Supporting Information

Development of fluorinated peptoid-based histone deacetylase (HDAC) inhibitors for therapy-resistant acute leukemia

Nina Reβing,^{‡1,2} Julian Schliehe-Diecks,^{‡3} Paris R. Watson⁴, Melf Sönnichsen³, Abigail D. Cragin⁴, Andrea Schöler,² Jing Yang,^{3,5} Linda Schäker-Hübner,¹ Arndt Borkhardt,³ David W. Christianson⁴, Sanil Bhatia,^{*3} and Finn K. Hansen^{*1}

¹Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
²Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
³Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.

⁴Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States

⁵Department of Medicine, Yangzhou Polytechnic College, West Wenchang Road 458, Yangzhou, 225009, P.R. China

[‡] These authors contributed equally to this work.

Corresponding authors:

Sanil Bhatia, Tel. +49-211-81-04896, E-Mail: sanil.bhatia@uni-duesseldorf.de Finn K. Hansen, Tel. +49-228-73-5213, E-Mail: finn.hansen@uni-bonn.de

Contents

1. Supplementary Tables	S3
2. ¹ H and ¹³ C NMR spectra	
3. HPLC chromatograms	S21

1. Supplementary Tables

Cell line	10h	10p	CI994	Ricolinostat
REH	203.2 ± 17.3	>25000	3170.7 ± 158.9	1073.9 ± 57.6
HAL01	1206.3 ± 333.3	>25000	2140 ± 669.8	601.8 ± 12
697	227.7 ± 3.6	10995 ± 1887.1	2450.7 ± 238.5	1563 ± 38.8
PEER	175.3 ± 22	>25000	2605.3 ± 186.7	1036.4 ± 94.4
SUPB15	291.9 ± 50.6	13000.3 ± 1237.6	3382.3 ± 1046.6	1637 ± 232.6
KASUMI	175.3 ± 8.4	>25000	2553 ± 87.7	1779 ± 142.4
DND41	565 ± 23.6	>25000	7970 ± 563.2	3370.7 ± 6.1
Healthy Fibroblast 1	5979 ± 339.7	>25000	>25000	>25000
Healthy Fibroblast 2	3134.3 ± 135.9	>25000	>25000	16524.7 ± 1812.6
HL60	228.6 ± 37.8	>25000	1076.4 ± 302.2	1008.8 ± 248.6
MV4-11	258.8 ± 14.4	>25000	1366.5 ± 1055.7	2450.3 ± 166.2
К562	820.2 ± 791	24342 ± 930.6	14985.3 ± 4805.4	19299.3 ± 662.5
JURKAT	357.6 ± 91.2	>25000	4928.3 ± 125	3344 ± 233.2
MOLM13	94.7 ± 30.9	>25000	1690.3 ± 241.6	2413.7 ± 444

Table S1. Effect on cellular vaibility (IC50 values in nM) upon **10h**, **10p**, CI994 or ricolinostat exposure aganist selected leukemia cells and two healthy fibroblast control cells.

	HDAC6-10h complex ^a
Space group	<i>P</i> 2 ₁
a,b,c (Å)	78.34, 95.13, 98.14
α, β, γ (°)	90.0, 98.73, 90.0
R _{merge} ^b	0.141 (0.416)
R _{pim} ^c	0.104 (0.298)
$\text{CC}_{1/2}^{d}$	0.980 (0.720)
Redundancy	1.7 (1.7)
Completeness (%)	97.9 (97.7)
I/σ	5.4 (2.0)
Refinement	
Resolution (Å)	48.5 - 1.85 (1.916 - 1.85)
No. reflections	205228 (19929)
P /P €	0.172/ 0.215
R _{work} /R _{free}	(0.218/ 0.278)
Number of Atoms ^f	
Protein	11158
Ligand	228
Solvent	1047
Average B factors ($Å^2$)	
Protein	12
Ligand	15
Solvent	18
RMS Deviations	
Bond lengths (Å)	0.007
Bond angles (°)	1.3
Ramachandran Plot ^g	
Favored	97.00
Allowed	3.00
Outliers	0.00

Table S2. Data collection and refinement statistics.

^aValues in parentheses refer to the highest-resolution shell indicated. ^bR_{merge} = $\sum_{hkl}\sum_i |I_{i,hkl} - \langle I \rangle_{hkl}|/\sum_{hkl}\sum_i I_{i,hkl}$, where $\langle I \rangle_{hkl}$ is the average intensity calculated for reflection hkl from replicate measurements. ^cR_{p.i.m.} = $(\sum_{hkl}(1/(N-1))^{1/2}\sum_i |I_{i,hkl} - \langle I \rangle_{hkl}|)/\sum_{hkl}\sum_i I_{i,hkl}$, where $\langle I \rangle_{hkl}$ is the average intensity calculated for reflection hkl from replicate measurements and N is the number of reflections. ^dPearson correlation coefficient between random half-datasets. ^eR_{work} = $\sum_{i} ||F_o| - |F_c||/\sum_i |F_o|$ for reflections contained in the working set. $|F_o|$ and $|F_c|$ are the observed and calculated structure factor amplitudes, respectively. R_{free} is calculated using the same expression for reflections contained in the test set held aside during refinement. ^fPer asymmetric unit. ^gCalculated with MolProbity.

2. ¹H and ¹³C NMR spectra

 $\label{eq:loss} \begin{array}{l} 4-(\{N-[(cyclohexylcarbamoyl)methyl]-1-(3,5-dimethylphenyl)formamido\}methyl)-3-fluoro-N-hydroxybenzamide ({\bf 10a}) \end{array}$

¹H NMR (400 MHz, DMSO-*d*₆, 20 °C)

4-({N-[(cyclohexylcarbamoyl)methyl]-1-[4-(dimethylamino)phenyl]formamido}methyl)-3-fluoro-N-hydroxybenzamide (**10b**) ¹H NMR (400 MHz, DMSO- d_6 , 20 °C)

¹³C NMR (101 MHz, DMSO-*d*₆)

4-($\{N$ -[(cyclohexylcarbamoyl)methyl]-1-(2-fluorophenyl)formamido $\}$ methyl)-3-fluoro-*N*-hydroxybenzamide (**10c**) ¹H NMR (300 MHz, DMSO-*d*₆, 20°C)

4-({N-[(cyclohexylcarbamoyl)methyl]-1-(2-methylphenyl)formamido}methyl)-3-fluoro-N-hydroxybenzamide (**10d**) ¹H NMR (400 MHz, DMSO- d_6 , 60 °C)

4-({N-[(cyclohexylcarbamoyl)methyl]-1-(2-methoxyphenyl)formamido}methyl)-3-fluoro-N-hydroxybenzamide (**10e**) ¹H NMR (400 MHz, DMSO- d_6 , 20 °C)

 $\label{eq:loss} $$4-({N-[(cyclohexylcarbamoyl)methyl]-1-[2-(trifluoromethyl)phenyl]formamido}methyl)-3-fluoro-N-hydroxybenzamide (10f)$

i la la la

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 f1 (ppm)

-40000 -30000 -20000 -10000

-0 ---10000

30 20 10 0 -10

4-({N-[(benzylcarbamoyl)methyl]-1-(3,5-dimethylphenyl)formamido}methyl)-3-fluoro-N-hydroxybenzamide (**10g**) ¹H NMR (300 MHz, DMSO- d_6 , 20°C)

4-({*N*-[(benzylcarbamoyl)methyl]-1-[4-(dimethylamino)phenyl]formamido}methyl)-3-fluoro-*N*-hydroxybenzamide (**10h**)

¹¹H NMR (400 MHz, DMSO-*d*₆, 20°C)

4-({N-[(*tert*-butylcarbamoyl)methyl]-1-(3,5-dimethylphenyl)formamido}methyl)-3-fluoro-N-hydroxybenzamide (**10i**) ¹H NMR (400 MHz, DMSO- d_6 , 20°C)

4-({*N*-[(*tert*-butylcarbamoyl)methyl]-1-[4-(dimethylamino)phenyl]formamido}methyl)-3-fluoro-*N*-hydroxybenzamide (**10j**) ¹H NMR (400 MHz, DMSO-*d*₆, 20°C)

4-({N-[(*tert*-butylcarbamoyl)methyl]-1-(2-fluorophenyl)formamido}methyl)-3-fluoro-N-hydroxybenzamide (**10k**) ¹H NMR (400 MHz, DMSO- d_6 , 20 °C)

4-({N-[(*tert*-butylcarbamoyl)methyl]-1-(2-methylphenyl)formamido}methyl)-3-fluoro-N-hydroxybenzamide (**10l**) ¹H NMR (300 MHz, DMSO- d_6 , 60°C)

4-({N-[(*tert*-butylcarbamoyl)methyl]-1-(2-methoxyphenyl)formamido}methyl)-3-fluoro-N-hydroxybenzamide (**10m**) ¹H NMR (300 MHz, DMSO- d_6 , 60 °C)

4-({N-[(*tert*-butylcarbamoyl)methyl]-1-[2-(trifluoromethyl)phenyl]formamido}methyl)-3-fluoro-N-hydroxybenzamide (**10n**) ¹H NMR (300 MHz, DMSO- d_6 , 60 °C)

4-({N-[(*tert*-butylcarbamoyl)methyl]-1-(2-chlorophenyl)formamido}methyl)-3-fluoro-N-hydroxybenzamide (**10o**) ¹H NMR (400 MHz, DMSO- d_6 , 20 °C)

4-({N-[(*tert*-butylcarbamoyl)methyl]-1-[2-(propan-2-yl)phenyl]formamido}methyl)-3-fluoro-N-hydroxybenzamide (**10p**) ¹H NMR (400 MHz, DMSO- d_6 , 20 °C)

¹³C NMR (101 MHz, DMSO-*d*₆)

3. HPLC chromatograms

4-({*N*-[(cyclohexylcarbamoyl)methyl]-1-(3,5-dimethylphenyl)formamido}methyl)-3-fluoro-*N*-hydroxybenzamide (**10a**)

 $\label{eq:loss} $$4-({N-[(cyclohexylcarbamoyl)methyl]-1-[4-(dimethylamino)phenyl]formamido}methyl)-3-fluoro-N-hydroxybenzamide (10b)$

 $\label{eq:loss} $$4-({N-[(cyclohexylcarbamoyl)methyl]-1-(2-fluorophenyl)formamido}methyl)-3-fluoro-N-hydroxybenzamide (10c)$

 $\label{eq:loss} $$4-({N-[(cyclohexylcarbamoyl)methyl]-1-(2-methylphenyl)formamido}methyl)-3-fluoro-N-hydroxybenzamide (10d)$

 $\label{eq:loss} $$4-({N-[(cyclohexylcarbamoyl)methyl]-1-(2-methoxyphenyl)formamido}methyl)-3-fluoro-N-hydroxybenzamide (10e)$

 $4-({N-[(cyclohexylcarbamoyl)methyl]-1-[2-(trifluoromethyl)phenyl]formamido}methyl)-3-fluoro-N-hydroxybenzamide ($ **10f**)

 $\label{eq:loss} $$4-({N-[(benzylcarbamoyl)methyl]-1-(3,5-dimethylphenyl)formamido}methyl)-3-fluoro-N-hydroxybenzamide (10g)$

4-({*N*-[(benzylcarbamoyl)methyl]-1-[4-(dimethylamino)phenyl]formamido}methyl)-3-fluoro-*N*-hydroxybenzamide (**10h**)

 $4-({N-[(tert-butylcarbamoyl)methyl]-1-(3,5-dimethylphenyl)formamido}methyl)-3-fluoro-N-hydroxybenzamide (10i)$

4-({*N*-[(*tert*-butylcarbamoyl)methyl]-1-[4-(dimethylamino)phenyl]formamido}methyl)-3-fluoro-*N*-hydroxybenzamide (**10**j)

 $\label{eq:linear} $$4-({N-[(tert-butylcarbamoyl)methyl]-1-(2-fluorophenyl)formamido}methyl)-3-fluoro-N-hydroxybenzamide (10k)$

 $\label{eq:linear} $$4-({N-[(tert-butylcarbamoyl)methyl]-1-(2-methylphenyl)formamido}methyl)-3-fluoro-N-hydroxybenzamide (101)$

4-({*N*-[(*tert*-butylcarbamoyl)methyl]-1-(2-methoxyphenyl)formamido}methyl)-3-fluoro-*N*-hydroxybenzamide (**10m**)

 $\label{eq:linear} 4-(\{N-[(tert-butylcarbamoyl)methyl]-1-[2-(trifluoromethyl)phenyl]formamido\}methyl)-3-fluoro-N-hydroxybenzamide (10n)$

 $\label{eq:linear} \begin{array}{l} 4-(\{N-[(\textit{tert}-butylcarbamoyl)methyl]-1-(2-chlorophenyl)formamido\}methyl)-3-fluoro-N-hydroxybenzamide (\textbf{10o}) \end{array}$

 $\label{eq:linear} \begin{array}{l} 4-(\{N-[(\textit{tert}-\textit{butylcarbamoyl})\textit{methyl}]-1-[2-(\textit{propan-2-yl})\textit{phenyl}]\textit{formamido}\}\textit{methyl})-3-fluoro-N-hydroxybenzamide (\mathbf{10p}) \end{array}$