

Fig S1. Variability in genes reported in different human half-life datasets.

Barplot of the number of genes whose half-lives were reported in each of 54 human samples. Each sample ID is delimited by underscores and listed according to its study of origin (**Table 1**), measurement method, cell type, and replicate number.

а

Fig S2. Comparison of half-lives in a compendium of mouse datasets.

a) Barplot of the number of genes whose half-lives were reported in each of 27 mouse samples. Each sample ID is delimited by underscores and listed according to its study of origin (**Table 1**), measurement method, cell type, and replicate number. **b)** Heatmap of the absolute value of the Spearman correlations measured between half-lives derived from each pair of 27 mouse samples. Samples are clustered using hierarchical clustering according to the indicated dendrogram. Rows are labeled by the study of origin (**Table 1**) and colored by the cell type of origin and measurement approach.

Fig S3. Relationship among human samples.

This figure is similar to Fig. 2a, except that it shows all human samples evaluated in this study.

Fig S4. Prediction of mouse half-lives using sequence-encoded features.

a-d) These panels are organized in the same fashion as **Fig. 3a-d**, except that they evaluate features benchmarked upon mouse data rather than human data. **e)** Performance of trained human and mouse models on test sets derived from either the same or different species. Due to the imperfect one-to-one miRNA mappings between the human and mouse, miRNA-related coefficients were excluded from the inter-species predictions. Each statistical comparison shown was evaluated with a paired t-test.

Fig S5. Prediction of mouse half-lives using biochemical and sequence-encoded features.

This figure is organized in the same fashion as **Fig. 3-4**, except that it evaluates the subset of optimal genetic features (BC3MS model, **Fig. 3**), optimal biochemical features (BEeM model, **Fig. 4**), or a combination of both genetic and biochemical features. The features shown in panels (c-d) are described alongside their corresponding source, such as eCLIP, SeqWeaver, or codon features.

Fig S6. Performance and interpretation of Saluki.

a) Complete architecture of the Saluki model. Indicated for each layer is the layer name, number of parameters in parentheses when applicable, and dimensionality of the input and output matrices. **b)** Performance of trained Saluki models on each of 10 held-out folds of data. Compared is the relative performance between pairs of models, for both human and mouse species, which iteratively consider additional input tracks. Each model is described by a code indicating the input track considered. A description of the code is provided in the key. An improvement in a more complex model relative to a simpler model was evaluated with a one-sided, paired t-test, adjusted with a Bonferroni correction to account for the total number of hypothesis tests. **c)** This panel is organized in the same fashion as **Fig. 5c**, except that it evaluates the performance on mouse data rather than human data. **d)** Set of enriched motifs discovered by TF-MoDISco [84] in each of the three functional regions of an mRNA.

Fig S7. Concordance of Saluki predictions and additional functional data from massively parallel reporter assays.

a-c) Scatter plot of the observed and predicted 3'-UTR effects, as measured in a) Jurkat cells or b) Beas2B cells, alongside c) a plot of observed 3'-UTR effects between the pair of cell types [88]. **d-f)** These panels are organized like panels (a-c), but display variant effects instead of 3'-UTR effects [88]. Panel e) is identical to that shown in **Fig. 6e** and reproduced here for convenience. Also indicated are the Pearson (r) and Spearman (rho) correlation values for panels (a-f). **g)** Scatter matrix displaying scatter plots corresponding to each of the 21 pairs of possible comparisons (lower diagonal elements) involving Saluki predictions as well as the measured stability effects for 3'-UTR fragments measured in each of six cell types [89]. Shown on the diagonal is a histogram of the predicted or observed RNA half-life scores. Also shown are Spearman correlation values among each pair of comparisons, with the size of the text proportional to the magnitude of the correlation coefficient (upper diagonal elements).

Fig S8. Performance of Saluki on the prediction of fine-mapped eQTLs.

a) Performance of Saluki predictions in classifying likely causal eQTLs from a negative set of gene-expression-level-matched eQTLs that are unlikely to be causal. Plotted are histograms showing the AUROCs for each of 8 folds of data for both ORF (n=352) and 3'-UTR (n=541) variants. Both distributions are significantly greater than the expected performance of a random predictor (dashed line); with p-values of 3.5e-2 and 1e-4 for ORFs and 3' UTRs, respectively, as evaluated using a binomial test. **b)** Violin plots showing the distributions of the absolute values of the change in predicted Saluki scores for the mutant and wild-type allele, corresponding to both the positive and negative sets of likely causal variants. Also shown are p-values indicating the statistical differences between distributions as evaluated using a two-sided Wilcoxon rank-sum test.