,
kBT

2∆

)
, (8)

where ϵ0 is the energy difference between the two
(ground) states of different parity, c0 is the matrix
element between those two states of the operator

cos(ϕ̂/2), µ is an effective chemical potential that
encapsulates the deviation from thermal equilibrium, and
the function F is

F (x, y) = cosh(x)[K1(x)− xyK0(x)] , (9)

where Ki are the modified Bessel function of the second
kind. The above formula is an approximate expression
which is accurate so long as y <∼ 0.1 and xy <∼ 0.08.
We note that EJ, ϵ0, and c0 can be extracted from the
spectroscopic data and hence, along with temperature,
they are not free parameters. Not known are the values of
the gap ∆ at the junction and of the chemical potential,
which we consider next.

As discussed in the main text, our samples consist of
two pads of thickness 100 nm connected by two thinner
superconducting strips (30 to 40 nm thickness), with
a Josephson tunnel junction formed where the strips
overlap. It is well known [16] that the gap in Al films
depends on their thickness; for thick films, such as
those of the pads, the gap is close to the bulk value
∆0 =180 µeV (∆0/h =43.52 GHz). The gap increases
as thickness decreases, and for 30 nm thick films values
between 200 and 220 µeV (48.36 to 53.20 GHz) were
reported in Ref. [17]. An energy difference of 20 (40) µeV
corresponds to a temperature of about 230 (460) mK;
therefore, at temperatures well below this value the pads
act as traps for quasiparticles in the manner studied
in Ref. [18]. This means that at low temperatures the
quasiparticles should be largely confined to the pads and
hence, in qualitative agreement with our experimental
data, the parity switching rate should be independent
of temperature. As temperature increases, quasiparticles

can be thermally excited from the pads to the strips and
hence reach the junction (cf. Fig. 1e in the main text),
which could explain the increase in ΓP with temperature.
To make the above consideration quantitative, we

make the simplifying assumption that in the pads there is
a fixed normalized density of quasiparticle xqp ≪ 1. This
density can be related to the effective chemical potential
µ through the formula:

xqp ≃
√

2πkBT

∆0
e−(∆0−µ)/kBT (10)

We can invert this expression to obtain the chemical
potential as function of T , ∆0, and xqp. Substituting
the result into Eq. (8) we can finally write:

ΓP (T ) = ΓP (0) (11)

+
16EJ

∆
c20

ϵ0
h
e

−(∆−∆0)
kBT xqp

√
∆0

2πkBT
F

(
ϵ0

2kBT
,
kBT

2∆

)
where ΓP (0) accounts for all possible temperature-
independent contribution to ΓP (including Γpb, but also
other possible sources of parity switching). Thus, we
have three free parameters: ΓP (0), ∆ (the gap at the
junctions), and xqp, that can be used in comparing theory
to experiment. Note that of these parameters, only ∆
and xqp appear in the temperature-dependent term of
Eq. (11), while ΓP (0) is independent of temperature.
We perform such a comparison for fifteen qubits

belonging to four samples, Sample S1, S4, S5, and S8; the
corresponding parameters are given in Supplementary
Table II. For the first three samples, the experimental
data with fit (in log scale) are presented in Fig. 4 of
the main text. When fitting the data, we require ∆
to be the same for qubits of a given sample, since the
thicknesses of their superconducting arms are expected
to be the same; this leaves only xqp as a parameter to fit
the temperature dependence for a given qubit in a chip.
The normalized quasiparticle densities are of order 10−7,
comparable to those reported in the literature [19, 20].
It should be noted that even at 100 mK the expected
thermal equilibrium value for xqp is about 4.6 × 10−10

and hence always two orders of magnitude smaller than
our extracted densities. This justifies assuming the
temperature independence of the quasiparticle density
in the pads, its value being determined by some non-
equilibrium process. In fact, the data in Fig. 4b of the
main text suggest that pair breaking at the junction
contributes significantly to the non-equilibrium density
xqp. In the steady-state, xqp is determined by the balance
between generation with rate g, recombination with rate
r (as mentioned in the main text), and possibly single-
quasiparticle trapping with rate s [20],

0 = g − sxqp − rx2
qp . (12)

The recombination rate is material and geometry
dependent; for thin films of aluminium it is estimated
to be r ≈ 1/(120 ns). The trapping rate s can be
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Pad length
L (µm)

Pad width
W (µm)

Distance
d (µm)

ωmax
ge /2π ωmin

ge /2π EJ/h EC/h ϵ0/h c20 ΓP (0) ∆/h 107xqp

S1−Q1 80 35 5 6.833 4.473 4.67 1.40 0.238 0.775 0.48 50.9 0.22
S1−Q2 80 35 10 6.954 4.135 4.27 1.48 0.319 0.755 0.77 50.9 1.94
S1−Q4 80 35 20 7.268 4.469 4.63 1.53 0.305 0.762 0.92 50.9 2.28
S4−Q1 80 35 5 7.845 6.754 7.61 1.30 0.0677 0.838 0.57 52.53 0.73
S4−Q2 220 35 5 5.774 5.505 6.92 0.78 0.0117 0.872 13.93 52.53 3.51
S4−Q3 240 60 5 6.068 6.067 12.25 0.44 2.18× 10−5 0.931 34.06 52.53 5.16
S5−Q1 80 35 5 7.246 5.740 6.25 1.31 0.112 0.817 1.59 49.50 0.35
S5−Q2 220 35 5 4.907 4.400 5.12 0.76 0.027 0.850 19.11 49.50 3.90
S5−Q3 240 60 5 6.2013 6.2012 14.66 0.37 1.6× 10−6 0.942 44.12 49.50 2.87
S8−Q2 80 35 5 5.566 2.281 2.35 1.29 0.490 0.691 0.42 48.55 0.96
S8−Q3 120 35 5 4.260 2.230 2.23 0.95 0.272 0.726 0.63 48.55 1.15
S8−Q5 180 35 5 4.254 3.858 4.45 0.66 0.024 0.846 1.10 48.55 0.42
S8−Q6 210 35 5 4.104 3.899 4.71 0.59 0.013 0.858 1.60 48.55 0.28
S8−Q7 260 35 5 3.832 3.712 4.84 0.49 0.005 0.871 1.60 48.55 0.70
S8−Q8 260 35 5 4.116 4.059 5.79 0.46 0.002 0.881 1.60 48.55 0.44

Supplementary Table 2: Qubit parameters. Qubit design parameters L, W , d, maximum and minimum

frequencies ω
max/min
ge , and Josephson and charging energies EJ and EC are as in Supplementary Table I and are

reported here for convenience. The energy difference between g states of different parities ϵ0 and the squared matrix
element c20 are calculated numerically from EC and EJ (although c20 can be estimated using the analytical formula
given in [13] within 2% percent in the worst case of S8-Q2, which has the smallest ratio EJ/EC), while ΓP (0), ∆,
and xqp are found by fitting ΓP versus temperature using Eq. (11). Numbers c20 and xqp are dimensionless, ΓP (0) is
given in Hz, and the remaining quantities in GHz.

written as the sum of a background rate s0 plus a
term due to vortices sv: s = s0 + sv; assuming no
vortices, we take s = s0 ≈ 0.05ms−1 = 50 s−1. (For
both recombination and trapping rates, their values are
taken from Ref. [20].) Finally, the generation rate can
in principle have several contributions, such as pair-
breaking phonons being generated in the substrate by
radiation [21] or pair-breaking photons absorbed directly
in the pads. For our purposes, we assume that the
quasiparticles generated at the junction with rate ΓP (0)
quickly diffuse to the pads, relax by phonon emission to
an energy lower than ∆ (the gap in the junction’s arms),
and are hence trapped in the pads; in this scenario, the
generation rate is

g =
ΓP (0)

2ν0∆0V
, (13)

where ν0 = 0.73×1047 (J m3)−1 is the single-spin density
of states at the Fermi energy in Al, ∆0 is the gap in the
pads, and V the volume of one pad.

For the densities of interest (xqp < 6 × 10−7), the
recombination term is smaller than the trapping one,
rxqp < s, so trapping should be dominant, giving xqp ∼
g/s; however, even for the largest value of g ∼ 10−8 s−1

(corresponding to the largest ΓP (0) measured in the
qubit with the biggest pads), the expected density would
be of order xqp ∼ 10−10, much smaller than the measured
densities. In the devices of Ref. [20], the pads consisted
of a bilayer where two aluminium films were separated
by a thin insulating layer of aluminium oxide; this oxide,
absent in our devices, could be the source of background
trapping. If trapping can be neglected, one instead finds

xqp =
√

g/r ∼ 3 × 10−8, which is still one order of
magnitude smaller than the largest measured density.
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Supplementary Figure 23: Points: experimental
data, where the generation rate g is calculated using
Eq. (13) with V = 4µm3 the volume of a bandage; red:
data from qubits in samples S1 and S5 (same as in
Fig. 4b of the main text), blue: data from qubits in S4
and S8. Solid line: theory estimate using the same
recombination rate r as in Ref. [20]. Dashed lines:
theory estimates multiplied or divided by 3.

A possible resolution of the discrepancy is as follows:
while we have assumed that the quasiparticles are
trapped in the pads, they could be trapped in the
bandages instead. The bandages are twice as thick as
the pads (200 vs 100 nm), so their gap is likely a few
µeV smaller, equivalent to a temperature of a few tens
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of mK, hence lower than base temperature. Moreover,
due to their small lateral dimensions (10 × 2µm2), the
bandages are unlikely to host vortices, explaining the
absence of trapping. For the purpose of fitting the
temperature dependence of the parity switching rate,
Fig. 4a of the main text, it doesn’t matter if the non-
equilibrium quasiparticles are activated from the pads
or the bandages; however, if the bandages’ volume is
used in Eq. (13) to calculate the generation rate g, we

find that the data is reasonably well explained (within a

factor of ∼ 3) by the relation xqp =
√
g/r with the same

recombination rate r of Ref. [20], see Supplementary
Fig. 23. Interestingly, this result suggests that either
no significant quasiparticle generation takes place in
the pads, or that the quasiparticles generated there are
quickly trapped, for instance due to one or a few vortices,
so that they do not reach the bandages (for reference, the
trapping rate sv by a single vortex in the largest pad is
sv ≈ 400 s−1 and sv is larger for smaller pads [20]).
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