## **Supplemental Online Content**

Zhang L, Yao H, Li L, et al. Risk of cardiovascular diseases associated with medications used in attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. *JAMA Netw Open.* 2022;5(11):e2243597. doi:10.1001/jamanetworkopen.2022.43597

eTable 1. Search Strategy and Results From Each Electronic Database

eTable 2. Items of the GRACE Checklist

**eTable 3.** Studies Excluded From the Systematic Review After Full-Text Screen, With Reasons

**eTable 4.** Absolute Risk and Risk Difference in CVD Outcomes Among the ADHD Medication Use Group vs the Reference Group

eTable 5. Quality Assessment by GRACE Checklist

eFigure 1. Results of Leave-One-Out Sensitivity Analysis

eFigure 2. Results From Egger Test

eFigure 3. Publication Bias of Included Studies

**eFigure 4.** Associations of Stimulant and Nonstimulant ADHD Medication Use With CVD

eFigure 5. Associations Between ADHD Medication Use and Specific CVD Outcomes

**eFigure 6.** Associations Between Stimulant ADHD Medication Use and Specific CVD Outcomes

eFigure 7. Associations Between ADHD Medication Use and CVD, by Sex Group

eFigure 8. Associations Between ADHD Medication Use and CVD, by History of CVD

eReferences.

This supplemental material has been provided by the authors to give readers additional information about their work.

## eTable 1. Search Strategy and Results From Each Electronic Database

| Electronic database              | Search terms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Resul                 |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Electronic<br>database<br>PubMed | Search terms ("cardiovascular diseases"[MeSH Terms] OR "cardiovascular system"[MeSH Terms] OR "coronary disease"[MeSH Terms] OR "heart diseases"[MeSH Terms] OR "death, sudden"[MeSH Terms] OR "death, sudden, cardiae"[MeSH Terms] OR "arrhythmias, cardiae"[MeSH Terms] OR "tachycardia"[MeSH Terms] OR "myocardial infarction"[MeSH Terms] OR "heart faiture"[MeSH Terms] OR "myocardial ischemia"[MeSH Terms] OR "coronary artery disease"[MeSH Terms] OR "cardionyopathies"[MeSH Terms] OR "myocarditis"[MeSH Terms] OR "cardionyopathies"[MeSH Terms] OR "peripheral arterial disease"[MeSH Terms] OR "cardiomyopathies"[MeSH Terms] OR "cerebrovascular disease"[MeSH Terms] OR ("cerebrum"[MeSH Terms] OR "cerebrovascular disease"[Title/Abstract] OR "cardiovascular diseases"[Title/Abstract] OR "cardiovascular disease"[Title/Abstract] OR "coronary heart diseases"[Title/Abstract] OR "heart disease"[Title/Abstract] OR "heart diseases"[Title/Abstract] OR "heart disease"[Title/Abstract] OR "heart diseases"[Title/Abstract] OR "heart disease"[Title/Abstract] OR "arrhythmia"[Title/Abstract] OR "myocarditia [Title/Abstract] OR "heart diseases"[Title/Abstract] OR "hypertension"[Title/Abstract] OR "heart diseases"[Title/Abstract] OR "hypertension"[Title/Abstract] OR "angina"[Title/Abstract] OR "cardiomyopathy"[Title/Abstract] OR "heart failure"[Title/Abstract] OR "ransient ischemic attacks"[Title/Abstract] OR "nertheytanesed"[Title/Abstract] OR "cardiomyapathy"[Title/Abstract] OR "heart failure"[Title/Abstract] OR "ransient ischemic attacks"[Title/Abstract] OR "nerthitery disease"[Title/Abstract] OR "cardiomya | Resul<br>2063<br>hits |

| Embr                     | "case-control"[Title/Abstract] OR "case-control"[Title/Abstract] OR "follow-up"[Title/Abstract]<br>OR "follow-up"[Title/Abstract] OR "longitudinal"[Title/Abstract] OR "prospective"[Title/Abstract]<br>OR "retrospective"[Title/Abstract] OR "population*"[Title/Abstract] OR "regist*"[Title/Abstract]<br>OR "claims"[Title/Abstract] OR "record"[Title/Abstract])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1052         |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Embase<br>and<br>Medline | #1 'cardiovascular disease':ab,ti OR 'cardiovascular diseases':ab,ti OR 'cardiovascular event':ab,ti OR 'cardiovascular event':ab,ti OR 'cardiovascular disorder':ab,ti OR 'cardiovascular disorders':ab,ti OR 'coronary heart disease':ab,ti OR 'coronary heart diseases':ab,ti OR 'heart disease':ab,ti OR 'sudden death':ab,ti OR 'sudden cardiac death':ab,ti OR arrhythmia:ab,ti OR tachycardia:ab,ti OR tachyarrhythmia:ab,ti OR 'myocardial infarction':ab,ti OR 'heart disease':ab,ti OR hypertension:ab,ti OR hypertension:ab,ti OR myocarditis:ab,ti OR angina:ab,ti OR 'cardiac arrest':ab,ti OR myocarditis:ab,ti OR angina:ab,ti OR 'cardiomyopathy:ab,ti OR 'peripheral artery disease':ab,ti OR 'transient ischemic attack':ab,ti OR 'transient ischemic attack':ab,ti OR 'transient ischemic attack':ab,ti OR 'cerebro vascular disease':ab,ti OR 'cerebro vascular dis | 1953<br>hits |
|                          | #2 adhd:ab,ti OR 'attention-deficit hyperactivity disorder':ab,ti OR 'attention deficit':ab,ti OR<br>'hyperkinetic disorder':ab,ti OR 'hyperkinetic syndrome':ab,ti OR psychostimulant:ab,ti OR<br>psychostimulants:ab,ti OR 'central nervous system stimulant':ab,ti OR 'central nervous system<br>stimulants':ab,ti OR stimulant:ab,ti OR stimulants:ab,ti OR 'non stimulant':ab,ti OR 'non<br>stimulants':ab,ti OR methylphenidate:ab,ti OR dexmethylphenidate:ab,ti OR<br>methamphetamine:ab,ti OR dextroamphetamine:ab,ti OR atomoxetine:ab,ti OR<br>amphetamines:ab,ti OR lisdexamfetamine:ab,ti OR atomoxetine:ab,ti OR guanfacine:ab,ti OR<br>clonidine:ab,ti OR viloxazine:ab,ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
|                          | #3 epidemiolog*:ab,ti OR observational:ab,ti OR cohort:ab,ti OR 'case control':ab,ti OR 'case-<br>control':ab,ti OR 'follow up':ab,ti OR 'follow-up':ab,ti OR longitudinal:ab,ti OR prospective:ab,ti<br>OR retrospective:ab,ti OR population*:ab,ti OR regist*:ab,ti OR claims:ab,ti OR record:ab,ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| PscyINFO                 | <ul> <li>#1 AND #2 AND #3</li> <li>1. (cardiovascular disease or cardiovascular diseases or cardiovascular event or cardiovascular events or cardiovascular disorder or cardiovascular disorders or coronary heart disease or coronary heart diseases or heart diseases or heart disease or sudden death or sudden cardiac death or arrhythmia or tachycardia or tachyarrhythmia or myocardial infarction or heart attack or hypertension or hypertensive or ischemic heart disease or heart failure or cardiac arrest or myocarditis or angina or cardiomyopathy or peripheral artery disease or peripheral artery diseases or transient ischemic attack or transient ischemic attacks or cerebrovascular disease or cerebrovascular diseases or cerebrovascular diseases or stroke).ab,ti.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1113<br>hits |
|                          | 2. (ADHD or attention-deficit hyperactivity disorder or attention deficit or hyperkinetic disorder or hyperkinetic syndrome or psychostimulant or psychostimulants or central nervous system stimulants or stimulants or non-stimulant or non-stimulants or methylphenidate or dexmethylphenidate or methamphetamine or dextroamphetamine or amphetamines or lisdexamfetamine or atomoxetine or guanfacine or clonidine or viloxazine).ab,ti.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|                          | 3. (epidemiolog* or observational or cohort or case control or case-control or follow up or follow-<br>up or longitudinal or prospective or retrospective or population* or regist* or claims or<br>record).ab,ti.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|                          | 4. 1 and 2 and 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |

| Web of  | TS=(cardiovascular disease OR cardiovascular diseases OR cardiovascular event OR                 | 2664 |
|---------|--------------------------------------------------------------------------------------------------|------|
| Science | cardiovascular events OR cardiovascular disorder OR cardiovascular disorders OR coronary heart   | hits |
|         | disease OR coronary heart diseases OR heart diseases OR heart disease OR sudden death OR         |      |
|         | sudden cardiac death OR arrhythmia OR tachycardia OR tachyarrhythmia OR myocardial               |      |
|         | infarction OR heart attack OR hypertension OR hypertensive OR ischemic heart disease OR heart    |      |
|         | failure OR cardiac arrest OR myocarditis OR angina OR cardiomyopathy OR peripheral artery        |      |
|         | disease OR peripheral artery diseases OR transient ischemic attack OR transient ischemic attacks |      |
|         | OR transient ischaemic attack OR transient ischaemic attacks OR cerebrovascular disease OR       |      |
|         | cerebrovascular diseases OR cerebro vascular disease OR cerebro vascular diseases OR cerebral    |      |
|         | vascular disease OR cerebral vascular diseases OR stroke) AND TS=(ADHD OR attention-deficit      |      |
|         | hyperactivity disorder OR attention deficit OR hyperkinetic disorder OR hyperkinetic syndrome    |      |
|         | OR psychostimulant OR psychostimulants OR central nervous system stimulant OR central            |      |
|         | nervous system stimulants OR stimulant OR stimulants OR non-stimulant OR non-stimulants OR       |      |
|         | methylphenidate OR dexmethylphenidate OR methamphetamine OR dextroamphetamine OR                 |      |
|         | amphetamine OR amphetamines OR lisdexamfetamine OR atomoxetine OR guanfacine OR                  |      |
|         | clonidine OR viloxazine) AND TS=(epidemiolog* OR observational OR cohort OR case control         |      |
|         | OR case-control OR follow up OR follow-up OR longitudinal OR prospective OR retrospective        |      |
|         | OR population* OR regist* OR claims OR record)                                                   |      |

## eTable 2. Items of the GRACE Checklist

| Q. The Good Research for Comparative Effectiveness (GRACE) Checklist v5.0 (last am                                                                                        | ended in 2 | 016)      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| Website: https://www.graceprinciples.org/                                                                                                                                 |            |           |
| Major Components                                                                                                                                                          | Response   | e options |
| Data                                                                                                                                                                      |            |           |
| D1. Were treatment and/or important details of treatment exposure adequately recorded for the study purpose in the data source(s)?                                        | +          | -         |
| D2. Were the primary outcomes adequately recorded for the study purpose (e.g., available in sufficient detail through data source(s))?                                    | +          | -         |
| D3. Was the primary clinical outcome(s) measured objectively rather than subject to clinical judgment (e.g., opinion about whether the patient's condition has improved)? | +          | -         |
| D4. Were primary outcomes validated, adjudicated, or otherwise known to be valid in a similar population?                                                                 | +          | -         |
| D5. Was the primary outcome(s) measured or identified in an equivalent manner between the treatment/ intervention group and the comparison group(s)?                      | +          | -         |
| D6. Were important covariates that may be known confounders or effect modifiers available and recorded?                                                                   | +          | -         |
| Methods                                                                                                                                                                   |            |           |
| M1. Was the study (or analysis) population restricted to new initiators of treatment or those starting a new course of treatment?                                         | +          | -         |
| M2. If one or more comparison groups were used, were they concurrent comparators? If not, did the authors justify the use of historical comparisons group(s)?             | +          | -         |
| M3. Were important covariates, confounding and effect modifying variables taken into account in the design and/or analysis?                                               | +          | -         |
| M4. Is the classification of exposed and unexposed person-time free of "immortal time bias"?                                                                              | +          | -         |
| M5. Were any meaningful analyses conducted to test key assumptions on which primary results are based?                                                                    | +          | -         |

# eTable 3. Studies Excluded From the Systematic Review After Full-Text Screen, With Reasons

| Reference                                                                                                                                  | Reason(s) for exclusion                     |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Acquarone-Greiwe, D., et al. (2009). Methylphenidate: Harmless intoxication but severe side effects? <i>Clinical Toxicology</i> , 47, 457. | No comparison group                         |
| Alrwisan, A. A., et al. (2019). Concomitant use of quinolones and                                                                          | Not related to our topic. It is mainly      |
| stimulants and the risk of cardiovascular adverse events: A                                                                                | focused on the association between          |
| comparative safety study. Pharmacoepidemiology and Drug Safety,                                                                            | stimulant-antibiotic combinations and       |
| 28, 405.                                                                                                                                   | CVD                                         |
| Alrwisan, A. A., et al. (2019b). Concomitant Use of Quinolones                                                                             | Not related to our topic. It mainly focuses |
| and Stimulants and the Risk of Adverse Cardiovascular Symptoms:                                                                            | on the association between stimulant-       |
| A Retrospective Cohort Study. <i>Pharmacotherapy</i> , 39, 1167-1178.                                                                      | antibiotic combinations and CVD             |
| Bali, V., et al. (2019). Cardiovascular Safety of Concomitant Use of                                                                       | Not related to our topic. It mainly focuses |
| Atypical Antipsychotics and Long-Acting Stimulants in Children                                                                             | on the association between long-acting      |
| and Adolescents With ADHD. <i>J Atten Discord</i> , 23, 163-172.                                                                           | stimulant-atypical antipsychotics           |
|                                                                                                                                            | combinations and CVD                        |
| Childress, A. C. (2019). Safety of Extended-Release                                                                                        |                                             |
| Methylphenidate in Preschool Children With ADHD. Journal of the                                                                            | The outcome does not meet the inclusion     |
| American Academy of Child and Adolescent Psychiatry, 58(10),                                                                               | criteria                                    |
| S296. doi:10.1016/j.jaac.2019.09.006                                                                                                       |                                             |
| Childress, A. C., et al. (2021). Long-Term Treatment With                                                                                  |                                             |
| Extended-Release Methylphenidate Treatment in Children Aged 4                                                                              | Clinical trial; No comparison group         |
| to <6 Years. J Am Acad Child Adolesc Psychiatry.                                                                                           |                                             |
|                                                                                                                                            | No comparison group; Not related to our     |
| Chin, K. M., et al. (2006). Is methamphetamine use associated with                                                                         | topic. It is a case series study, only      |
| idiopathic pulmonary arterial hypertension? Chest, 130, 1657-1663.                                                                         | describing the characteristic of PAH        |
|                                                                                                                                            | patients with stimulants using a history    |
|                                                                                                                                            | Within patients comparison, but no effect   |
| Cilsal, E., et al. (2020). Early Cardiovascular Evaluation after                                                                           | size; Only comparing the clinical indicator |
| Methylphenidate in Children with Attention-Deficit Hyperactivity                                                                           | before and after using ADHD medication,     |
| Disorder. Gazi Medical Journal, 31, 345-348.                                                                                               | no detailed description about abnormal      |
|                                                                                                                                            | clinical indicator                          |
| Conzelmann, A., et al. (2019). Long-term cardiovascular safety of                                                                          | Could not retrieve the effect measure,      |
| psychostimulants in children with attention deficit hyperactivity                                                                          | because this study only reported            |
| disorder. International Journal of Psychiatry in Clinical Practice,                                                                        | continuous measures of heart rate, blood    |
| 23, 157-159.                                                                                                                               | pressure                                    |
| Cortese, S., et al. (2015). Safety of Methylphenidate and                                                                                  |                                             |
| Atomoxetine in Children with Attention-Deficit/Hyperactivity                                                                               | No comparison group                         |
| Disorder (ADHD): Data from the Italian National ADHD Registry.                                                                             |                                             |
| CNS Drugs, 29, 865-877.                                                                                                                    |                                             |
| Curran, L. A., et al. (2019). Clinical correlates and outcomes of                                                                          |                                             |
| methamphetamine-associated cardiovascular disease among                                                                                    | Abstract only and it is about drug abuse    |
| hospitalized patients in California. European Heart Journal, 40,                                                                           |                                             |
|                                                                                                                                            |                                             |
| Dalsgaard, S., et al. (2011). Long-term cardiac adverse effects of                                                                         |                                             |
| ADHD medication in children and adolescents: A nationwide                                                                                  | Duplicate (Conference)                      |
| register-based follow-up study. European Child and Adolescent                                                                              |                                             |
| <i>Psychiatry</i> , 20, S107.                                                                                                              |                                             |
| Dalsgaard, S., et al. (2015). Cardiovascular safety of                                                                                     |                                             |
| psychostimulants in children with ADHD: Findings from a                                                                                    | Duplicate (conference abstract)             |
| population-based cohort study. <i>ADHD Attention Deficit and</i>                                                                           |                                             |
| Hyperactivity Disorders, 7, S14.                                                                                                           | <b>1</b>                                    |
| Darke, S., et al. (2019). Psychostimulant Use and Fatal Stroke in                                                                          | No comparison group; Include both illicit   |
| Young Adults. J Forensic Sci, 64, 1421-1426.                                                                                               | and licit use in this study                 |

| <ul> <li>Darracq, M. A., et al. (2021). Sustained stimulation? Characteristics of modified release and immediate release stimulant exposures reported to the national poison data system. <i>Clin Toxicol (Phila)</i>, 59, 200-207.</li> <li>Davies, M., et al. (2011). Risk of cardiac events in patients taking atomoxetine: Results of a matched cohort analysis. <i>Drug Safety</i>, 34, 2011.</li> </ul> | Not observational study<br>Insufficient data available                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 981.<br>Davis, L. E., et al. (2017). Diagnoses of cardiovascular disease or<br>addiction in U.S. adults treated for ADHD with stimulants or<br>atomoxetine: Is use consistent with product labelling?<br><i>Pharmacotherapy</i> , 37, e142.                                                                                                                                                                   | Duplicate (Conference)                                                                                                                                                                                                                         |
| Dovies, M., et al. (2009). A study to examine cardiac events in<br>patients prescribed atomoxetine in England: Results of an interim<br>modified prescription event monitoring study. Drug Safety, 32(10),<br>976-977.                                                                                                                                                                                        | No comparison group                                                                                                                                                                                                                            |
| Fairman, K. A., et al. (2018). Diagnoses of Cardiovascular Disease<br>or Substance Addiction/Abuse in US Adults Treated for ADHD<br>with Stimulants or Atomoxetine: Is Use Consistent with Product<br>Labelling? <i>Drugs Real World Outcomes</i> , <b>5</b> , 69-79.                                                                                                                                         | Focused on contraindication, CVD<br>prevalence accessed 12 months before<br>ADHD medication initiation; No<br>comparison group, no effect size                                                                                                 |
| Gomez-Lumbreras, A., et al. (2018). NERVOUS SYSTEM<br>DRUGS AND RISK OF ISCHEMIC STROKE: A REAL WORLD<br>DATA CASE-CONTROL STUDY. <i>Value in Health</i> , 21, S93.                                                                                                                                                                                                                                           | Only part of the conference abstract was<br>published, which focused on antiepileptics                                                                                                                                                         |
| Gould, M. S., et al. (2009). Sudden Death and Use of Stimulant<br>Medications in Youths. <i>American Journal of Psychiatry</i> , 166, 992-<br>1001.                                                                                                                                                                                                                                                           | Not focusing on CVD, include unknown reasons for sudden death in cases                                                                                                                                                                         |
| Hadinezhad, P., et al. (2019). Study of Methamphetamine Use in Patients Referred to Emergency Ward of a General Hospital at North of Iran in 2017. <i>Addict Health</i> , 11, 18-25.                                                                                                                                                                                                                          | Exposure is not a pharmacological<br>treatment of ADHD medications in this<br>study, because whether an individual is<br>exposed to drugs or not was defined by a<br>urine test (positive or negative); No<br>comparison group, no effect size |
| Hennessy, S., et al (2010). Cardiovascular safety of ADHD<br>medications: rationale for and design of an investigator-initiated<br>observational study. Pharmacoepidemiology and drug safety, 19(9),<br>934–941.                                                                                                                                                                                              | Duplicate; It is a protocol                                                                                                                                                                                                                    |
| Hills, N. K., et al. (2014). Stimulant medications as a risk factor for childhood stroke. Stroke, 45.                                                                                                                                                                                                                                                                                                         | Insufficient data available                                                                                                                                                                                                                    |
| Houghton, R., et al. (2019). 1.28 ASSESSMENT OF ADHD<br>MEDICATION USE AND ASSOCIATIONS WITH SERIOUS<br>CARDIOVASCULAR EVENTS IN CHILDREN AND<br>ADOLESCENTS WITH ASD IN THE UNITED STATES. Journal<br>of the American Academy of Child and Adolescent Psychiatry, 58,<br>S155-S156.                                                                                                                          | Duplicate (Conference)                                                                                                                                                                                                                         |
| Huang, M. C., et al. (2016). Risk of Cardiovascular Diseases and<br>Stroke Events in Methamphetamine Users: A 10-Year Follow-Up<br>Study. <i>J Clin Psychiatry</i> , 77, 1396-1403.                                                                                                                                                                                                                           | The study population (with a diagnosis of<br>drug dependence) is not our target<br>population; Drug abuse                                                                                                                                      |
| Jain, S., et al. (2017). Association of stimulant use with IPAH: A case-control study. American Journal of Respiratory and Critical Care Medicine, 195. doi:10.1164/ajrccm-conference.2017.A18                                                                                                                                                                                                                | Exposure does not meet the criteria                                                                                                                                                                                                            |
| Jeong, H. E., et al. (2020). No association between methylphenidate<br>use and myocardial infarction: A multinational self-controlled case<br>series study. <i>Pharmacoepidemiology and Drug Safety</i> , 29, 580-580.                                                                                                                                                                                        | Duplicate (Conference)                                                                                                                                                                                                                         |
| Kuehn, B. M. (2009). Stimulant use is linked to sudden death in children without heart problems. <i>Jama</i> , 302, 613-614.                                                                                                                                                                                                                                                                                  | It is medical News & Perspectives                                                                                                                                                                                                              |

| Larsson, P. G., et al. (2015). Incidence of bradycardia at arrival to the operating room after oral or intravenous premedication with clonidine in children. <i>Paediatr Anaesth</i> , 25, 956-962.                                                                                       | The incidence of bradycardia following<br>oral or intravenous premedication with<br>clonidine in a pediatric population<br>scheduled for anesthesia is low.                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lejdstrom, R. B., et al. (2012). Trends in paediatric ADHD drug prescription in the UK and cardiovascular event rates. <i>Pharmacoepidemiology and Drug Safety</i> , 21, 136.                                                                                                             | In the full text they no longer mentioned the CVD risks                                                                                                                                                                              |
| Mau, M. K., et al. (2009). Risk factors associated with methamphetamine use and heart failure among native Hawaiians and other Pacific Island peoples. <i>Vasc Health Risk Manag</i> , 5, 45-52.                                                                                          | Not related topic: This study examined risk<br>factors of methamphetamine use among<br>heart failure patients; The exposure<br>definition does not meet our criteria.<br>positive MU use was defined in part by the<br>toxicity test |
| Mccarthy, S., et al. (2009). Mortality associated with attention-<br>deficit hyperactivity disorder (ADHD) drug treatment: a<br>retrospective cohort study of children, adolescents and young adults<br>using the general practice research database. <i>Drug Saf,</i> 32, 1089-<br>1096. | Not focusing on CVD, No results on CVD-<br>specific death                                                                                                                                                                            |
| Mosholder, A. D., et al. (2016). Heart failure and cardiomyopathy following initiation of medications for attention-<br>deficit/hyperactivity disorder. <i>Journal of the American Academy of</i><br><i>Child and Adolescent Psychiatry</i> , 55, S168.                                   | Duplicate (Conference)                                                                                                                                                                                                               |
| Mosholder, A. D., et al. (2018). Incidence of heart failure and<br>cardiomyopathy following initiation of medications for attention-<br>deficit/hyperactivity disorder: a descriptive study. Journal of<br>Clinical Psychopharmacology, 38, 505-508.                                      | No non-use comparison group                                                                                                                                                                                                          |
| Panei, P., et al. (2010). Safety of psychotropic drug prescribed for attention-deficit/hyperactivity disorder in Italy. <i>Adverse Drug Reaction Bulletin</i> , 999-1002.                                                                                                                 | Lack of no-use group                                                                                                                                                                                                                 |
| Petitti, D. B., et al. (1998). Stroke and cocaine or amphetamine use. <i>Epidemiology</i> , 9, 596-600.                                                                                                                                                                                   | It is about drug abuse                                                                                                                                                                                                               |
| Potey, C., et al. (2018). Cardiovascular safety of methylphenidate<br>in adult attention deficit hyperactivity disorder (ADHD): The Lille<br>experience. Fundamental and Clinical Pharmacology, 32, 24.                                                                                   | No comparison group                                                                                                                                                                                                                  |
| Prohaska, C. C., et al. (2021). Regional Variation in<br>Methamphetamine-associated Pulmonary Arterial Hypertension:<br>Who'd Better Call Saul? <i>Ann Am Thorac Soc</i> , 18, 584-585.                                                                                                   | It is an editorial                                                                                                                                                                                                                   |
| Ramphul, K., et al. (2019). Cocaine, Amphetamine, and Cannabis<br>Use Increases the Risk of Acute Myocardial Infarction in<br>Teenagers. <i>Am J Cardiol</i> , 123, 354.                                                                                                                  | The exposure definition does not meet our criteria, it is a short report of drug abuse                                                                                                                                               |
| Sayer, G. R., et al. (2016). Acute and long-term cardiovascular effects of stimulant, guanfacine, and combination therapy for attention-deficit/hyperactivity disorder. <i>Journal of Child and Adolescent Psychopharmacology</i> , 26, 882-888.                                          | Duplicate, The study design does not meet<br>our criteria, this is an RCT                                                                                                                                                            |
| Schelleman, H., et al. (2011a). ADHD medications and risk of serious cardiovascular events in adults. <i>Pharmacoepidemiology and Drug Safety</i> , 20, S122.                                                                                                                             | Duplicate (Conference)                                                                                                                                                                                                               |
| Schelleman, H., et al. (2011b). Cardiovascular safety of ADHD<br>medications in children and adolescents. <i>Pharmacoepidemiology</i><br><i>and Drug Safety</i> , 20, S134.                                                                                                               | Duplicate (Conference)                                                                                                                                                                                                               |
| Shin, J. Y., et al. (2015). Cardiac risk associated with<br>methylphenidate in paediatric patients with attention deficit<br>hyperactivity disorder (ADHD): Self-controlled case series study in<br>Korea. <i>Pharmacoepidemiology and Drug Safety</i> , 24, 235-236.                     | Duplicate (Conference)                                                                                                                                                                                                               |

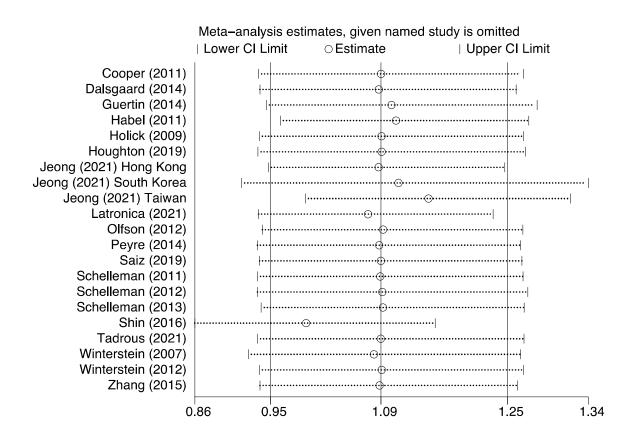
| Stewart, E. M., et al. (2017). Risk of pulmonary hypertension in<br>users of prescription amphetamine-based stimulants: A single<br>center experience. American Journal of Respiratory and Critical<br>Care Medicine, 195.                                                                                                                                                                                                              | Exposure does not meet the criteria                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stewart, E. M., et al. (2017). Uncovering a link between<br>prescription amphetamine-based stimulants and pulmonary<br>hypertension-data from a northern California multi-specialty, mixed<br>payer, health care system. American Journal of Respiratory and<br>Critical Care Medicine, 195.                                                                                                                                            | Duplicate (Conference)                                                                                                                                         |
| Tadrous, M., et al. (2019). Use of stimulants in adults and risk of cardiovascular events: A multi-design approach. <i>Pharmacoepidemiology and Drug Safety</i> , 28, 19.                                                                                                                                                                                                                                                               | Duplicate (Protocol)                                                                                                                                           |
| Tai, YM., et al. (2012). Cardiovascular events and<br>methylphenidate use in Taiwan. Journal of the American Academy<br>of Child & Adolescent Psychiatry, 51(3), 324-325.                                                                                                                                                                                                                                                               | Insufficient data available                                                                                                                                    |
| Trenque, T., et al. (2009). Spontaneous reporting with methylphenidate: Insufficient data. Drug Safety, 32(10), 983.                                                                                                                                                                                                                                                                                                                    | No comparison group                                                                                                                                            |
| Weisler, R. H., et al. (2005). Long-term cardiovascular effects of mixed amphetamine salts extended release in adults with ADHD. <i>CNS Spectrums</i> , 10, 35-43.                                                                                                                                                                                                                                                                      | Could not retrieve effect measure, because<br>this study only reported continuous<br>measure of heart rate, and blood pressure;<br>No non-use comparison group |
| Wernicke, J. F., et al. (2003). Cardiovascular effects of atomoxetine in children, adolescents, and adults. Drug Safety, 26, 729-740.                                                                                                                                                                                                                                                                                                   | Not observational study, cardiovascular effects described in RCT, not in extension                                                                             |
| Winterstein, A. G., et al. (2009). Cardiac safety of methylphenidate versus amphetamine salts in the treatment of ADHD. <i>Pediatrics</i> , 124, e75-80.                                                                                                                                                                                                                                                                                | No non-use comparison group                                                                                                                                    |
| Yang, C. L., et al. (2010). Side effects associated with prescription of methylphenidate in Taiwan. <i>Value in Health</i> , 13, A103.                                                                                                                                                                                                                                                                                                  | Insufficient data available                                                                                                                                    |
| Yeo, K. K., et al. (2007). The association of methamphetamine use<br>and cardiomyopathy in young patients. <i>Am J Med</i> , 120, 165-171                                                                                                                                                                                                                                                                                               | Unrelated topic                                                                                                                                                |
| Vitiello B, et al (2012). Blood pressure and heart rate over 10 years<br>in the multimodal treatment study of children with ADHD. Am J<br>Psychiatry. 2012 Feb;169(2):167-77.                                                                                                                                                                                                                                                           | The outcome does not meet the inclusion criteria                                                                                                               |
| García Ron, A., et al. (2021). Impacto del tratamiento con<br>metilfenidato sobre las propiedades funcionales y estructurales del<br>ventrículo izquierdo a medio plazo en el trastorno por déficit de<br>atención e hiperactividad [The impact of methylphenidate treatment<br>on the functional and structural properties of the left ventricle: A<br>medium-term prospective study]. Anales de pediatria, S1695-<br>4033(20)30537-3. | The outcome does not meet the inclusion criteria                                                                                                               |
| Masi, G., et al. (2022). Acute Tolerability of Methylphenidate in<br>Treatment-Naïve Children with ADHD: An Analysis of<br>Naturalistically Collected Data from Clinical Practice. Pediatric<br>drugs, 24(2), 147–154.                                                                                                                                                                                                                  | No comparison                                                                                                                                                  |
| Cohen, Audrey et al. (2022). Abstract TP206: Vascular Risk<br>Factors And Stimulant Use Among Stroke Patients. Stroke. 53.<br>10.1161/str.53.suppl_1.TP206.                                                                                                                                                                                                                                                                             | Exposure does not the meet criteria                                                                                                                            |

#### eTable 4. Absolute Risk and Risk Difference in CVD Outcomes Among the ADHD Medication Use Group vs the Reference Group

|                                             |                   |         |              | NT 1     | Expose |        |                   | ication) | Un     | exposed |                   | iser)    | Risk d            | ifference |
|---------------------------------------------|-------------------|---------|--------------|----------|--------|--------|-------------------|----------|--------|---------|-------------------|----------|-------------------|-----------|
| Study                                       | Design            | Measure | Number of    |          |        |        | oup               |          |        | 0       | oup               | <b>T</b> | E i               |           |
|                                             |                   |         | participants | of cases | IN     | No. of |                   | Event    | Ν      | No. of  |                   | Event    | Event             | Event     |
|                                             | G 1 /             | IDD     | 442100       | 1.605    |        | event  | rate <sup>a</sup> | %        | 202020 | event   | rate <sup>a</sup> | %        | rate <sup>a</sup> | %         |
| Habel et al, <sup>1</sup> 2011              | Cohort            | IRR     | 443198       | 1625     | 150359 |        | 218               | 0.16     | 292839 |         | 261               | 0.48     | -43               | -0.32     |
| Holick et al, <sup>2</sup> 2009             | Cohort            | HR      |              | 65       |        | 37     | 58.8              | 0.09     | 1      | 28      | 42.5              | 0.06     | 16.3              | 0.03      |
| Olfson et al, <sup>3</sup> 2012             | Cohort            | OR      | 171126       | 101      | 89031  | 21     | 0.92              | 0.06     | 82095  | 80      | 1.55              | 0.01     | -0.63             | 0.05      |
| Schelleman et al, <sup>4</sup> 2012         | Cohort            | HR      | 219954       | 1740     | 43999  | 98     | 3.40              | 0.22     | 175955 | 1642    | 3.55              | 0.93     | -0.15             | -0.71     |
| Schelleman et al, <sup>5</sup> 2013         | Cohort            | HR      | 192905       | 572      | 38586  | 25     | 2.62              | 0.06     | 154319 | 547     | 3.03              | 0.35     | -0.41             | -0.29     |
| Tadrous et al, <sup>6</sup> 2021            | Cohort            | HR      | 31310        | 932      | 6457   | 112    | 5.11              | 1.73     | 24853  | 820     | 3.66              | 3.30     | 1.45              | -1.57     |
| Winterstein et al, <sup>7</sup> 2012        | Cohort            | OR      | 1219847      | 95       | 386584 | 20     | 2.6               | 0.002    | 833263 | 75      | 5.0               | 0.02     | -2.4              | -0.02     |
| Zhang et al, <sup>8</sup> 2015 <sup>b</sup> | Cohort            | HR      | 144          | 32       | 48     | 17     | -                 | 35.4     | 96     | 15      | -                 | 15.6     | -                 | 19.8      |
| Latronica et al, <sup>9</sup> 2021          | Cohort            | OR      | 13233        | 236      | 4966   | 191    | -                 | 3.85     | 8267   | 45      | -                 | 0.54     | -                 | 3.31      |
| Peyre et al, <sup>10</sup> 2014             | Cohort            | OR      | 807          | 76       | 216    | 27     | -                 | 12.5     | 591    | 49      | -                 | 8.29     | -                 | 4.21      |
| Winterstein et al, <sup>11</sup> 2007       | Cohort            | HR      | 55383        | 830      | 32807  | 406    | 953               | -        | 22576  | 424     | 909               | 1.88     | 44                | -         |
| Cooper et al, <sup>12</sup> 2011            | Cohort            | HR      | 1200438      | 56       | -      | 7      | 1.87              | -        | -      | 49      | 3.07              | -        | -1.2              | -         |
| Dalsgaard et al, <sup>13</sup> 2014         | Cohort            | HR      | 8300         | 111      | -      | -      | -                 | -        | -      | -       | -                 | -        | -                 | -         |
| Schelleman et al, <sup>14</sup> 2011        | Cohort            | HR      | 241417       | 155      | -      | -      | -                 | -        | -      | -       | -                 | -        | -                 | -         |
| Guertin et al, <sup>15</sup> 2014           | NCC <sup>c</sup>  | OR      | 38495        | 1344     | -      | -      | -                 | -        | -      | -       | -                 | -        | -                 | -         |
| Houghton et al, <sup>16</sup> 2019          | NCC               | OR      | 2046         | 186      | -      | -      | -                 | -        | -      | -       | -                 | -        | -                 | -         |
| Saiz et al, <sup>17</sup> 2019              | NCC               | OR      | 2882         | 262      | -      | -      | -                 | -        | -      | -       | -                 | -        | -                 | -         |
| Shin et al, <sup>18</sup> 2016              | SCCS <sup>c</sup> | IRR     | 1224         | 1224     | -      | -      | -                 | -        | -      | -       | -                 | -        | -                 | -         |
| Jeong et al, <sup>19</sup> 2021 South Korea | SCCS              | IRR     | 2104         | 2104     | -      | -      | -                 | -        | -      | -       | -                 | -        | -                 | -         |
| Jeong et al, <sup>19</sup> 2021 Taiwan      | SCCS              | IRR     | 484          | 484      | -      | -      | -                 | -        | -      | -       | -                 | -        | -                 | -         |
| Jeong et al, <sup>19</sup> 2021 Hongkong    | SCCS              | IRR     | 30           | 30       | -      | -      | -                 | -        | -      | -       | -                 | -        | -                 | -         |

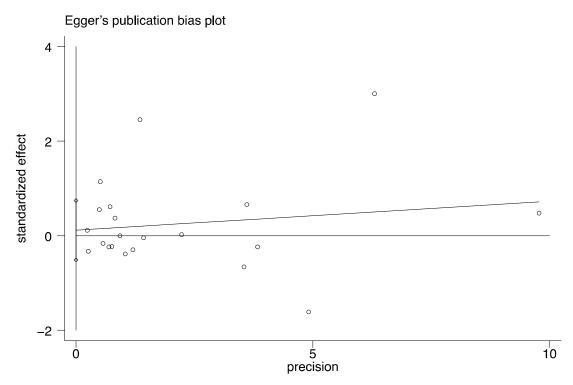
Abbreviations: ADHD, attention-deficit/hyperactivity disorder; CVD, cardiovascular disease; NCC, Nested case-control; SCCS, Self-control case series

<sup>a</sup> Event rate present as the number of events per 100,000 person-years

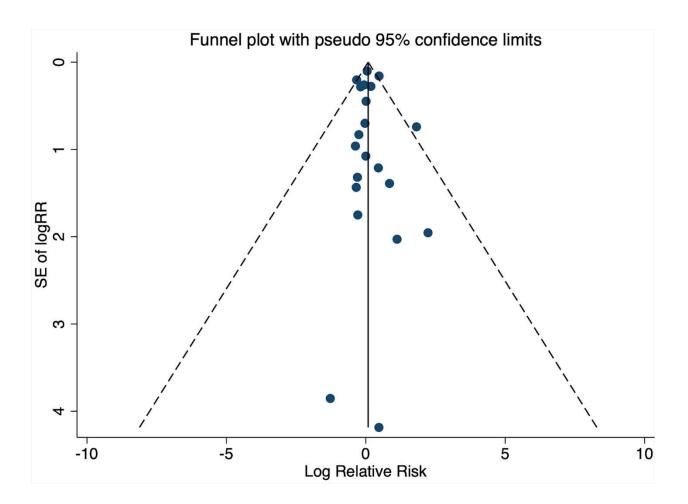

<sup>b</sup> The study was conducted in a patient group with Long QT syndrome; thus the base rate of CVD event is high <sup>c</sup> In nested case-control and self case series studies, data are not available to calculate the incidence rate of the disease being studied

| C. 1               |    |    |    | D  | ata |    |          |    |    | Ν  | 1ethoo | ls |          | T 4 1 |
|--------------------|----|----|----|----|-----|----|----------|----|----|----|--------|----|----------|-------|
| Study              | D1 | D2 | D3 | D4 | D5  | D6 | Subtotal | M1 | M2 | M3 | M4     | M5 | Subtotal | Total |
| Cooper (2011)      | +  | +  | +  | +  | +   | +  | 6        | +  | +  | +  | +      | +  | 5        | 11    |
| Dalsgaard (2014)   | +  | +  | +  | -  | +   | +  | 5        | -  | +  | +  | +      | -  | 3        | 8     |
| Guertin (2014)     | +  | +  | +  | -  | +   | -  | 4        | +  | +  | -  | +      | +  | 4        | 8     |
| Habel (2011)       | +  | +  | +  | +  | +   | +  | 6        | +  | +  | +  | +      | +  | 5        | 11    |
| Holick (2009)      | +  | +  | +  | -  | +   | +  | 5        | +  | +  | +  | +      | -  | 4        | 9     |
| Houghton (2019)    | +  | +  | +  | +  | +   | +  | 6        | -  | +  | +  | -      | +  | 3        | 9     |
| Jeong (2021)       | +  | +  | +  | +  | +   | +  | 6        | +  | +  | +  | +      | -  | 4        | 10    |
| Latronica (2021)   | +  | +  | +  | -  | +   | +  | 5        | -  | +  | +  | -      | -  | 2        | 7     |
| Olfson (2012)      | +  | +  | +  | +  | +   | -  | 5        | +  | +  | +  | +      | -  | 4        | 9     |
| Peyre (2014)       | -  | +  | -  | -  | +   | +  | 3        | -  | +  | +  | -      | -  | 2        | 5     |
| Saiz (2019)        | +  | +  | +  | +  | +   | +  | 6        | -  | +  | +  | -      | +  | 3        | 9     |
| Schelleman (2011)  | +  | +  | +  | +  | +   | -  | 5        | +  | +  | -  | -      | +  | 3        | 8     |
| Schelleman (2012)  | +  | +  | +  | +  | +   | -  | 5        | +  | +  | +  | -      | +  | 4        | 9     |
| Schelleman (2013)  | +  | +  | +  | +  | +   | -  | 5        | +  | +  | +  | -      | +  | 4        | 9     |
| Shin (2016)        | +  | +  | +  | +  | +   | +  | 6        | +  | +  | +  | +      | +  | 5        | 11    |
| Tadrous (2021)     | +  | +  | +  | +  | +   | +  | 6        | +  | +  | +  | +      | +  | 5        | 11    |
| Winterstein (2007) | +  | +  | +  | -  | +   | +  | 5        | +  | +  | +  | +      | -  | 4        | 9     |
| Winterstein (2012) | +  | +  | +  | +  | +   | +  | 6        | -  | +  | +  | +      | -  | 3        | 9     |
| Zhang (2015)       | +  | -  | +  | -  | +   | -  | 3        | -  | +  | +  | +      | -  | 3        | 6     |

## eTable 5. Quality Assessment by GRACE Checklist


GRACE, Good Research for Comparative Effectiveness

#### eFigure 1. Results of Leave-One-Out Sensitivity Analysis\*




\*The vertical axis shows the omitted study. Every circle indicates the pooled risk ratio when the left study is omitted in this meta-analysis. The two ends of every broken line represent the respective 95% confidence interval.



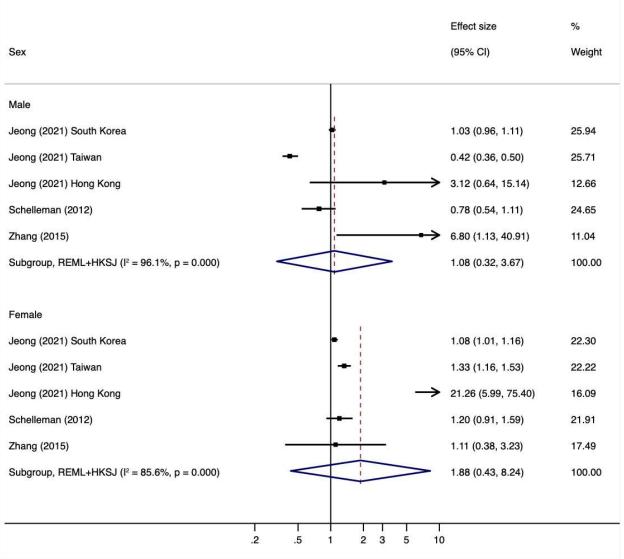


\* Result from Egger's test for small study effect suggested there was no small study effects (P=0.71)



## eFigure 3. Publication Bias of Included Studies

| Type of ADHD medication                                 |                 |         |       |               | Effect size<br>(95% CI) | %<br>Weigh |
|---------------------------------------------------------|-----------------|---------|-------|---------------|-------------------------|------------|
| Stimulants                                              |                 |         |       |               |                         |            |
| Cooper (2011) -                                         |                 |         |       |               | 0.96 (0.31, 2.97)       | 4.10       |
| Dalsgaard (2014)                                        | <u>+</u>        |         |       |               | 2.34 (1.15, 4.75)       | 5.57       |
| Guertin (2014)                                          |                 |         |       |               | 0.94 (0.82, 1.07)       | 7.20       |
| Habel (2011)                                            |                 |         |       |               | 0.87 (0.72, 1.04)       | 7.13       |
| Jeong (2021) Hong Kong                                  |                 |         |       | <b>→</b>      | 9.32 (3.44, 25.28)      | 4.53       |
| Jeong (2021) South Korea                                |                 |         |       |               | 1.05 (1.00, 1.11)       | 7.27       |
| Jeong (2021) Taiwan                                     | -   ;           |         |       |               | 0.72 (0.65, 0.80)       | 7.23       |
| Latronica (2021)                                        | 1               |         |       | _             | 6.16 (4.22, 8.99)       | 6.70       |
| Olfson (2012)                                           |                 |         |       |               | 0.69 (0.42, 1.12)       | 6.35       |
| Saiz (2019)                                             | 1               |         |       |               | 0.28 (0.04, 2.04)       | 2.17       |
| Schelleman (2011)                                       |                 |         |       | $\rightarrow$ | 2.63 (0.29, 23.69)      | 1.84       |
| Schelleman (2012)                                       | -+              |         |       |               | 1.01 (0.81, 1.28)       | 7.05       |
| Schelleman (2013)                                       |                 |         |       |               | 0.78 (0.51, 1.19)       | 6.56       |
| Shin (2016)                                             |                 | -       |       |               | 1.61 (1.48, 1.74)       | 7.25       |
| Tadrous (2021)                                          |                 |         |       |               | 1.00 (0.60, 1.80)       | 6.15       |
| Winterstein (2007)                                      |                 | •       |       |               | 1.20 (1.04, 1.38)       | 7.19       |
| Winterstein (2012)                                      |                 | -       |       |               | 0.74 (0.38, 1.46)       | 5.71       |
| Subgroup, REML+HKSJ (l² = 94.2%, p = 0.000)             | $\triangleleft$ | >       |       |               | 1.24 (0.84, 1.83)       | 100.00     |
| Non-stimulants                                          |                 |         |       |               |                         |            |
| Guertin (2014)                                          |                 |         |       |               | 2.37 (1.82, 3.10)       | 37.48      |
| Habel (2011)                                            | <b>_</b> !      |         |       |               | 0.74 (0.46, 1.19)       | 33.98      |
| Schelleman (2013)                                       | <b>_</b> _      |         |       |               | 0.92 (0.44, 1.92)       | 28.54      |
| Subgroup, REML+HKSJ (I <sup>2</sup> = 90.2%, p = 0.000) |                 |         | -     |               | 1.22 (0.25, 5.97)       | 100.00     |
|                                                         |                 |         |       |               |                         |            |
| .2                                                      | I I<br>.5 1     | 1 1 2 3 | <br>5 | 10            | Ň                       |            |


### eFigure 4. Associations of Stimulant and Nonstimulant ADHD Medication Use With CVD

### eFigure 5. Associations Between ADHD Medication Use and Specific CVD Outcomes

| Cardiac arrest/tachyarrhythmias<br>Cooper (2011)<br>Habel (2011)<br>Houghton (2019)<br>Latronica (2021)<br>Schelleman (2012)<br>Schelleman (2013)<br>Shin (2016)<br>Tadrous (2021)<br>Schelleman (2011)<br>Habel (2011)<br>Holick (2009)<br>Houghton (2019)<br>Latronica (2021)<br>Schelleman (2013)<br>Schelleman (2014)<br>Schelleman (2015)<br>Schelleman (2015)<br>Schelleman (2017)<br>Subgroup, REML+HKSJ (IF = 34.0%, p = 0.136)<br>Myocardial infarction<br>Habel (2011)<br>Houghton (2019)<br>Jeong (2021) Hong Kong<br>Jeong (2021) South Korea<br>Jeong (2021) Taiwan<br>Latronica (2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.88 (0.23, 3.35)<br>0.80 (0.55, 1.18)<br>1.03 (0.57, 1.83)<br>6.90 (3.56, 13.38)<br>1.60 (0.19, 13.60)<br>1.84 (1.33, 2.55)<br>1.18 (0.55, 2.54)<br>1.61 (1.48, 1.74)<br>2.90 (0.60, 14.30)<br>1.60 (0.94, 2.72)<br>0.93 (0.29, 2.97)<br>0.76 (0.58, 1.00)<br>0.71 (0.34, 1.47)<br>0.84 (0.53, 1.31)<br>2.50 (1.20, 5.20)<br>0.89 (0.11, 7.11)<br>1.14 (0.83, 1.56)<br>0.80 (0.44, 1.47) | 7.12<br>14.79<br>13.12<br>12.42<br>3.81<br>15.18<br>11.49<br>16.27<br>5.81<br>100.00<br>2.84<br>20.64<br>6.33<br>12.59<br>6.31<br>0.94 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Habel (2011)<br>Houghton (2019)<br>Latronica (2021)<br>Schelleman (2012)<br>Schelleman (2013)<br>Shin (2016)<br>Tadrous (2021)<br>Subgroup, REML+HKSJ (I <sup>2</sup> = 77.9%, p = 0.000)<br>Cerebrovascular disease<br>Cooper (2011)<br>Habel (2011)<br>Holick (2009)<br>Houghton (2019)<br>Latronica (2021)<br>Schelleman (2011)<br>Schelleman (2012)<br>Schelleman (2013)<br>Shin (2016)<br>Tadrous (2021)<br>Schelleman (2013)<br>Shin (2016)<br>Tadrous (2021)<br>Subgroup, REML+HKSJ (I <sup>2</sup> = 34.0%, p = 0.136)<br>Myocardial infarction<br>Habel (2011)<br>Houghton (2019)<br>Jeong (2021) Hong Kong<br>Jeong (2021) Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.80 (0.55, 1.18)<br>1.03 (0.57, 1.83)<br>6.90 (3.56, 13.38)<br>1.60 (0.19, 13.60)<br>1.84 (1.33, 2.55)<br>1.18 (0.55, 2.54)<br>1.61 (1.48, 1.74)<br>2.90 (0.60, 14.30)<br>1.60 (0.94, 2.72)<br>0.93 (0.29, 2.97)<br>0.76 (0.58, 1.00)<br>0.71 (0.34, 1.47)<br>0.84 (0.53, 1.31)<br>2.50 (1.20, 5.20)<br>0.89 (0.11, 7.11)<br>1.14 (0.83, 1.56)                                           | 14.79<br>13.12<br>12.42<br>3.81<br>15.18<br>11.49<br>16.27<br>5.81<br>100.00<br>2.84<br>20.64<br>6.33<br>12.59<br>6.31                 |
| Habel (2011)<br>Houghton (2019)<br>Latronica (2021)<br>Schelleman (2013)<br>Shin (2016)<br>Tadrous (2021)<br>Subgroup, REML+HKSJ (I <sup>2</sup> = 77.9%, p = 0.000)<br>Cerebrovascular disease<br>Cooper (2011)<br>Habel (2011)<br>Holick (2009)<br>Houghton (2019)<br>Latronica (2021)<br>Schelleman (2011)<br>Schelleman (2011)<br>Schelleman (2012)<br>Schelleman (2013)<br>Shin (2016)<br>Tadrous (2021)<br>Schelleman (2013)<br>Shin (2016)<br>Tadrous (2021)<br>Subgroup, REML+HKSJ (I <sup>2</sup> = 34.0%, p = 0.136)<br>Myocardial infarction<br>Habel (2011)<br>Houghton (2019)<br>Jeong (2021) Hong Kong<br>Jeong (2021) Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.03 (0.57, 1.83)<br>6.90 (3.56, 13.38)<br>1.60 (0.19, 13.60)<br>1.84 (1.33, 2.55)<br>1.18 (0.55, 2.54)<br>1.61 (1.48, 1.74)<br>2.90 (0.60, 14.30)<br>1.60 (0.94, 2.72)<br>0.93 (0.29, 2.97)<br>0.76 (0.58, 1.00)<br>0.71 (0.34, 1.47)<br>0.84 (0.53, 1.31)<br>2.50 (1.20, 5.20)<br>0.89 (0.11, 7.11)<br>1.14 (0.83, 1.56)                                                                | 13.12<br>12.42<br>3.81<br>15.18<br>11.49<br>16.27<br>5.81<br>100.00<br>2.84<br>20.64<br>6.33<br>12.59<br>6.31                          |
| Houghton (2019)<br>Latronica (2021)<br>Schelleman (2012)<br>Schelleman (2013)<br>Shin (2016)<br>Tadrous (2021)<br>Subgroup, REML+HKSJ (I <sup>2</sup> = 77.9%, p = 0.000)<br>Cerebrovascular disease<br>Cooper (2011)<br>Habel (2011)<br>Holick (2009)<br>Houghton (2019)<br>Latronica (2021)<br>Schelleman (2011)<br>Schelleman (2012)<br>Schelleman (2012)<br>Schelleman (2013)<br>Shin (2016)<br>Tadrous (2021)<br>Subgroup, REML+HKSJ (I <sup>2</sup> = 34.0%, p = 0.136)<br>Myocardial infarction<br>Habel (2011)<br>Houghton (2019)<br>Jeong (2021) South Korea<br>Jeong (2021) South Korea<br>Jeong (2021) Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.03 (0.57, 1.83)<br>6.90 (3.56, 13.38)<br>1.60 (0.19, 13.60)<br>1.84 (1.33, 2.55)<br>1.18 (0.55, 2.54)<br>1.61 (1.48, 1.74)<br>2.90 (0.60, 14.30)<br>1.60 (0.94, 2.72)<br>0.93 (0.29, 2.97)<br>0.76 (0.58, 1.00)<br>0.71 (0.34, 1.47)<br>0.84 (0.53, 1.31)<br>2.50 (1.20, 5.20)<br>0.89 (0.11, 7.11)<br>1.14 (0.83, 1.56)                                                                | 12.42<br>3.81<br>15.18<br>11.49<br>16.27<br>5.81<br>100.00<br>2.84<br>20.64<br>6.33<br>12.59<br>6.31                                   |
| Latronica (2021)<br>Schelleman (2012)<br>Schelleman (2013)<br>Shin (2016)<br>Tadrous (2021)<br>Subgroup, REML+HKSJ (I <sup>2</sup> = 77.9%, p = 0.000)<br>Cerebrovascular disease<br>Cooper (2011)<br>Habel (2011)<br>Holick (2009)<br>Houghton (2019)<br>Latronica (2021)<br>Schelleman (2013)<br>Schelleman (2014)<br>Schelleman (2015)<br>Subgroup, REML+HKSJ (I <sup>2</sup> = 34.0%, p = 0.136)<br>Myocardial infarction<br>Habel (2011)<br>Houghton (2019)<br>Jeong (2021) South Korea<br>Jeong (2021) South Korea<br>Jeong (2021) Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.90 (3.56, 13.38)<br>1.60 (0.19, 13.60)<br>1.84 (1.33, 2.55)<br>1.18 (0.55, 2.54)<br>1.61 (1.48, 1.74)<br>2.90 (0.60, 14.30)<br>1.60 (0.94, 2.72)<br>0.93 (0.29, 2.97)<br>0.76 (0.58, 1.00)<br>0.71 (0.34, 1.47)<br>0.84 (0.53, 1.31)<br>2.50 (1.20, 5.20)<br>0.89 (0.11, 7.11)<br>1.14 (0.83, 1.56)                                                                                     | 12.42<br>3.81<br>15.18<br>11.49<br>16.27<br>5.81<br>100.00<br>2.84<br>20.64<br>6.33<br>12.59<br>6.31                                   |
| Schelleman (2011)         Schelleman (2012)         Schelleman (2013)         Shin (2016)         Fadrous (2021)         Subgroup, REML+HKSJ (I² = 77.9%, p = 0.000)         Cerebrovascular disease         Cooper (2011)         Habel (2011)         Holick (2009)         Houghton (2019)         Latronica (2021)         Schelleman (2013)         Schelleman (2014)         Houghton (2019)         Jeong (2021) South Korea         Jeong (2021) South Korea         Jeong (2021) Taiwan<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.60 (0.19, 13.60)<br>1.84 (1.33, 2.55)<br>1.18 (0.55, 2.54)<br>1.61 (1.48, 1.74)<br>2.90 (0.60, 14.30)<br>1.60 (0.94, 2.72)<br>0.93 (0.29, 2.97)<br>0.76 (0.58, 1.00)<br>0.71 (0.34, 1.47)<br>0.84 (0.53, 1.31)<br>2.50 (1.20, 5.20)<br>0.89 (0.11, 7.11)<br>1.14 (0.83, 1.56)                                                                                                           | 3.81<br>15.18<br>11.49<br>16.27<br>5.81<br>100.00<br>2.84<br>20.64<br>6.33<br>12.59<br>6.31                                            |
| Schelleman (2012)         Schelleman (2013)         Shin (2016)         Fadrous (2021)         Subgroup, REML+HKSJ (I² = 77.9%, p = 0.000)         Cerebrovascular disease         Cooper (2011)         Habel (2011)         Holick (2009)         Houghton (2019)         .atronica (2021)         Schelleman (2013)         Schelleman (2013)         Schelleman (2013)         Schelleman (2013)         Schelleman (2013)         Schelleman (2013)         Schelleman (2014)         Schelleman (2015)         Schelleman (2016)         Fadrous (2021)         Subgroup, REML+HKSJ (I² = 34.0%, p = 0.136)         Myocardial infarction         Habel (2011)         Houghton (2019)         Leong (2021) Hong Kong         Leong (2021) South Korea         Leong (2021) Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.84 (1.33, 2.55)<br>1.18 (0.55, 2.54)<br>1.61 (1.48, 1.74)<br>2.90 (0.60, 14.30)<br>1.60 (0.94, 2.72)<br>0.93 (0.29, 2.97)<br>0.76 (0.58, 1.00)<br>0.71 (0.34, 1.47)<br>0.84 (0.53, 1.31)<br>2.50 (1.20, 5.20)<br>0.89 (0.11, 7.11)<br>1.14 (0.83, 1.56)                                                                                                                                 | 15.18<br>11.49<br>16.27<br>5.81<br>100.00<br>2.84<br>20.64<br>6.33<br>12.59<br>6.31                                                    |
| Schelleman (2013)<br>Shin (2016)<br>Fadrous (2021)<br>Subgroup, REML+HKSJ ( $l^2 = 77.9\%$ , p = 0.000)<br>Cerebrovascular disease<br>Cooper (2011)<br>Habel (2011)<br>Holick (2009)<br>Holick (2009)<br>Holick (2009)<br>Holick (2009)<br>Holick (2009)<br>Holick (2009)<br>Holick (2019)<br>Schelleman (2011)<br>Schelleman (2012)<br>Schelleman (2013)<br>Shin (2016)<br>Fadrous (2021)<br>Subgroup, REML+HKSJ ( $l^2 = 34.0\%$ , p = 0.136)<br>Myocardial infarction<br>Habel (2011)<br>Houghton (2019)<br>Heong (2021) South Korea<br>Heong (2021) Taiwan<br>Holick (2021)<br>Houghton (2019)<br>Heong (2021) South Korea<br>Heong (2021) Taiwan<br>Heong               | 1.18 (0.55, 2.54)<br>1.61 (1.48, 1.74)<br>2.90 (0.60, 14.30)<br>1.60 (0.94, 2.72)<br>0.93 (0.29, 2.97)<br>0.76 (0.58, 1.00)<br>0.71 (0.34, 1.47)<br>0.84 (0.53, 1.31)<br>2.50 (1.20, 5.20)<br>0.89 (0.11, 7.11)<br>1.14 (0.83, 1.56)                                                                                                                                                      | 11.49<br>16.27<br>5.81<br>100.00<br>2.84<br>20.64<br>6.33<br>12.59<br>6.31                                                             |
| Shin (2016)<br>Tadrous (2021)<br>Subgroup, REML+HKSJ (I <sup>2</sup> = 77.9%, p = 0.000)<br>Cerebrovascular disease<br>Cooper (2011)<br>tabel (2011)<br>tolick (2009)<br>tolick (2009)<br>tolick (2009)<br>tolick (2009)<br>tolick (2009)<br>tolick (2019)<br>Schelleman (2011)<br>Schelleman (2012)<br>Schelleman (2013)<br>Shin (2016)<br>Tadrous (2021)<br>Subgroup, REML+HKSJ (I <sup>2</sup> = 34.0%, p = 0.136)<br>Ayocardial infarction<br>tabel (2011)<br>toughton (2019)<br>leong (2021) South Korea<br>leong (2021) Taiwan<br>Tabel (2021) Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.61 (1.48, 1.74)<br>2.90 (0.60, 14.30)<br>1.60 (0.94, 2.72)<br>0.93 (0.29, 2.97)<br>0.76 (0.58, 1.00)<br>0.71 (0.34, 1.47)<br>0.84 (0.53, 1.31)<br>2.50 (1.20, 5.20)<br>0.89 (0.11, 7.11)<br>1.14 (0.83, 1.56)                                                                                                                                                                           | 16.27<br>5.81<br>100.00<br>2.84<br>20.64<br>6.33<br>12.59<br>6.31                                                                      |
| adrous (2021)         Subgroup, REML+HKSJ (I² = 77.9%, p = 0.000)         Cerebrovascular disease         Cooper (2011)         Iabel (2011)         Iabel (2011)         Iolick (2009)         Ioughton (2019)         Iatronica (2021)         Schelleman (2011)         Schelleman (2012)         Schelleman (2013)         Schelleman (2013)         Schelleman (2013)         Schelleman (2013)         Schelleman (2013)         Schelleman (2013)         Schelleman (2014)         Bubgroup, REML+HKSJ (I² = 34.0%, p = 0.136)         Myocardial infarction         Iabel (2011)         Ioughton (2019)         eong (2021) South Korea         eong (2021) South Korea         eong (2021) Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.90 (0.60, 14.30)<br>1.60 (0.94, 2.72)<br>0.93 (0.29, 2.97)<br>0.76 (0.58, 1.00)<br>0.71 (0.34, 1.47)<br>0.84 (0.53, 1.31)<br>2.50 (1.20, 5.20)<br>0.89 (0.11, 7.11)<br>1.14 (0.83, 1.56)                                                                                                                                                                                                | 5.81<br>100.00<br>2.84<br>20.64<br>6.33<br>12.59<br>6.31                                                                               |
| Subgroup, REML+HKSJ (I <sup>2</sup> = 77.9%, p = 0.000)<br>Cerebrovascular disease<br>Cooper (2011)<br>tabel (2011)<br>tolick (2009)<br>toughton (2019)<br>atronica (2021)<br>Schelleman (2012)<br>Schelleman (2013)<br>Shin (2016)<br>adrous (2021)<br>Subgroup, REML+HKSJ (I <sup>2</sup> = 34.0%, p = 0.136)<br>Myocardial infarction<br>tabel (2011)<br>toughton (2019)<br>eong (2021) South Korea<br>eong (2021) Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.60 (0.94, 2.72)<br>0.93 (0.29, 2.97)<br>0.76 (0.58, 1.00)<br>0.71 (0.34, 1.47)<br>0.84 (0.53, 1.31)<br>2.50 (1.20, 5.20)<br>0.89 (0.11, 7.11)<br>1.14 (0.83, 1.56)                                                                                                                                                                                                                      | 100.00<br>2.84<br>20.64<br>6.33<br>12.59<br>6.31                                                                                       |
| Cerebrovascular disease<br>Cooper (2011)<br>tabel (2011)<br>tolick (2009)<br>toughton (2019)<br>atronica (2021)<br>Schelleman (2012)<br>Schelleman (2013)<br>Schelleman (2014)<br>Schelleman (2015)<br>Schelleman (2015)<br>Schelleman (2017)<br>Schelleman (2018)<br>Schelleman (2018)<br>Schelleman (2019)<br>Schelleman (2019)<br>Schelleman (2019)<br>Schelleman (2011)<br>Schelleman (2011)<br>Schelleman (2013)<br>Schelleman (2013)<br>Schelleman (2014)<br>Schelleman (2014)<br>Schelleman (2015)<br>Schelleman (2014)<br>Schelleman (2015)<br>Schelleman (2015)<br>Schelleman (2017)<br>Schelleman (2018)<br>Schelleman (2018)<br>Schelleman (2019)<br>Schelleman (2019)<br>Schelleman (2011)<br>Schelleman (2011)<br>Schelleman (2014)<br>Schelleman (2014)<br>Schelleman (2015)<br>Schelleman (2014)<br>Schelleman (2015)<br>Schelleman (2017)<br>Schelleman (2017)<br>Schelleman (2018)<br>Schelleman (2017)<br>Schelleman (2018)<br>Schelleman (2019)<br>Schelleman (2019)<br>Schelleman (2011)<br>Schelleman (2011)<br>Schelleman (2011)<br>Schelleman (2012)<br>Schelleman (2011)<br>Schelleman (2013)<br>Schelleman (2014)<br>Schelleman (2015)<br>Schelleman (2015)<br>Schelleman (2017)<br>Schelleman (2017)<br>Schelleman (2018)<br>Schelleman (2018)<br>Schelleman (2018)<br>Schelleman (2019)<br>Schelleman (2019)<br>Schelleman (2011)<br>Schelleman (2018)<br>Schelleman (2018)<br>Schelleman (2018)<br>Schelleman (2018)<br>Schelleman (2019)<br>Schelleman (2017)<br>Schelleman (2018)<br>Schelleman (2017)<br>Schelleman (2018)<br>Schelleman (2018)<br>Schel | 0.93 (0.29, 2.97)<br>0.76 (0.58, 1.00)<br>0.71 (0.34, 1.47)<br>0.84 (0.53, 1.31)<br>2.50 (1.20, 5.20)<br>0.89 (0.11, 7.11)<br>1.14 (0.83, 1.56)                                                                                                                                                                                                                                           | 2.84<br>20.64<br>6.33<br>12.59<br>6.31                                                                                                 |
| Cooper (2011)     Image: Cooper (2011)       Habel (2011)     Image: Cooper (2011)       Holick (2009)     Image: Cooper (2019)       Holick (2019)     Image: Cooper (2011)       Schelleman (2012)     Image: Cooper (2013)       Schelleman (2013)     Image: Cooper (2013)       Schelleman (2013)     Image: Cooper (2021)       Subgroup, REML+HKSJ (I² = 34.0%, p = 0.136)     Image: Cooper (2021)       Myocardial infarction     Image: Cooper (2021)       Iabel (2011)     Image: Cooper (2021)       Ioughton (2019)     Image: Cooper (2021)       eong (2021) South Korea     Image: Cooper (2021)       eong (2021) Taiwan     Image: Cooper (2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.76 (0.58, 1.00)<br>0.71 (0.34, 1.47)<br>0.84 (0.53, 1.31)<br>2.50 (1.20, 5.20)<br>0.89 (0.11, 7.11)<br>1.14 (0.83, 1.56)                                                                                                                                                                                                                                                                | 20.64<br>6.33<br>12.59<br>6.31                                                                                                         |
| Habel (2011)       Image: Constraint of the second se                                                                                                                                                                                                                                                                 | 0.76 (0.58, 1.00)<br>0.71 (0.34, 1.47)<br>0.84 (0.53, 1.31)<br>2.50 (1.20, 5.20)<br>0.89 (0.11, 7.11)<br>1.14 (0.83, 1.56)                                                                                                                                                                                                                                                                | 20.64<br>6.33<br>12.59<br>6.31                                                                                                         |
| Holick (2009)       Image: Constraint of the second s                                                                                                                                                                                                                                                                 | 0.71 (0.34, 1.47)<br>0.84 (0.53, 1.31)<br>2.50 (1.20, 5.20)<br>0.89 (0.11, 7.11)<br>1.14 (0.83, 1.56)                                                                                                                                                                                                                                                                                     | 6.33<br>12.59<br>6.31                                                                                                                  |
| Houghton (2019)     Image: Constraint of the second s                                                                                                                                                                                                                                                   | 0.84 (0.53, 1.31)<br>2.50 (1.20, 5.20)<br>0.89 (0.11, 7.11)<br>1.14 (0.83, 1.56)                                                                                                                                                                                                                                                                                                          | 12.59<br>6.31                                                                                                                          |
| atronica (2021)       Schelleman (2011)       Schelleman (2012)       Schelleman (2013)       Schelleman (2014)       Subgroup, REML+HKSJ (I² = 34.0%, p = 0.136)       Myocardial infarction       Iabel (2011)       Schelleman (2019)       eong (2021) Hong Kong       eong (2021) South Korea       eong (2021) Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.50 (1.20, 5.20)<br>0.89 (0.11, 7.11)<br>1.14 (0.83, 1.56)                                                                                                                                                                                                                                                                                                                               | 6.31                                                                                                                                   |
| chelleman (2011)<br>chelleman (2012)<br>chelleman (2013)<br>hin (2016)<br>adrous (2021)<br>ubgroup, REML+HKSJ (I <sup>2</sup> = 34.0%, p = 0.136)<br>lyocardial infarction<br>label (2011)<br>loughton (2019)<br>eong (2021) Hong Kong<br>eong (2021) South Korea<br>eong (2021) Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.89 (0.11, 7.11)<br>1.14 (0.83, 1.56)                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |
| Acchelleman (2012)     Image: Constraint of the second secon                                                                                                                                                                                                                                                   | 1.14 (0.83, 1.56)                                                                                                                                                                                                                                                                                                                                                                         | 0.04                                                                                                                                   |
| Schelleman (2013)     Image: Constraint of the second                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                           | 0.94                                                                                                                                   |
| Shin (2016)<br>adrous (2021)<br>Subgroup, REML+HKSJ (I <sup>2</sup> = 34.0%, p = 0.136)<br>Myocardial infarction<br>Habel (2011)<br>Houghton (2019)<br>eong (2021) Hong Kong<br>eong (2021) South Korea<br>eong (2021) Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 80 (0 44 1 47)                                                                                                                                                                                                                                                                                                                                                                          | 18.36                                                                                                                                  |
| adrous (2021)       Image: constraint of the second s                                                                                                                                                                                                                                                                 | 0.00(0.44, 1.47)                                                                                                                                                                                                                                                                                                                                                                          | 8.53                                                                                                                                   |
| adrous (2021)<br>Subgroup, REML+HKSJ (I <sup>2</sup> = 34.0%, p = 0.136)<br>Myocardial infarction<br>Iabel (2011)<br>Ioughton (2019)<br>eong (2021) Hong Kong<br>eong (2021) South Korea<br>eong (2021) Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70 (0.49, 1.01)                                                                                                                                                                                                                                                                                                                                                                         | 16.16                                                                                                                                  |
| Subgroup, REML+HKSJ (l <sup>2</sup> = 34.0%, p = 0.136)<br>Ayocardial infarction<br>Habel (2011)<br>Houghton (2019)<br>eong (2021) Hong Kong<br>eong (2021) South Korea<br>eong (2021) Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00 (0.50, 1.90)                                                                                                                                                                                                                                                                                                                                                                         | 7.32                                                                                                                                   |
| Alyocardial infarction<br>label (2011)<br>loughton (2019)<br>eong (2021) Hong Kong<br>eong (2021) South Korea<br>eong (2021) Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.91 (0.72, 1.15)                                                                                                                                                                                                                                                                                                                                                                         | 100.00                                                                                                                                 |
| Habel (2011)     Image: Constraint of the second seco                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                        |
| leong (2021) Hong Kong<br>leong (2021) South Korea<br>leong (2021) Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.88 (0.74, 1.05)                                                                                                                                                                                                                                                                                                                                                                         | 14.00                                                                                                                                  |
| eong (2021) Hong Kong<br>eong (2021) South Korea<br>eong (2021) Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.83 (0.15, 4.51)                                                                                                                                                                                                                                                                                                                                                                         | 2.92                                                                                                                                   |
| eong (2021) South Korea eong (2021) Taiwan 🗕                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.32 (3.44, 25.28)                                                                                                                                                                                                                                                                                                                                                                        | 6.15                                                                                                                                   |
| eong (2021) Taiwan 🛨 🔓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.05 (1.00, 1.11)                                                                                                                                                                                                                                                                                                                                                                         | 14.54                                                                                                                                  |
| U ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.72 (0.65, 0.80)                                                                                                                                                                                                                                                                                                                                                                         | 14.38                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00 (0.42, 2.40)                                                                                                                                                                                                                                                                                                                                                                         | 7.13                                                                                                                                   |
| chelleman (2012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.87 (0.63, 1.21)                                                                                                                                                                                                                                                                                                                                                                         | 12.73                                                                                                                                  |
| chelleman (2012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                           | 9.93                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.75 (0.42, 1.35)<br>1.33 (0.90, 1.98)                                                                                                                                                                                                                                                                                                                                                    | 9.93                                                                                                                                   |
| hin (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                           | 12.02                                                                                                                                  |
| adrous (2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                        |
| Subgroup, REML+HKSJ (l <sup>2</sup> = 86.2%, p = 0.000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00 (0.40, 2.90)                                                                                                                                                                                                                                                                                                                                                                         | 6.20                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                        |

| Outcome                                                                 |             | Effect size<br>(95% CI) | %<br>Weight |
|-------------------------------------------------------------------------|-------------|-------------------------|-------------|
| Cardiac arrest/tachyarrhythmias                                         |             |                         |             |
| Habel (2011)                                                            | i           | 0.80 (0.55, 1.18)       | 18.21       |
| Latronica (2021)                                                        |             | → 6.90 (3.56, 13.38)    | 15.71       |
| Schelleman (2011) -                                                     |             | → 2.63 (0.29, 23.69)    | 5.12        |
| Schelleman (2012)                                                       | <del></del> | 1.84 (1.33, 2.55)       | 18.61       |
| Schelleman (2013)                                                       | <b>_</b>    | 1.18 (0.55, 2.54)       | 14.69       |
| Shin (2016)                                                             | -           | 1.61 (1.48, 1.74)       | 19.70       |
| Tadrous (2021)                                                          |             | → 2.90 (0.60, 14.30)    | 7.96        |
| Subgroup, REML+HKSJ ( $l^2 = 82.1\%$ , p = 0.000)                       |             | 1.87 (0.96, 3.68)       | 100.00      |
| oubgroup, riemerritor (r = 62.178, p = 6.666)                           |             | 1.07 (0.00, 0.00)       | 100.00      |
| Cerebrovascular disease                                                 |             |                         |             |
| Habel (2011)                                                            | <b></b> _;  | 0.76 (0.58, 1.00)       | 23.01       |
| Latronica (2021)                                                        | <b>_</b>    | 2.50 (1.20, 5.20)       | 10.46       |
| Schelleman (2012)                                                       |             | 1.14 (0.83, 1.56)       | 21.59       |
| Schelleman (2013)                                                       |             | 0.80 (0.44, 1.47)       | 13.15       |
| Shin (2016)                                                             |             | 0.70 (0.49, 1.01)       | 20.07       |
| Tadrous (2021)                                                          |             | 1.00 (0.50, 1.90)       | 11.73       |
| Subgroup, REML+HKSJ ( $l^2 = 62.1\%$ , p = 0.022)                       |             | 0.96 (0.63, 1.48)       | 100.00      |
| Subgroup, REMETINGS ( $1 = 02.1\%$ , $p = 0.022$ )                      |             | 0.90 (0.03, 1.40)       | 100.00      |
| Myocardial infarction                                                   |             |                         |             |
| Habel (2011)                                                            |             | 0.88 (0.74, 1.05)       | 14.13       |
| Jeong (2021) Hong Kong                                                  | 1           | → 9.32 (3.44, 25.28)    | 6.68        |
| Jeong (2021) South Korea                                                |             | 1.05 (1.00, 1.11)       | 14.60       |
| Jeong (2021) Taiwan                                                     | - I         | 0.72 (0.65, 0.80)       | 14.46       |
| Latronica (2021)                                                        |             | 1.00 (0.42, 2.40)       | 7.67        |
| Schelleman (2012)                                                       |             | 0.87 (0.63, 1.21)       | 12.99       |
| Schelleman (2013)                                                       |             | 0.75 (0.42, 1.35)       | 12.99       |
|                                                                         | i           |                         | 12.35       |
| Shin (2016)<br>Todroup (2021)                                           |             | 1.33 (0.90, 1.98)       | 6.73        |
| Tadrous (2021)<br>Subgroup $\text{DEM} + H/S + (l^2 - 87.7\%) = 0.000)$ |             | 1.00 (0.40, 2.90)       |             |
| Subgroup, REML+HKSJ (I <sup>2</sup> = 87.7%, p = 0.000)                 |             | 1.08 (0.66, 1.77)       | 100.00      |
|                                                                         |             |                         |             |
| .2                                                                      | .5 1 2 3 5  | 10                      |             |

# eFigure 6. Associations Between Stimulant ADHD Medication Use and Specific CVD Outcomes



### eFigure 7. Associations Between ADHD Medication Use and CVD, by Sex Group

| Prior history of cardiovascular                         |             | Effect size       | %      |
|---------------------------------------------------------|-------------|-------------------|--------|
| disease                                                 |             | (95% CI)          | Weight |
| No prior history of cardiovascular disease              |             |                   |        |
| Cooper (2011)                                           |             | 0.75 (0.31, 1.85) | 5.33   |
| Dalsgaard (2014)                                        | -           | 2.46 (2.40, 2.51) | 12.06  |
| Guertin (2014)                                          |             | 0.82 (0.53, 1.25) | 9.34   |
| Habel (2011)                                            |             | 0.79 (0.62, 1.00) | 11.07  |
| Houghton (2019)                                         | _ <b>_-</b> | 0.97 (0.68, 1.39) | 10.04  |
| Jeong (2021) South Korea                                | -           | 1.14 (1.06, 1.23) | 11.97  |
| Jeong (2021) Taiwan                                     |             | 0.68 (0.55, 0.84) | 11.27  |
| Saiz (2019)                                             |             | 0.28 (0.04, 2.04) | 1.69   |
| Schelleman (2012)                                       |             | 0.79 (0.46, 1.35) | 8.27   |
| Shin (2016)                                             |             | 1.34 (1.23, 1.46) | 11.93  |
| Winterstein (2012)                                      | <b>_</b>    | 0.74 (0.38, 1.46) | 7.03   |
| Subgroup, REML+HKSJ (I <sup>2</sup> = 98.7%, p = 0.000) | $\diamond$  | 0.99 (0.73, 1.33) | 100.00 |
| With prior history of cardiovascular disease            |             |                   |        |
| Cooper (2011)                                           | <b>_</b>    | 0.71 (0.29, 1.72) | 8.51   |
| Dalsgaard (2014)                                        |             | 2.01 (1.98, 2.06) | 14.55  |
| Habel (2011)                                            | -=-         | 0.87 (0.73, 1.03) | 14.17  |
| Jeong (2021) South Korea                                |             | 0.98 (0.92, 1.05) | 14.49  |
| Jeong (2021) Taiwan                                     | -           | 0.81 (0.72, 0.92) | 14.36  |
| Schelleman (2012)                                       |             | 1.07 (0.84, 1.38) | 13.79  |
| Shin (2016)                                             |             | 3.49 (2.33, 5.22) | 12.70  |
| Zhang (2015)                                            |             | 3.07 (1.09, 8.64) | 7.43   |
| Subgroup, REML+HKSJ (l <sup>2</sup> = 99.0%, p = 0.000) |             | 1.31 (0.80, 2.16) | 100.00 |

### eFigure 8. Associations Between ADHD Medication Use and CVD, by History of CVD

#### eReferences.

- 1. Habel LA, Cooper WO, Sox CM, et al. ADHD medications and risk of serious cardiovascular events in young and middle-aged adults. *JAMA: Journal of the American Medical Association*. 2011;306(24):2673-2683.
- 2. Holick CN, Turnbull BR, Jones ME, Chaudhry S, Bangs ME, Seeger JD. Atomoxetine and cerebrovascular outcomes in adults. *J Clin Psychopharmacol.* 2009;29(5):453-460.
- 3. Olfson M, Huang C, Gerhard T, et al. Stimulants and cardiovascular events in youth with attention-deficit/hyperactivity disorder. *Journal of the American Academy of Child & Adolescent Psychiatry.* 2012;51(2):147-156.
- 4. Schelleman H, Bilker WB, Kimmel SE, et al. Methylphenidate and risk of serious cardiovascular events in adults. *Am J Psychiatry*. 2012;169(2):178-185.
- 5. Schelleman H, Bilker WB, Kimmel SE, et al. Amphetamines, atomoxetine and the risk of serious cardiovascular events in adults. *PLoS One.* 2013;8(1):e52991.
- 6. Tadrous M, Shakeri A, Chu C, et al. Assessment of Stimulant Use and Cardiovascular Event Risks Among Older Adults. *JAMA Network Open.* 2021;4(10):e2130795-e2130795.
- Winterstein AG, Gerhard T, Kubilis P, et al. Cardiovascular safety of central nervous system stimulants in children and adolescents: population based cohort study. *Bmj.* 2012;345:e4627.
- Zhang C, Kutyifa V, Moss AJ, McNitt S, Zareba W, Kaufman ES. Long-QT Syndrome and Therapy for Attention Deficit/Hyperactivity Disorder. *J Cardiovasc Electrophysiol.* 2015;26(10):1039-1044.
- 9. Latronica JR, Clegg TJ, Tuan W-J, Bone C. Are Amphetamines Associated with Adverse Cardiovascular Events Among Elderly Individuals? *The Journal of the American Board of Family Medicine*. 2021;34(6):1074-1081.
- Peyre H, Hoertel N, Hatteea H, Limosin F, Dubuc C, Delorme R. Adulthood self-reported cardiovascular risk and ADHD medications: results from the 2004-2005 National Epidemiologic Survey on Alcohol and Related Conditions. *J Clin Psychiatry*. 2014;75(2):181-182.
- 11. Winterstein AG, Gerhard T, Shuster J, Johnson M, Zito JM, Saidi A. Cardiac safety of central nervous system stimulants in children and adolescents with attention-deficit/hyperactivity disorder. *Pediatrics.* 2007;120(6):e1494-1501.
- 12. Cooper WO, Habel LA, Sox CM, et al. ADHD drugs and serious cardiovascular events in children and young adults. *The New England Journal of Medicine.* 2011;365(20):1896-1904.
- 13. Dalsgaard S, Kvist AP, Leckman JF, Nielsen HS, Simonsen M. Cardiovascular safety of stimulants in children with attention-deficit/hyperactivity disorder: a nationwide prospective cohort study. *Journal of child and adolescent psychopharmacology.* 2014;24(6):302-310.
- 14. Schelleman H, Bilker WB, Strom BL, et al. Cardiovascular events and death in children exposed and unexposed to ADHD agents. *Pediatrics*. 2011;127(6):1102-1110.
- 15. Guertin J, LeLorier J, Durand M, Gow R, Holbrook A, Levine M. Impact of a restrictive drug access program on the risk of cardiovascular encounters in children exposed to ADHD medications. *J Popul Ther Clin Pharmacol.* 2014;21(3):e357-369.

- Houghton R, de Vries F, Loss G. Psychostimulants/Atomoxetine and Serious
   Cardiovascular Events in Children with ADHD or Autism Spectrum Disorder. *Cns Drugs.* 2020;34(1):93-101.
- 17. Saiz LC, Gil M, Alonso A, Erviti J, Garjón J, Martínez M. Use of methylphenidate and risk for valvular heart disease: A case-control study nested in the BIFAP cohort. *Pharmacoepidemiol Drug Saf.* 2020;29(3):288-295.
- Shin J-Y, Roughead E, Park B-J, Pratt N. Cardiovascular safety of methylphenidate among children and young people with attention-deficit/hyperactivity disorder (ADHD): Nationwide self controlled case series study. *BMJ.* 2016;353:i2550.
- 19. Jeong HE, Lee H, Lai EC-C, et al. Association between methylphenidate and risk of myocardial infarction: A multinational self-controlled case series study. *Pharmacoepidemiology and Drug Safety*. 2021;30(10):1458-1467.