Supporting Information

Modulating the pharmacokinetic profile of Actinium-225-labeled macropa-derived radioconjugates by dual targeting of PSMA and albumin

Falco Reissig^{1,2}, Kristof Zarschler^{1,*}, Zbynek Novy^{3,*}, Milos Petrik³, Katerina Bendova³, Daniela Kurfurstova⁴, Jan Bouchal⁴, Marie-Charlotte Ludik¹, Florian Brandt^{1,2}, Klaus Kopka^{1,2}, Marta Khoylou³, Hans-Jürgen Pietzsch¹, Marian Hajduch³ and Constantin Mamat^{1,2,*}

¹ Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany.

² Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, D-01062 Dresden, Germany.

³ Palacky University Olomouc, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine and Czech Advanced Technology and Research Institute, Hnevotinska 1333/5, 779 00 Olomouc, Czech Republic.

⁴ Palacky University Olomouc, Faculty of Medicine and Dentistry, Institute of Clinical and Molecular Pathology, Hnevotinska 976/3, 775 15 Olomouc, Czech Republic.

Table of Contents

MALDI-TOF MS spectra of compounds	S1
HRMS spectra of final compounds	S5
Radio-TLC and HPLC-chromatograms for stability testing	S7
Colony forming assay - clonogenic activity of LNCaP cells	S8
Fluorescence-based competition assay to determin albumin binding	S9
Histological assessment of organ sections	S11
Biodistribution data for both radioconjugates	S12

MALDI-TOF MS spectra of compounds

Figure S1. MALDI-TOF MS spectrum of compound 2.

Figure S2. MALDI-TOF MS spectrum of compound 3.

Figure S3. MALDI-TOF MS spectrum of compound 4.

Figure S4. MALDI-TOF MS spectrum of compound 5.

Figure S5. MALDI-TOF MS spectrum of compound mcp-M-alb-PSMA.

Figure S6. MALDI-TOF MS spectrum of compound mcp-D-alp-PSMA.

HRMS Spectra of compounds

Radio-TLC and HPLC-chromatograms for stability testing

Figure S7. HPLC-chromatograms of mcp-M-alb-PSMA and mcp-D-alb-PSMA

Figure S8. TLC- and HPLC-chromatograms for stability assay of mcp-M-alb-PSMA

Figure S9. TLC- and HPLC-chromatograms for stability assay of mcp-D-alb-PSMA

Colony forming assay - clonogenic activity of LNCaP cells

Figure S10. Colony formation of LNCaP cells in response to treatment with ²²⁵Ac-labeled PSMA ligands for (A) 1 h or (B) 4 h, respectively. Log phase cells were plated and 24 h later treated with different activity concentrations of [²²⁵Ac]Ac-mcp-M-alb-PSMA or [²²⁵Ac]Ac-mcp-D-alb-PSMA. After the indicated treatment time, cells were supplemented with fresh medium and cultures were incubated for eight days to allow colony formation.

Fluorescence-based competition assay to determin albumin binding

Figure S11. Albumin-binding curve for **mcp-M-PSMA**. Data points for **(**R**)-1a** (blue) are the averaged fluorescence counts (n = 6) for the direct titration to HSA. Data points for **mcp-M-PSMA** (red) are the averaged fluorescence counts (n = 3) for the competition experiment.

Figure S12. Albumin-binding curve for **mcp-D-PSMA**. Data points for **(***R***)-1a** (blue) are the averaged fluorescence counts (n = 6) for the direct titration to HSA. Data points for **mcp-D-PSMA** (red) are the averaged fluorescence counts (n = 3) for the competition experiment.

Figure S13. Albumin-binding curve for **mcp-M-alb-PSMA**. Data points for **(***R***)-1a** (blue) are the averaged fluorescence counts (n = 6) for the direct titration to HSA. Data points for **mcp-M-alb-PSMA** (red) are the averaged fluorescence counts (n = 3) for the competition experiment.

Figure S14. Albumin-binding curve for **mcp-D-alb-PSMA**. Data points for **(***R***)-1a** (blue) are the averaged fluorescence counts (n = 6) for the direct titration to HSA. Data points for **mcp-D-alb-PSMA** (red) are the averaged fluorescence counts (n = 3) for the competition experiment.

Histological assessment of organ sections

Figure S15. Histological assessment of organ sections. The graphs describe quantification of the corresponding immunohistochemical (IHC) staining of the tumor/kidney/liver tissues from the control group (untreated) and from groups injected with [²²⁵Ac]Ac-mcp-M-alb-PSMA sacrificed in 72 and 120 h post injection (p.i.) respectively. Values are expressed as means with standard deviations. P-values p < 0.05 are indicated with *. n = 6 for control groups and n= 3-4 for [²²⁵Ac]Ac-mcp-M-alb-PSMA treated groups.

Biodistribution data for both radioconjugates

Table S1. Biodistribution data of ²²⁵Ac-labeled, 4-(*p*-iodophenyl)butyrate-containing PSMA radioconjugates in LNCaP tumor-bearing mice from 1 h to 120 resp. 168 h after injection. The values are indicated as average (AV) ± standard deviation (SD) obtained from each group of mice (n = 3–4) and listed as percentage of injected dose per gram of tissue [%ID/g].

	<mark>1 h p.i.</mark>		<mark>4 h p.i.</mark>		<mark>24 h p.i.</mark>		<mark>48 h p.i.</mark>		<mark>72 h p.i.</mark>		<mark>120 h p.i.</mark>		<mark>168 h p.i.</mark>	
	[²²⁵ Ac]Ac-mcp-M-alb-PSMA													
	AV	<mark>SD</mark>	AV	<mark>SD</mark>	AV	<mark>SD</mark>	AV	<mark>SD</mark>	AV	<mark>SD</mark>	AV AV	<mark>SD</mark>	<mark>AV</mark>	<mark>SD</mark>
<mark>blood</mark>	<mark>6.47</mark>	<mark>0.93</mark>	<mark>4.80</mark>	<mark>0.56</mark>	<mark>0.54</mark>	<mark>0.29</mark>	<mark>0.08</mark>	<mark>0.02</mark>	<mark>0.03</mark>	<mark>0.01</mark>	<mark>0.03</mark>	<mark>0.02</mark>	<mark>N.D.</mark>	<mark>N.D.</mark>
<mark>spleen</mark>	<mark>7.24</mark>	<mark>2.61</mark>	<mark>3.40</mark>	<mark>0.92</mark>	<mark>1.24</mark>	<mark>0.15</mark>	<mark>1.31</mark>	<mark>0.47</mark>	<mark>1.12</mark>	<mark>0.09</mark>	<mark>1.43</mark>	<mark>0.16</mark>	<mark>N.D.</mark>	<mark>N.D.</mark>
<mark>pancreas</mark>	<mark>0.57</mark>	<mark>0.10</mark>	<mark>0.57</mark>	<mark>0.06</mark>	<mark>0.26</mark>	<mark>0.04</mark>	<mark>0.10</mark>	<mark>0.01</mark>	<mark>0.06</mark>	<mark>0.03</mark>	<mark>0.07</mark>	<mark>0.03</mark>	<mark>N.D.</mark>	<mark>N.D.</mark>
<mark>stomach</mark>	<mark>0.83</mark>	<mark>0.05</mark>	<mark>0.58</mark>	<mark>0.09</mark>	<mark>0.39</mark>	<mark>0.19</mark>	<mark>0.17</mark>	<mark>0.03</mark>	<mark>0.10</mark>	<mark>0.04</mark>	<mark>0.11</mark>	<mark>0.03</mark>	<mark>N.D.</mark>	<mark>N.D.</mark>
<mark>intestine</mark>	<mark>0.60</mark>	<mark>0.07</mark>	<mark>0.54</mark>	<mark>0.09</mark>	<mark>0.81</mark>	<mark>0.41</mark>	<mark>0.10</mark>	<mark>0.01</mark>	<mark>0.12</mark>	<mark>0.04</mark>	<mark>0.06</mark>	<mark>0.01</mark>	<mark>N.D.</mark>	<mark>N.D.</mark>
<mark>kidneys</mark>	<mark>29.50</mark>	<mark>2.91</mark>	<mark>67.94</mark>	<mark>20.67</mark>	<mark>33.08</mark>	<mark>11.59</mark>	<mark>15.74</mark>	<mark>3.73</mark>	<mark>9.59</mark>	<mark>2.49</mark>	<mark>8.82</mark>	<mark>4.40</mark>	<mark>N.D.</mark>	<mark>N.D.</mark>
liver	<mark>1.44</mark>	<mark>0.15</mark>	<mark>1.43</mark>	<mark>0.15</mark>	<mark>1.08</mark>	<mark>0.17</mark>	<mark>1.19</mark>	<mark>0.08</mark>	<mark>1.08</mark>	<mark>0.13</mark>	<mark>1.27</mark>	<mark>0.12</mark>	<mark>N.D.</mark>	<mark>N.D.</mark>
<mark>heart</mark>	<mark>2.03</mark>	<mark>0.31</mark>	<mark>1.63</mark>	<mark>0.15</mark>	<mark>0.34</mark>	<mark>0.03</mark>	<mark>0.22</mark>	<mark>0.06</mark>	<mark>0.15</mark>	<mark>0.01</mark>	<mark>0.23</mark>	<mark>0.10</mark>	<mark>N.D.</mark>	<mark>N.D.</mark>
lung	<mark>6.27</mark>	<mark>1.42</mark>	<mark>4.99</mark>	<mark>2.00</mark>	<mark>2.19</mark>	<mark>0.48</mark>	<mark>1.77</mark>	<mark>1.37</mark>	<mark>1.47</mark>	<mark>1.17</mark>	<mark>1.73</mark>	<mark>0.88</mark>	<mark>N.D.</mark>	<mark>N.D.</mark>
<mark>muscle</mark>	<mark>0.53</mark>	<mark>0.05</mark>	<mark>0.51</mark>	<mark>0.06</mark>	<mark>0.14</mark>	<mark>0.01</mark>	<mark>0.07</mark>	<mark>0.04</mark>	<mark>0.08</mark>	<mark>0.03</mark>	<mark>0.12</mark>	<mark>0.13</mark>	<mark>N.D.</mark>	<mark>N.D.</mark>
<mark>femur</mark>	<mark>0.61</mark>	<mark>0.10</mark>	<mark>0.62</mark>	<mark>0.19</mark>	<mark>0.32</mark>	<mark>0.15</mark>	<mark>0.44</mark>	<mark>0.15</mark>	<mark>0.32</mark>	<mark>0.13</mark>	<mark>0.43</mark>	<mark>0.39</mark>	<mark>N.D.</mark>	<mark>N.D.</mark>
<mark>tumor</mark>	<mark>5.96</mark>	<mark>1.64</mark>	<mark>17.98</mark>	<mark>4.23</mark>	<mark>29.47</mark>	<mark>5.74</mark>	<mark>36.49</mark>	<mark>1.73</mark>	<mark>38.72</mark>	<mark>6.74</mark>	<mark>46.04</mark>	<mark>4.77</mark>	<mark>N.D.</mark>	<mark>N.D.</mark>
	[²²⁵ Ac]Ac-mcp-D-alb-PSMA													
	AV	<mark>SD</mark>	AV	<mark>SD</mark>	AV	<mark>SD</mark>	AV	<mark>SD</mark>	AV	<mark>SD</mark>	AV	<mark>SD</mark>	<mark>AV</mark>	<mark>SD</mark>
<mark>blood</mark>	<mark>8.44</mark>	<mark>0.94</mark>	<mark>6.50</mark>	<mark>0.74</mark>	<mark>2.85</mark>	<mark>0.33</mark>	<mark>1.22</mark>	<mark>0.24</mark>	<mark>0.70</mark>	<mark>0.18</mark>	<mark>0.20</mark>	<mark>0.04</mark>	<mark>0.11</mark>	<mark>0.04</mark>
<mark>spleen</mark>	<mark>7.11</mark>	<mark>2.20</mark>	<mark>6.21</mark>	<mark>1.67</mark>	<mark>5.24</mark>	<mark>1.60</mark>	<mark>8.33</mark>	<mark>1.35</mark>	<mark>10.20</mark>	<mark>0.25</mark>	<mark>10.00</mark>	<mark>1.20</mark>	<mark>11.42</mark>	<mark>2.89</mark>
<mark>pancreas</mark>	<mark>0.68</mark>	<mark>0.11</mark>	<mark>0.58</mark>	<mark>0.05</mark>	<mark>0.50</mark>	<mark>0.06</mark>	<mark>0.35</mark>	<mark>0.07</mark>	<mark>0.39</mark>	<mark>0.04</mark>	<mark>0.42</mark>	<mark>0.10</mark>	<mark>0.37</mark>	<mark>0.03</mark>
<mark>stomach</mark>	<mark>0.98</mark>	<mark>0.15</mark>	<mark>0.59</mark>	<mark>0.15</mark>	<mark>0.61</mark>	<mark>0.13</mark>	<mark>0.40</mark>	<mark>0.14</mark>	<mark>0.27</mark>	<mark>0.04</mark>	<mark>0.34</mark>	<mark>0.12</mark>	<mark>0.27</mark>	<mark>0.06</mark>
<mark>intestine</mark>	<mark>0.80</mark>	<mark>0.16</mark>	<mark>0.64</mark>	<mark>0.06</mark>	<mark>0.58</mark>	<mark>0.07</mark>	<mark>0.37</mark>	<mark>0.09</mark>	<mark>0.26</mark>	<mark>0.05</mark>	<mark>0.19</mark>	<mark>0.02</mark>	<mark>0.17</mark>	<mark>0.02</mark>
<mark>kidneys</mark>	<mark>9.23</mark>	<mark>1.39</mark>	<mark>21.79</mark>	<mark>2.37</mark>	<mark>43.72</mark>	<mark>6.84</mark>	<mark>59.90</mark>	<mark>6.46</mark>	<mark>50.10</mark>	<mark>5.75</mark>	<mark>37.64</mark>	<mark>2.54</mark>	<mark>33.67</mark>	<mark>9.57</mark>
liver	<mark>2.42</mark>	<mark>0.47</mark>	<mark>2.45</mark>	<mark>0.35</mark>	<mark>2.52</mark>	<mark>0.46</mark>	<mark>3.73</mark>	<mark>0.63</mark>	<mark>3.39</mark>	<mark>0.46</mark>	<mark>3.90</mark>	<mark>0.16</mark>	<mark>4.31</mark>	<mark>0.67</mark>
<mark>heart</mark>	<mark>2.47</mark>	<mark>0.50</mark>	<mark>2.32</mark>	<mark>0.20</mark>	<mark>1.21</mark>	<mark>0.12</mark>	<mark>0.94</mark>	<mark>0.28</mark>	<mark>0.82</mark>	<mark>0.08</mark>	<mark>0.88</mark>	<mark>0.05</mark>	<mark>0.83</mark>	<mark>0.27</mark>
lung	<mark>5.67</mark>	<mark>0.44</mark>	<mark>4.57</mark>	<mark>1.17</mark>	<mark>2.30</mark>	<mark>0.28</mark>	<mark>2.75</mark>	<mark>1.10</mark>	<mark>2.98</mark>	<mark>1.13</mark>	<mark>7.50</mark>	<mark>5.29</mark>	<mark>4.95</mark>	<mark>4.37</mark>

<mark>muscle</mark>	<mark>0.49</mark>	<mark>0.07</mark>	<mark>0.58</mark>	<mark>0.19</mark>	<mark>0.28</mark>	<mark>0.05</mark>	<mark>0.29</mark>	<mark>0.11</mark>	<mark>0.20</mark>	<mark>0.05</mark>	<mark>0.24</mark>	<mark>0.04</mark>	<mark>0.22</mark>	<mark>0.08</mark>
<mark>femur</mark>	<mark>0.84</mark>	<mark>0.19</mark>	<mark>0.89</mark>	<mark>0.37</mark>	<mark>0.74</mark>	<mark>0.13</mark>	<mark>0.96</mark>	<mark>0.29</mark>	<mark>0.87</mark>	<mark>0.16</mark>	<mark>1.22</mark>	<mark>0.25</mark>	<mark>1.30</mark>	<mark>0.49</mark>
<mark>tumor</mark>	<mark>3.35</mark>	<mark>0.85</mark>	<mark>10.56</mark>	<mark>2.32</mark>	<mark>27.58</mark>	<mark>4.31</mark>	<mark>57.39</mark>	<mark>4.14</mark>	<mark>86.39</mark>	<mark>17.15</mark>	<mark>120.04</mark>	<mark>8.58</mark>	<mark>126.92</mark>	<mark>4.75</mark>